JPH01277485A - Method for freezing and preserving cell - Google Patents

Method for freezing and preserving cell

Info

Publication number
JPH01277485A
JPH01277485A JP63108032A JP10803288A JPH01277485A JP H01277485 A JPH01277485 A JP H01277485A JP 63108032 A JP63108032 A JP 63108032A JP 10803288 A JP10803288 A JP 10803288A JP H01277485 A JPH01277485 A JP H01277485A
Authority
JP
Japan
Prior art keywords
cell
tube
cells
metal tube
inside diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63108032A
Other languages
Japanese (ja)
Other versions
JP2638064B2 (en
Inventor
Hidefumi Saito
英文 斎藤
Isao Iwasaki
功 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63108032A priority Critical patent/JP2638064B2/en
Publication of JPH01277485A publication Critical patent/JPH01277485A/en
Application granted granted Critical
Publication of JP2638064B2 publication Critical patent/JP2638064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To prevent growth of ice in a cell and enhance survival rate of the cell, by charging the cell into a metallic tube having shorter inside diameter than cell to be frozen and preserved and cooling the cell using a cooling medium. CONSTITUTION:A metallic tube having good thermal conductivity and having smaller inside diameter than diameter of a cell is used as a tube for preserving the cell and the cell is charged into the tube while transforming the cell to directly bring into contact with inside wall of the tube. Then whole tube is cooled to freeze and preserve the cell. When the charge is carried out, a part of inside diameter becoming smaller is further formed in the metallic tube and the cell can be charged in state trapping the cell at the part. By the above- mentioned method, charge of the cell to the metallic tube is made easy, since a change in the pressure of suction of feed occurs when the cell is trapped in the part having smaller inside diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は細胞融合や遺伝子導入などの処置を施した細胞
や、受精卵などの貴重な細胞を凍結して保存するための
方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for freezing and preserving cells that have undergone treatments such as cell fusion and gene transfer, as well as valuable cells such as fertilized eggs. be.

(従来の技術) 細胞を凍結する際、徐々に冷却していくと細胞の内部に
含まれている水分が結晶化し、その結晶が成長して核や
細胞膜を破壊し、細胞を死滅させてしまう。そこで、細
胞を凍結する際には急速に冷却し、細胞内の水分の結晶
が成長しないようにすることが重要である。
(Conventional technology) When freezing cells, the water contained inside the cells crystallizes as they are gradually cooled, and the crystals grow and destroy the nucleus and cell membrane, causing the cells to die. . Therefore, when freezing cells, it is important to cool them rapidly to prevent the growth of intracellular water crystals.

従来は細胞の大きさに比べて太い内径をもつプラスチッ
クチューブに、細胞を生理食塩水などの溶液とともに吸
い込み、そのプラスチックチューブを液体窒素などの冷
媒に入れて凍結保存している。
Conventionally, cells are sucked into a plastic tube with a large inner diameter compared to the size of the cells, along with a solution such as physiological saline, and then the plastic tube is placed in a refrigerant such as liquid nitrogen for cryopreservation.

(発明が解決しようとする課題) 細胞を太いプラスチックチューブに入れて冷却すると、
細胞の周りに溶液が存在するため、チューブ内壁と溶液
間の熱の伝達係数が低く、熱伝達が悪くなり、かつ、熱
容量が大きくなって、細胞の凍結速度が遅くなり、氷の
成長を十分に防ぐことができず、細胞の生存率が低くな
る問題がある。
(Problem to be solved by the invention) When cells are placed in a thick plastic tube and cooled,
Due to the presence of solution around the cells, the heat transfer coefficient between the inner wall of the tube and the solution is low, resulting in poor heat transfer and a large heat capacity, which slows down the freezing rate of cells and prevents ice growth. There is a problem that the survival rate of cells becomes low because it cannot be prevented.

本発明は細胞を急速に冷却して細胞内の氷の成長を防い
で細胞の生存率を高める方法を提供することを目的とす
るものである。
An object of the present invention is to provide a method for rapidly cooling cells to prevent the growth of ice within the cells, thereby increasing the survival rate of the cells.

(課題を解決するための手段) 本発明では細胞を保存するチューブとして熱伝導のよい
金属チューブを使用する。また、その金属チューブは内
径が細胞の直径よりも小さいものを使用し、細胞を変形
させながらチューブ内に装填し、細胞をチューブ内壁に
直接接触させる。
(Means for Solving the Problems) In the present invention, a metal tube with good thermal conductivity is used as a tube for storing cells. Further, the metal tube used has an inner diameter smaller than the diameter of the cells, and the cells are loaded into the tube while being deformed, so that the cells are brought into direct contact with the inner wall of the tube.

本発明は、さらに金属チューブに内径が小さくなった部
分を形成し、その部分で細胞をトラップさせて装填する
The present invention further includes forming a portion with a reduced inner diameter in the metal tube, and traps and loads cells in that portion.

(作用) 金属チューブであるので、熱伝導がよく、冷媒によって
金属チューブ内が急速に冷却される。
(Function) Since it is a metal tube, heat conduction is good, and the inside of the metal tube is rapidly cooled by the refrigerant.

細胞が金属チューブ内壁と直接接触しているので、伝熱
効率がよく、細胞が金属チューブを介して急速に冷却さ
れる。
Since the cells are in direct contact with the inner wall of the metal tube, heat transfer efficiency is high and the cells are rapidly cooled through the metal tube.

内径が小さくなった部分に細胞がトラップされると、吸
入又は注入の圧力に変化が生じるので、金属チューブへ
の細胞の装填が容易になる。
When cells are trapped in the reduced inner diameter, a change in aspiration or injection pressure occurs, making it easier to load cells into the metal tube.

(実施例) 第1図から第4図は一実施例を示す。(Example) 1 to 4 show one embodiment.

第1図において、1は凍結保存しようとする細胞である
。2は熱伝導をよくするために薄肉金属で形成されたチ
ューブであり、その内径は細胞1の直径よりも小さい。
In FIG. 1, 1 is a cell to be cryopreserved. A tube 2 is made of thin metal to improve heat conduction, and its inner diameter is smaller than the diameter of the cell 1.

金属チューブ2の一端は吸引機構5の先端4に嵌め込ま
れ、金属チューブ2の先端は細胞1を吸入しやすくする
ために開いている。
One end of the metal tube 2 is fitted into the tip 4 of the suction mechanism 5, and the tip of the metal tube 2 is open to facilitate suction of the cells 1.

細胞1を金属チューブ2内に吸入するときは、金属チュ
ーブ2の先端3を細胞1に近づけ、細胞1を溶液6とと
もに吸入する。
When inhaling the cells 1 into the metal tube 2, the tip 3 of the metal tube 2 is brought close to the cells 1, and the cells 1 are inhaled together with the solution 6.

細胞1は第2図に示されるように金属チューブ2内に吸
入される。金属チューブ2の内径は細胞1の直径より小
さくなっているので、細胞1は変形しながら金属チュー
ブ2に入る。その結果、細胞1は金属チューブ2の内壁
面に広い範囲8で直接接触した状態となる。
Cells 1 are aspirated into a metal tube 2 as shown in FIG. Since the inner diameter of the metal tube 2 is smaller than the diameter of the cell 1, the cell 1 enters the metal tube 2 while being deformed. As a result, the cells 1 come into direct contact with the inner wall surface of the metal tube 2 over a wide area 8.

次に、このチューブ2を吸引機構5から外し、第3図に
示されるように、金属チューブ2の端部を冷却してその
部分の溶液を凍結させて記号7で示されるように金属チ
ューブ2の一端を封止する。
Next, this tube 2 is removed from the suction mechanism 5, and as shown in FIG. 3, the end of the metal tube 2 is cooled to freeze the solution in that part and the metal tube 2 Seal one end of.

次に、第4図に示されるように、その金属チューブ2を
高速の流れ9をもつ液体窒素のような冷媒10中に入れ
る。これにより、金属チューブ2が急速に冷却され、金
属チューブ2内には細胞1が広い面積で直接接触してい
るため、熱伝導によって細胞1内の熱が急速に放出され
る。その結果、細胞1は急速に冷却され、氷の結晶は成
長しない。
The metal tube 2 is then placed in a refrigerant 10, such as liquid nitrogen, with a high velocity flow 9, as shown in FIG. As a result, the metal tube 2 is rapidly cooled, and since the cells 1 are in direct contact with each other over a wide area within the metal tube 2, the heat within the cells 1 is rapidly released by thermal conduction. As a result, cell 1 is rapidly cooled and no ice crystals grow.

第5図は金属チューブ2にくびれ部11を設け、細胞1
がそのくびれ部11より吸引側に出てこないようにした
実施例を表わしたものである。
FIG. 5 shows a metal tube 2 with a constriction 11 and a cell 1.
This shows an embodiment in which the constricted portion 11 is prevented from coming out on the suction side.

この金属チューブ2を第1図と同様に吸引機構に取りつ
けて先端3から細胞1を溶液6とともに吸入する。吸入
された細胞1はくびれ部11で止まり、吸引機構5に圧
力変化が生じるので、細胞1が所定の位置に装填された
ことを容易に検出することができる。
This metal tube 2 is attached to a suction mechanism in the same manner as shown in FIG. 1, and the cells 1 are sucked together with the solution 6 from the tip 3. The inhaled cells 1 stop at the constriction 11 and a pressure change occurs in the suction mechanism 5, so that it can be easily detected that the cells 1 are loaded at a predetermined position.

細胞1を装填した金属チューブ2の一端を封止するには
、第3図のように一部を凍結する方法以外に、例えば金
属チューブ2の一端に蓋を取りつけてもよい。
In order to seal one end of the metal tube 2 loaded with cells 1, instead of freezing a portion as shown in FIG. 3, for example, a lid may be attached to one end of the metal tube 2.

冷媒は、液体窒素に限らず、例えば極低温のへリウムガ
スなどを用いることもできる。
The refrigerant is not limited to liquid nitrogen, and for example, cryogenic helium gas or the like can also be used.

第5図は金属チューブ2の一部の内径を小さくするため
に、くびれ部11を設けているが、金属チューブ2を折
り曲げてもよい。その折曲り部では金属チューブ2の内
径が小さくなり、吸入された細胞1がトラップされるよ
うになる。
In FIG. 5, a constricted portion 11 is provided in order to reduce the inner diameter of a part of the metal tube 2, but the metal tube 2 may be bent. At the bend, the inner diameter of the metal tube 2 becomes smaller, and the inhaled cells 1 are trapped.

第6図から第9図に、くびれ部11をもつ金属チューブ
に細胞1を注入して装填する方法を示す。
6 to 9 show a method of injecting and loading cells 1 into a metal tube having a constricted portion 11.

細胞lをチューブに装填するために注入器21を用いる
。注入器21は注射器とほぼ同じ構造をしているが、金
属チューブ2aを取りつける部分には内圧が多少高くな
っても金属チューブ2aが外れないように、例えばネジ
部23が設けられている。
Syringe 21 is used to load cells 1 into the tube. The syringe 21 has almost the same structure as a syringe, but a threaded portion 23, for example, is provided at the part where the metal tube 2a is attached so that the metal tube 2a will not come off even if the internal pressure becomes somewhat high.

まず、第6図に示されるように、注入器21に細胞1の
直径よりも太い内径のチューブ27を取りつける。チュ
ーブ27の材質は限定しないが、チューブ27は第7図
に拡大して示されるように注入器21にねじ込まれてい
る。
First, as shown in FIG. 6, a tube 27 having an inner diameter larger than the diameter of the cell 1 is attached to the syringe 21. Although the material of the tube 27 is not limited, the tube 27 is screwed into the syringe 21 as shown in an enlarged view in FIG.

保存しようとする細胞1の入った容器24から細胞1を
溶液6とともに注入器21内に吸い上げる。
The cells 1 are sucked up into the syringe 21 together with the solution 6 from the container 24 containing the cells 1 to be stored.

注入器21に細胞1が入った後、第8図に示されるよう
に、チューブを保存用の金属チューブ2aに取り替える
。金属チューブ2aは内径が細胞1の直径よりも小さく
、一部にくびれ部11が形成されている。
After the cells 1 are placed in the syringe 21, the tube is replaced with a metal tube 2a for storage, as shown in FIG. The metal tube 2a has an inner diameter smaller than the diameter of the cell 1, and a constriction 11 is formed in a part.

金属チューブ2aは、第9図に拡大して示されるように
、パツキン30を介して注入器21の先端のねじ部23
にチューブ装着用スリーブ29を用いて取りつけられる
As shown in an enlarged view in FIG.
It can be attached to the tube using the tube attachment sleeve 29.

この状態で注入器21に内圧を作用させる。この内圧は
溶液6の粘性などにより定まる一定値とする。これによ
り、溶液6は金属チューブ2aから次第に流出するが、
やがて細胞1が金属チューブ2aに入り、くびれ部11
に引っかかると、細胞1が栓の役目をして溶液6の流出
が止まる。その時点で細胞1が金属チューブ2a内へ装
填されたことになる。
In this state, internal pressure is applied to the syringe 21. This internal pressure is set to a constant value determined by the viscosity of the solution 6 and other factors. As a result, the solution 6 gradually flows out from the metal tube 2a, but
Eventually, the cell 1 enters the metal tube 2a and enters the constriction 11.
When caught in the cell 1, the cell 1 acts as a stopper and stops the outflow of the solution 6. At that point, the cells 1 have been loaded into the metal tube 2a.

チューブ2a、27を注入器21に取りつける機構は、
必ずしも実施例に示されたようかねじ構造でなくてもよ
く、一般の注射器のように単に差し込むだけの構造であ
ってもよい。
The mechanism for attaching the tubes 2a and 27 to the syringe 21 is as follows:
It does not necessarily have to have a screw structure as shown in the embodiments, and may have a structure that can be simply inserted like a general syringe.

くびれ部11の代りに金属チューブ2aに曲り部を設け
た場合も、同様にして細胞1を金属チューブ2aに容易
に装填することができる。
Even when the metal tube 2a is provided with a bent portion instead of the constricted portion 11, the cells 1 can be easily loaded into the metal tube 2a in the same manner.

図には手動の注入器21が示されているが、容器24か
らの細胞1の吸入と保存用金属チューブ2aへの細胞1
の注入を自動的に行なうようにしてもよい。
A manual syringe 21 is shown in the figure, which includes aspiration of cells 1 from container 24 and injection of cells 1 into storage metal tube 2a.
The injection may be performed automatically.

(発明の効果) 本発明では細胞を保存するチューブとして金属チューブ
を使用し、その内径を細胞の直径よりも小さくしたので
、チューブに細胞を装填して冷媒に入れたとき細胞が急
速に冷却されて細胞内の氷の成長が妨げられ、細胞の生
存率が高まる。
(Effects of the Invention) In the present invention, a metal tube is used as a tube for storing cells, and the inner diameter of the tube is made smaller than the diameter of the cells. Therefore, when cells are loaded into the tube and placed in a refrigerant, the cells are rapidly cooled. This prevents the growth of ice within the cells and increases cell survival.

また、チューブに細胞をトラップする内径の小さい部分
を設けることにより、細胞の装填動作を確実に行なうこ
とができる。
Furthermore, by providing the tube with a portion with a small inner diameter for trapping cells, the cell loading operation can be performed reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例において細胞を吸収する前の状態を示
す概略端面図、第2図は同実施例において細胞を吸入し
た状態を示す概略端面図、第3図は同実施例で一端を封
止した状態を示す概略端面図、第4図はチューブを冷媒
に入れた状態を示す概略図、第5図は他の実施例におい
て細胞が吸入された状態を示す概略端面図、第6図はさ
らに他の実施例において細胞を注入器に吸入する状態を
示す断面図、第7図は第6図のA部の拡大断面図、第8
図は同実施例で細胞を金属チューブに注入する状態を示
す断面図、第9図は第8図のB部の拡大断面図である。 1・・・・細胞、2,2a・・・・・金属チューブ、5
・・・・吸引機構、6・・・・溶液、10・・・・・・
冷媒、11・・・・・くびれ部、21・・・・・・注入
器。 特許出願人 株式会社島津製作所
Fig. 1 is a schematic end view showing the state before cells are absorbed in one embodiment, Fig. 2 is a schematic end view showing the state after cells are inhaled in the same embodiment, and Fig. 3 is a schematic end view showing the state in which cells are inhaled in the same embodiment. FIG. 4 is a schematic end view showing the tube in a sealed state; FIG. 5 is a schematic end view showing the state in which cells are inhaled in another embodiment; FIG. 6 is a schematic end view showing the tube in a refrigerant state; FIG. 7 is an enlarged sectional view of section A in FIG. 6, and FIG.
The figure is a sectional view showing a state in which cells are injected into a metal tube in the same embodiment, and FIG. 9 is an enlarged sectional view of section B in FIG. 8. 1...Cell, 2,2a...Metal tube, 5
...Suction mechanism, 6...Solution, 10...
Refrigerant, 11... Constriction, 21... Injector. Patent applicant: Shimadzu Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)凍結保存すべき細胞よりも細い内径の金属チュー
ブに細胞を装填し、細胞膜とチューブ内壁とを直接接触
させ、冷媒にてチューブごと冷却して細胞を凍結保存す
る方法。
(1) A method of cryopreserving cells by loading cells into a metal tube with an inner diameter smaller than that of the cells to be cryopreserved, bringing the cell membrane into direct contact with the inner wall of the tube, and cooling the entire tube with a refrigerant.
(2)前記金属チューブに内径が小さくなった部分を形
成し、吸入又は注入した細胞をその内径の小さくなった
部分でトラップさせて装填する請求項1記載の方法。
(2) The method according to claim 1, wherein a portion with a reduced inner diameter is formed in the metal tube, and the inhaled or injected cells are trapped and loaded in the portion with a smaller inner diameter.
JP63108032A 1988-04-30 1988-04-30 Cell cryopreservation method Expired - Lifetime JP2638064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108032A JP2638064B2 (en) 1988-04-30 1988-04-30 Cell cryopreservation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108032A JP2638064B2 (en) 1988-04-30 1988-04-30 Cell cryopreservation method

Publications (2)

Publication Number Publication Date
JPH01277485A true JPH01277485A (en) 1989-11-07
JP2638064B2 JP2638064B2 (en) 1997-08-06

Family

ID=14474225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108032A Expired - Lifetime JP2638064B2 (en) 1988-04-30 1988-04-30 Cell cryopreservation method

Country Status (1)

Country Link
JP (1) JP2638064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085110A1 (en) * 2001-04-18 2002-10-31 Kabushikikaisha Kitazato Supply Egg freezing preservation tool, and cylindrical member holding tool
JP2007302567A (en) * 2006-05-08 2007-11-22 Nipro Corp Container for freeze preservation and method of freeze preservation
WO2013051522A1 (en) * 2011-10-05 2013-04-11 株式会社北里バイオファルマ Living cell cryopreservation tool
WO2013051521A1 (en) * 2011-10-04 2013-04-11 株式会社北里バイオファルマ Cell cryopreservation tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085110A1 (en) * 2001-04-18 2002-10-31 Kabushikikaisha Kitazato Supply Egg freezing preservation tool, and cylindrical member holding tool
JP2007302567A (en) * 2006-05-08 2007-11-22 Nipro Corp Container for freeze preservation and method of freeze preservation
WO2013051521A1 (en) * 2011-10-04 2013-04-11 株式会社北里バイオファルマ Cell cryopreservation tool
CN103874761A (en) * 2011-10-04 2014-06-18 株式会社北里生物制药 Cell cryopreservation tool
JPWO2013051521A1 (en) * 2011-10-04 2015-03-30 株式会社北里バイオファルマ Cell cryopreservation tool
CN103874761B (en) * 2011-10-04 2015-09-23 株式会社北里生物制药 Cell freezing preserves apparatus
US9516876B2 (en) 2011-10-04 2016-12-13 Kitazato Biopharma Co., Ltd. Cell cryopreservation tool
WO2013051522A1 (en) * 2011-10-05 2013-04-11 株式会社北里バイオファルマ Living cell cryopreservation tool
JPWO2013051522A1 (en) * 2011-10-05 2015-03-30 株式会社北里バイオファルマ Living cell cryopreservation device
US9538747B2 (en) 2011-10-05 2017-01-10 Kitazato Biopharma Co., Ltd. Living cell cryopreservation tool

Also Published As

Publication number Publication date
JP2638064B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US10271543B2 (en) Systems and methods for cryopreservation of cells
US8936905B2 (en) Systems and methods for cryopreservation of cells
US4530816A (en) Method and device for cooling, preserving and safely transporting biological material
JP5925826B2 (en) Apparatus and method for cryopreservation of cells
US4688387A (en) Method for preservation and storage of viable biological materials at cryogenic temperatures
US5863715A (en) Methods for bulk cryopreservation encapsulated islets
EP1441586B1 (en) Systems and methods for freezing and storing biopharmacuetical material
US20060019233A1 (en) Delivery of high cell mass in a syringe and related methods of cryopreserving cells
EP3196290B1 (en) Tool for cryopreserving collected biological tissue, and method for cryopreserving tissue fragment
US20100281886A1 (en) Systems, devices and methods for freezing and thawing biological materials
JPH01277485A (en) Method for freezing and preserving cell
CN102160546B (en) The system and method for Cell Cryopreservation
CN208731663U (en) A kind of incubator
JP2015224210A (en) Hon-freezing preservation transportation method of biocomponent
JP2003205016A (en) Medical care freezer bag
JP3805002B2 (en) Float for cooling sperm filling straw
CN218389552U (en) Organ transplantation perfusate cooling bag
CN211353690U (en) Adipose tissue cryopreservation box
CA2647664C (en) Systems and methods for cryopreservation of cells
CN215606314U (en) Special box of insulin pen
CN216088520U (en) Self-exhausting specimen freezing tube
CN215075027U (en) Hollow freezing storage pipe
CN108910306A (en) A kind of incubator
JPH0534953B2 (en)
CN116552964A (en) Portable container for high-low temperature preservation of biological agent