JPH01277337A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH01277337A
JPH01277337A JP63106940A JP10694088A JPH01277337A JP H01277337 A JPH01277337 A JP H01277337A JP 63106940 A JP63106940 A JP 63106940A JP 10694088 A JP10694088 A JP 10694088A JP H01277337 A JPH01277337 A JP H01277337A
Authority
JP
Japan
Prior art keywords
recording medium
recording
writing
erasing
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106940A
Other languages
Japanese (ja)
Inventor
Susumu Fujimori
進 藤森
Norihiro Funakoshi
船越 宣博
Hironori Yamazaki
裕基 山崎
Ikutake Yagi
生剛 八木
Manabu Hirakawa
学 平川
Nobuo Nakamura
宣夫 中村
Koichi Oka
岡 公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Nippon Telegraph and Telephone Corp, Sumitomo Chemical Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63106940A priority Critical patent/JPH01277337A/en
Publication of JPH01277337A publication Critical patent/JPH01277337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To provide the recording medium which has the long-period preservable property of recording and high-speed erasing property of recording in combination by providing a recording layer consisting of an alloy having a specific compsn. to said medium. CONSTITUTION:The recording layer consisting of the alloy having the compsn. expressed by the formula SbxTe1-x (0.4<=x<0.7) is provided. The Sb-Te alloy constituting the recording layer consists of 40-70atomic%, more preferably 45-65atomic% Sb and the balance the element Te. The recording layer having the long-period stability of the good writing state, the high-speed erasing property and the repetitiveness of writing-erasing in combination is not obtainable if the content of the Sb is below 40atomic%. The recording medium well provided with the required characteristics such as the long-period preservable property of the writing state, the high-speed erasing property and the repetitiveness of the writing-recording is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光記録媒体に関し、特に、記録情報の長期安
定性及び高速消去性が改良された書換型レーザー光記録
媒体として好適な光記録媒体に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical recording medium, and in particular to an optical recording medium suitable as a rewritable laser optical recording medium with improved long-term stability and high-speed erasability of recorded information. Regarding the medium.

〔従来の技術〕[Conventional technology]

近年、小型で高性能のレーザーの進歩に伴って、収束レ
ーザー光を照射して基板上に設けられた金属薄膜に情報
の記録を行う記録媒体が、高密度、大容量の記録を可能
にするものとして期待されている。中でも、金属薄膜の
非晶質−結晶質の転移に基づいて記録を行う書換型レー
ザー光記録媒体は、情報の書込みをレーザー光により金
属薄膜を融点以上に加熱後、急冷して非晶質化させるこ
とにより行い、また情報の消去をレーザー光により金属
薄膜を融点以上に加熱後、徐冷して結晶質化させること
により行うもので、情報の書込と消去を多数回繰り返し
て行うことができる利点があり、特に注目されている。
In recent years, with the advancement of compact and high-performance lasers, recording media that record information on a thin metal film provided on a substrate by irradiating focused laser light have enabled high-density, large-capacity recording. It is expected as such. Among these, rewritable laser beam recording media, which perform recording based on the amorphous-crystalline transition of a thin metal film, write information by heating the thin metal film with laser light to above its melting point and then rapidly cooling it to become amorphous. In addition, the information is erased by heating the thin metal film with a laser beam to a temperature above its melting point and then slowly cooling it to crystallize it.The writing and erasing of information can be repeated many times. It is attracting particular attention because of its advantages.

このような書換型レーザー光記録媒体では、(a)光デ
ィスクのような高速記録を求められる場合においても、
書込時にレーザー光出力20n+W以下、パルス幅10
0nsec以下、消去時にパルス幅1μsec以下とい
う厳しい条件下で動作しうろこと、(b)書込と消去の
安定した繰り返し性を有すること(実用的には、103
回以上とされている) 、(C)書込状態の室温付近で
の長期安定性が高いこと(実用的には、10年以上とさ
れている)などが要求される。
With such rewritable laser optical recording media, (a) even when high-speed recording is required, such as with optical discs,
Laser light output 20n+W or less, pulse width 10 when writing
(b) have stable repeatability of writing and erasing (in practical terms, 103
(C) High long-term stability in the written state near room temperature (Practically speaking, it is said to be 10 years or more).

しかし、これらの要求特性をバランスよく兼ね備えた記
録媒体は、未だ開発されていない。
However, a recording medium that combines these required characteristics in a well-balanced manner has not yet been developed.

例えば、純Teはガラス転移温度が室温程度(約20°
C)と低く、非晶質化させても短時間で容易に結晶賞化
してしまうため記録層として用いることができないので
、従来、Teに10〜20原子%程度のGe、Sb+A
s、Bi等の不純物元素を添加することによりガラス転
移温度を100℃以上に高めたTe合金膜が記録層とし
て提案されている。
For example, pure Te has a glass transition temperature around room temperature (approximately 20°
C), and even if it is made amorphous, it easily becomes crystalline in a short period of time, so it cannot be used as a recording layer.
A Te alloy film whose glass transition temperature is increased to 100° C. or higher by adding impurity elements such as s and Bi has been proposed as a recording layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のTe合金膜によれば10年以上という書込状態の
長期安定性を得ることができるが、その場合、書込状態
を消去するのに10μsec以上、通常10〜数100
μsecのパルス幅のレーザー光を照射しなければなら
なくなるため高速消去性が失われる。
According to the Te alloy film described above, it is possible to obtain long-term stability of the written state for more than 10 years, but in that case, it takes more than 10 μsec to erase the written state, usually 10 to several hundreds of seconds.
Since it is necessary to irradiate laser light with a pulse width of μsec, high-speed erasing performance is lost.

このように、従来の書換型レーザー光記録媒体は、前記
の要求特性を十分に兼ね備えていないという問題がある
As described above, conventional rewritable laser optical recording media have a problem in that they do not sufficiently meet the above-mentioned required characteristics.

そこで、本発明の目的は、前記の要求特性をバランス良
く兼ね備えた書換型レーザー光記録媒体を提供すること
にある。特に、記録の長期保存性と記録の高速消去性を
兼ね備えた書換型レーザー光記録媒体を提供することに
ある。
Therefore, an object of the present invention is to provide a rewritable laser optical recording medium that has the above-mentioned required characteristics in a well-balanced manner. Particularly, it is an object of the present invention to provide a rewritable laser beam recording medium that has both long-term storage properties and high-speed erasability of records.

〔課題を解決するための手段〕[Means to solve the problem]

前述のように、従来、Teに不純物元素を添加しその添
加量を増して行くと、非晶質状態の長期安定性は向上す
るものの、結晶化速度が低下して高速消去性が低下する
。そればかりでなく、書込、消去の繰り返しにより相分
離等の不可逆変化が発生して繰り返し性も低下するもの
と考えられていた。ところが、本発明者らは、Teに従
来よりもかなり高濃度でsbを添加したTe合金薄膜で
記録層を形成することにより、意外にも上記の目的を達
成しうる記録媒体が得られることを見出した。
As described above, conventionally, when an impurity element is added to Te and the amount thereof is increased, the long-term stability of the amorphous state is improved, but the crystallization rate is lowered and the high-speed erasing property is lowered. In addition, it was thought that repeated writing and erasing would cause irreversible changes such as phase separation, resulting in a decrease in repeatability. However, the present inventors have surprisingly found that by forming a recording layer with a Te alloy thin film in which sb is added to Te at a much higher concentration than before, a recording medium that can achieve the above object can be obtained. I found it.

すなわち、本発明は、式:  5bXTe、−。That is, the present invention provides the formula: 5bXTe, -.

〔ここで、Xは、0.4≦x<0.7の数である。〕で
表される組成の合金からなる記録層を有する光記録媒体
を提供するものである。
[Here, X is a number of 0.4≦x<0.7. An optical recording medium having a recording layer made of an alloy having a composition represented by the following is provided.

本発明の記録媒体の記録層を構成するSb−Te合金は
、5b40〜70原子%、好ましくは45〜65原子%
と、残部元素Teからなるものである。sbの含有量が
40原子%未満は、良好な書込状態の長期安定性、高速
消去性及び書込−消去の繰り返し性を兼ね備えた記録層
を得ることができない。
The Sb-Te alloy constituting the recording layer of the recording medium of the present invention is 40 to 70 atomic %, preferably 45 to 65 atomic % of 5b.
and the remainder is the element Te. If the content of sb is less than 40 at %, it is impossible to obtain a recording layer that has good long-term stability of written state, high-speed erasing performance, and writing-erasing repeatability.

本発明の記録媒体では、記録層は、通常、基板上に形成
される。記録層の形成方法は、特に制限されず、例えば
、真空蒸着法、スパッタリング法などを用いることがで
きる。記録層の厚さは、通常、200〜1000人の範
囲である。
In the recording medium of the present invention, the recording layer is usually formed on the substrate. The method of forming the recording layer is not particularly limited, and for example, a vacuum evaporation method, a sputtering method, etc. can be used. The thickness of the recording layer typically ranges from 200 to 1000 thick.

また、用いられる基板としては、例えば、アクリル樹脂
、ポリカーボネート樹脂、ポリイミド樹脂等の合成樹脂
、パイレックスガラス等のガラスなどが挙げられる。基
板の厚さは、通常、1.2〜1.5mmの範囲である。
Examples of the substrate used include synthetic resins such as acrylic resin, polycarbonate resin, and polyimide resin, and glass such as Pyrex glass. The thickness of the substrate typically ranges from 1.2 to 1.5 mm.

本発明の記録媒体では、記録層の上面及び下面の少な(
とも一方、通常両面に、レーザー光ニよる加熱の際に記
録層に穿孔や変形が生じたり、合成樹脂製の基板に不可
逆的な変形などが生じるのを防止するため、また記録層
の酸化防止のために保護層(オーバーコート層、アンダ
ーコート層)を設けることが望ましい。保護層の材料と
しては、例えば、Sing、 SiO+ A1zOz+
 Y!03+ wo、、 Ta205゜CrzO3+ 
Cents Mob、、、 Inz03. Gem、 
Ti01+ Zr0z等の無機酸化物、AIN+ BN
、 5isNa等の無機窒化物、’gFz+ CeF3
等の金属フッ化物、ZnS等の金属硫化物及びポリフェ
ニレンスルフィド、ポリテトラフルオロエチレン、ポリ
イミド等の有機高分子物質などが挙げられる。これらの
無機材料からなる保護層は、例えば、電子線加熱蒸着等
の蒸着法、スパッタリングなどの方法で形成できる。ま
た有機高分子物質からなる保護層は、蒸着、スパッタリ
ング等の方法で形成することができ、またテトラメチル
スズ等のプラズマ重合膜も用いることができる。保護層
の厚さは、通常、200〜1500人の範囲である。
In the recording medium of the present invention, the upper and lower surfaces of the recording layer are small (
On the other hand, usually on both sides, in order to prevent perforation or deformation of the recording layer during heating with laser light, or irreversible deformation of the synthetic resin substrate, and to prevent oxidation of the recording layer. Therefore, it is desirable to provide a protective layer (overcoat layer, undercoat layer). Examples of the material of the protective layer include Sing, SiO+ A1zOz+
Y! 03+ wo,, Ta205゜CrzO3+
Cents Mob, Inz03. Gem,
Inorganic oxides such as Ti01+ Zr0z, AIN+ BN
, inorganic nitrides such as 5isNa,'gFz+CeF3
Examples include metal fluorides such as ZnS, metal sulfides such as ZnS, and organic polymer substances such as polyphenylene sulfide, polytetrafluoroethylene, and polyimide. The protective layer made of these inorganic materials can be formed by, for example, a vapor deposition method such as electron beam heating vapor deposition, or a method such as sputtering. Further, the protective layer made of an organic polymer substance can be formed by a method such as vapor deposition or sputtering, and a plasma polymerized film of tetramethyltin or the like can also be used. The thickness of the protective layer usually ranges from 200 to 1500.

−aに、無機系の保gliiは耐熱性に優れるため不可
逆的な変形などが起こり難(、書込−消去の繰り返し性
の高い記録媒体を得るのに特に適している。有機系の保
護層は熱伝導率が小さいのでレーザー光により記録層の
合金膜の温度を融点以上に高める際に熱拡散によるエネ
ルギー損失が少な(、そのためより短いパルス幅のレー
ザー光で書込、消去を行うことができる利点がある。
-a, since inorganic protective glii has excellent heat resistance, it is difficult to cause irreversible deformation (and is particularly suitable for obtaining recording media with high repeatability of writing and erasing.Organic protective layer) has low thermal conductivity, so there is less energy loss due to thermal diffusion when the temperature of the alloy film of the recording layer is raised above the melting point with laser light (therefore, writing and erasing can be performed with laser light with a shorter pulse width). There are advantages that can be achieved.

本発明の記録媒体を製造する際に、基板として、耐熱性
の高いポリイミド等の耐熱性プラスチック、パイレック
ス等の耐熱性ガラスを使用すると、レーザー光による加
熱時の基板の変形などの恐れがないので、アンダーコー
トの保護層は不要であり、書込−消去の繰り返しの再現
性向上に有利である。
When manufacturing the recording medium of the present invention, if a heat-resistant plastic such as highly heat-resistant polyimide or heat-resistant glass such as Pyrex is used as the substrate, there is no risk of deformation of the substrate when heated by laser light. , a protective undercoat layer is not required, which is advantageous in improving repeatability of writing and erasing.

また、本発明の記録媒体の形態は特に限定されず、例え
ば、ディスク状、カード状などが挙げられる。
Further, the form of the recording medium of the present invention is not particularly limited, and examples thereof include a disk shape, a card shape, and the like.

〔作用〕[Effect]

本発明の記録媒体において、前記の種々の要求特性がバ
ランス良(良好に達成される理由は必ずしも明らかでは
ないが、本発明者らはSb 40〜70原子%の組成の
Te −Sb合金は5btTe3の単相となることを見
出しており、このことが単相状態のままでの書込−消去
の繰り返しを可能にし、さらに融点及び結晶化温度が適
度であることとあいまって、前記した種々の相対立する
要求特性を向上させているものと推察される。
In the recording medium of the present invention, the various required characteristics described above are achieved in a well-balanced manner (although the reason why this is achieved is not necessarily clear, the present inventors have found that a Te-Sb alloy with a composition of 40 to 70 at% Sb is 5btTe3 We have discovered that it becomes a single phase, and this makes it possible to repeat writing and erasing in a single phase state. Furthermore, combined with the moderate melting point and crystallization temperature, we have found that It is surmised that the conflicting required characteristics are being improved.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 (1)基板として、寸法50mm四方、厚さ1.2mm
のパイレックスガラス板、同寸法のポリカーボネート樹
脂板及び直径130mm、厚さ1.2 mmのポリカー
ボネート樹脂円板の3種を使用した。まず、これらの基
板の片面に電子線蒸着法により膜厚150胴の5i02
膜を形成した。次にその上に電子線加熱蒸着法ニヨリS
b含有量が、それぞれ40.45.50.55.60及
び65原子%である、膜厚1000人のSb −Te合
金膜を形成した。蒸着は、I X 10− ’Torr
の真空下で行い、sbとTeの2つの蒸着源に対する電
子線出力を変化させることにより生成する合金膜中のs
b含有量を調節した。上記のsb含有量はX線光電子分
光分析により確認したものである。
Example 1 (1) As a substrate, dimensions 50 mm square and thickness 1.2 mm
Three types of Pyrex glass plates were used: a polycarbonate resin plate with the same dimensions, and a polycarbonate resin disk with a diameter of 130 mm and a thickness of 1.2 mm. First, 5i02 with a film thickness of 150 mm was deposited on one side of these substrates by electron beam evaporation.
A film was formed. Next, on top of that, electron beam heating evaporation method Niyori S
Sb-Te alloy films with a thickness of 1000 atomic % and b contents of 40.45, 50.55.60 and 65 atomic %, respectively, were formed. The deposition was carried out at I
s in the alloy film produced by changing the electron beam output for two evaporation sources of sb and Te.
b content was adjusted. The above sb content was confirmed by X-ray photoelectron spectroscopy.

次に、得られた記録層であるSb −Te合金膜の上に
電子線蒸着法により膜厚1500人の5i(h膜を形成
した。こうして作成した記録媒体の性能を次のようにし
て評価した。
Next, a 5i (h film) with a thickness of 1,500 mm was formed on the resulting Sb-Te alloy film, which was the recording layer, by electron beam evaporation.The performance of the recording medium thus created was evaluated as follows. did.

(2)1晃よ」L炉l法 方形のポリカーボネート板及びパイレックスガラス板を
基板として作成した記録媒体を試料として用いた。
(2) A recording medium prepared using a rectangular polycarbonate plate and a Pyrex glass plate as a substrate was used as a sample.

光源としてAlGaAsレーザーダイオード(発振波長
8300人)を用い、直径1.4μmに収束したレーザ
ー光を記録媒体の基板側から照射して書込と消去を行っ
た。
An AlGaAs laser diode (oscillation wavelength: 8300 nm) was used as a light source, and writing and erasing were performed by irradiating laser light converged to a diameter of 1.4 μm from the substrate side of the recording medium.

記録層の非晶質−結晶質の状態変化は、一般に結晶質状
態のほうが非晶質状態よりも光の反射率が低いことを利
用して、記録媒体の記録部に再生用レーザー光(連続発
振、レーザー光出力0.1mW)を照射した際の反射光
量を測定し、反射率の相対変化ΔR/R(R:結晶質状
態の反射率、ΔR:非晶質状態と結晶質状態の反射率の
差)を求め指標とした。なお、上記で製造したままの記
録媒体の合金膜は非晶質と結晶質の中間状態にあるので
、予め、−旦連続発振のレーザー光を照射して合金膜を
融点以上に加熱後徐冷して完全に結晶質化とした後に使
用した。
The change in the amorphous-crystalline state of the recording layer is achieved by using the fact that the crystalline state generally has a lower light reflectance than the amorphous state. The amount of reflected light when irradiated with oscillation, laser light output 0.1 mW) was measured, and the relative change in reflectance ΔR/R (R: reflectance in crystalline state, ΔR: reflection in amorphous state and crystalline state) was measured. (difference in rate) was determined and used as an index. Note that since the alloy film of the recording medium as produced above is in an intermediate state between amorphous and crystalline, the alloy film is first irradiated with continuous wave laser light to heat it above its melting point and then slowly cooled. It was used after complete crystallization.

■込 レーザー光の出力を15畦と一定とし、種にのパルス幅
のレーザー光を照射して反射率の相対変化が30%とな
る書込可能条件を調べた。その結果、実施例の試料では
、基板が方形ポリカーボネート板である記録媒体では3
0〜70nsecであり、基板がパイレックスガラス板
である記録媒体では60〜90nsecであった。
The output of the inlaid laser beam was kept constant at 15 ridges, and the seed was irradiated with a laser beam of a pulse width to examine the conditions under which writing was possible under which the relative change in reflectance was 30%. As a result, in the sample of Example, the recording medium whose substrate was a rectangular polycarbonate plate had 3
It was 0 to 70 nsec, and in the case of a recording medium whose substrate was a Pyrex glass plate, it was 60 to 90 nsec.

皿去 上で書き込んだ信号を、照射するレーザー光の出力とパ
ルス幅を変えて消去を試み、消去可能な最も短いパルス
幅を消去速度として評価した。実施例の試料では、いず
れの場合も、パルス幅200nsec以下の高速消去が
可能であった。
We attempted to erase the signal written on the plate by changing the output and pulse width of the laser beam, and evaluated the shortest erasable pulse width as the erasing speed. In the samples of the examples, high-speed erasing with a pulse width of 200 nsec or less was possible in all cases.

1込且星坐安ヱ血 上で書込を行ったパイレックスガラス板を基板とする試
料に、室温から250°Cまでの種々の温度で熱処理を
加え、書込信号が100secの熱処理で半減する温度
を調べ、この温度を結晶化温度と定義した。その結果、
実施例の試料ではいずれの場合も結晶化温度は120°
C以上であった。これは、室温では非晶質状態が10年
以上安定であることを意味する。
1 included and Hoshizaya A sample whose substrate is a Pyrex glass plate written on blood is heat treated at various temperatures from room temperature to 250°C, and the written signal is halved by 100 seconds of heat treatment. The temperature was determined and this temperature was defined as the crystallization temperature. the result,
In each case, the crystallization temperature was 120° for the example samples.
It was C or higher. This means that the amorphous state is stable for more than 10 years at room temperature.

゛入−ゝ゛′  の   ゛ し 基板としてパイレックスガラス板を用いた試料に、書込
は、レーザー光の出力1511パルス幅90nsecで
行い、消去は、レーザー光の出力15mW、パルス幅2
00nsecで行い、書込と消去を操り返した。
Writing was performed on a sample using a Pyrex glass plate as a substrate for ``input'' with a laser beam output of 1511 and a pulse width of 90 nsec, and erasing was performed with a laser beam output of 15 mW and a pulse width of 2.
The writing and erasing operations were repeated at 00 nsec.

その結果、実施例の試料では、いずれも再現性が良<1
03回以上の書込−消去の繰り返しが可能であった。繰
り返し数が5X10’回を超えると、sb含有量が40
原子%及び70原子%の試料はで完全に消去することが
できな(なったが、その他の実施例の試料はなお再現性
が良好であった。
As a result, all of the samples of Examples had good reproducibility <1.
It was possible to repeat writing and erasing more than 03 times. When the number of repetitions exceeds 5X10' times, the sb content is 40
Although the samples with atomic % and 70 atomic % could not be completely erased, the samples of other examples still had good reproducibility.

(3)叉fAじしη1比 前記のポリカーボネート円板を基板とする記録媒体を試
料として用い、光ディスクとしての搬送波対雑音比(C
/N比)を次のようにして評価した。
(3) FA and η1 ratio The carrier wave-to-noise ratio (C
/N ratio) was evaluated as follows.

書込時のレーザー光の出力15IIIW、パルス幅IQ
Onsecとし、再生時のレーザー光の出力1 、2m
W 。
Laser light output during writing 15IIIW, pulse width IQ
Onsec, laser light output during playback 1, 2m
W.

ディスク回転数180Orpmで記録、再生の実験を行
ったところ、実施例の試料ではいずれの場合もC/N比
は55dB以上であった。
When recording and reproducing experiments were conducted at a disk rotation speed of 180 rpm, the C/N ratio was 55 dB or more in all cases for the samples of the examples.

引き続きディスクの情報書込部を出力6mWのレーザー
光で走査したところ、実施例のディスクではいずれの場
合も書き込んだ情報を完全に消去することができた。
Subsequently, when the information writing section of the disk was scanned with a laser beam with an output of 6 mW, it was possible to completely erase the written information on the disks of the examples in all cases.

上記の書込−消去を10″回繰り返したが、実施例の試
料では、C/N比の減少は認められず、また消し残りは
生ぜず完全に消去可能であった。
The above writing and erasing process was repeated 10'' times, but in the sample of the example, no decrease in the C/N ratio was observed, and no unerased area was left, allowing for complete erasing.

実施例2 記録層及び上下の保護層をRFスパッタリングにより形
成した以外は実施例1と同様にして記録媒体を製造した
。記録層形成のスパッタリングは、スパッタリングガス
としてArを用い、ガス圧5×10−”Torr、 R
F出力100Wで行い、記録層である5b−Te合金膜
の組成は、ターゲットである5b−Te合金の組成を変
えることにより調節した。
Example 2 A recording medium was manufactured in the same manner as in Example 1, except that the recording layer and the upper and lower protective layers were formed by RF sputtering. Sputtering for forming the recording layer uses Ar as a sputtering gas, and the gas pressure is 5 x 10-'' Torr, R
The recording was conducted at an F output of 100 W, and the composition of the 5b-Te alloy film serving as the recording layer was adjusted by changing the composition of the 5b-Te alloy serving as the target.

得られた記録媒体を実施例1と同様にして評価したとこ
ろ、書込状態の長期安定性、高速消去性、書込−消去の
繰り返し性のすべての点において、実施例1と同等の結
果が得られた。
The obtained recording medium was evaluated in the same manner as in Example 1, and results were found to be equivalent to those in Example 1 in all respects: long-term stability of writing conditions, high-speed erasing performance, and repeatability of writing and erasing. Obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の光記録媒体は、従来、同時に向上させることが
できなかった書込状態の長期保存性、高速消去性及び書
込−消去の繰り返し性などの要求特性を良好に兼ね備え
ており、書換型レーザー光記録媒体として優れたもので
ある。
The optical recording medium of the present invention satisfactorily combines the required characteristics such as long-term storage of written state, high-speed erasing performance, and repeatability of writing and erasing, which could not be improved at the same time in the past, and is rewritable. It is excellent as a laser beam recording medium.

代理人  弁理士 岩見谷 周志Agent: Patent attorney Shushi Iwamiya

Claims (2)

【特許請求の範囲】[Claims] (1)式:Sb_xTe_1_−_x 〔ここで、xは、0.4≦x<0.7の数である。〕で
表される組成の合金からなる記録層を有する光記録媒体
(1) Formula: Sb_xTe_1_-_x [Here, x is a number of 0.4≦x<0.7. ] An optical recording medium having a recording layer made of an alloy having a composition represented by:
(2)特許請求の範囲第1項記載の光記録媒体であって
、前記記録層の上面及び下面の少なくとも一方に、無機
酸化物、無機窒化物、金属フッ化物、金属硫化物及び有
機高分子物質から選ばれる少なくとも1種からなる保護
層が設けられている光記録媒体。
(2) The optical recording medium according to claim 1, wherein at least one of the upper surface and the lower surface of the recording layer contains an inorganic oxide, an inorganic nitride, a metal fluoride, a metal sulfide, and an organic polymer. An optical recording medium provided with a protective layer made of at least one substance selected from substances.
JP63106940A 1988-04-28 1988-04-28 Optical recording medium Pending JPH01277337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106940A JPH01277337A (en) 1988-04-28 1988-04-28 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106940A JPH01277337A (en) 1988-04-28 1988-04-28 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH01277337A true JPH01277337A (en) 1989-11-07

Family

ID=14446383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106940A Pending JPH01277337A (en) 1988-04-28 1988-04-28 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH01277337A (en)

Similar Documents

Publication Publication Date Title
JP3566743B2 (en) Optical recording medium
JPH0660419A (en) Optical recording medium and its production
EP0474311A1 (en) Optical data recording medium, method for writing and reading data and apparatus for recording data
EP1406254B1 (en) Optical recording medium
JPH01303643A (en) Laser recording medium
JPH01277338A (en) Optical recording medium
JPH05286249A (en) Data recording medium
JPH09286175A (en) Optical recording medium
WO2004032130A1 (en) Optical information recording medium and method for manufacturing same
JPS6166696A (en) Laser recording medium
JP3752177B2 (en) Write-once optical information recording medium and manufacturing method thereof
JP3163302B2 (en) Optical information recording medium and information recording / reproducing method
JPH10340489A (en) Phase transition type optical disk and production of phase transition type optical disk
JPH01277337A (en) Optical recording medium
JPH01100745A (en) Information recording medium
JPH04226784A (en) Optical information recording medium and information recording propuction method
JP2001067719A (en) Optical information recording medium and method for recording/reproducing information
JPH08329521A (en) Optical recording medium
US20020168495A1 (en) Phase-change optical recording media
JP2557347B2 (en) Optical recording medium
JP2001126312A (en) Information recording medium
JPS6329334A (en) Optical recording medium
JP2002269809A (en) Information recording medium, initializing method for information recording medium and recording method for information
US20060165946A1 (en) Optical storage medium
JPS63167440A (en) Method for recording or recording and erasing information