JPH01276754A - Manufacture of cmos semiconductor device - Google Patents

Manufacture of cmos semiconductor device

Info

Publication number
JPH01276754A
JPH01276754A JP63105795A JP10579588A JPH01276754A JP H01276754 A JPH01276754 A JP H01276754A JP 63105795 A JP63105795 A JP 63105795A JP 10579588 A JP10579588 A JP 10579588A JP H01276754 A JPH01276754 A JP H01276754A
Authority
JP
Japan
Prior art keywords
oxide film
silicon substrate
substrate
film
cmos semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63105795A
Other languages
Japanese (ja)
Inventor
Jun Osanai
潤 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP63105795A priority Critical patent/JPH01276754A/en
Publication of JPH01276754A publication Critical patent/JPH01276754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable a substrate and an inverse conductive type CMOS semiconductor, device with a deep diffusion layer to be produced with improved yield by removing only oxide film on the surface by HF vapor. CONSTITUTION:An inverse conductive type deep diffusion layer is formed on low impurities concentration silicon substrate 2 of low-concentration silicon epitaxial film which is formed on high impurities concentration silicon substrate 1. It is placed on a turntable and etching is performed by HF steam. Then, only an oxide film 4a on the front surface is removed and no oxide film 4b on the rear surface is removed, Thus, the surface is nearly in non-contact status and the CMOS semiconductor device where the outer diffusion of impurities on the substrate 1 was prevented by the film 4b does not allow the film 4b to be subject to photoresist treatment and can be produced easily with improved yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速、高集積MO3半導体装置の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a high speed, highly integrated MO3 semiconductor device.

〔発明の概要〕[Summary of the invention]

高不純物濃度シリコン基板上に低不純物濃度シリコンエ
ピタキシャル層を成長させたシリコン基板を用いてCM
OS半導体装置を作製する場合、基板葛面は常に酸化膜
、窒化膜により覆っておく必要がある。シリコン裏面が
露出していると拡散炉中の熱処理において、高濃度シリ
コン基板から不純物が外方拡散し、他のシリコン基板表
面に入り込み基板抵抗率を変化させたり、炉内の至る所
に付着し汚染源となるからである。特にシリコン基板の
不純物としてボロンを用いるとその現象は強い。
CM using a silicon substrate with a low impurity concentration silicon epitaxial layer grown on a high impurity concentration silicon substrate
When manufacturing an OS semiconductor device, it is necessary to always cover the surface of the substrate with an oxide film or a nitride film. If the backside of the silicon is exposed, impurities will diffuse outward from the highly concentrated silicon substrate during heat treatment in a diffusion furnace, enter the surface of other silicon substrates, change the substrate resistivity, or adhere to everywhere in the furnace. This is because it becomes a source of pollution. This phenomenon is particularly strong when boron is used as an impurity in the silicon substrate.

本発明はシリコン基板裏面を常に絶縁膜で覆っておくた
めに、基板と逆導伝型の深い拡散層を形成した後の酸化
膜除去工程をHF蒸気エツチャーにより行い、表面の酸
化膜だけを選択的に除去するものである。
In the present invention, in order to always cover the back surface of the silicon substrate with an insulating film, after forming a deep diffusion layer of the opposite conductivity type to the substrate, the oxide film removal process is performed using an HF vapor etcher, and only the oxide film on the surface is selected. It is intended to be removed.

〔従来の技術〕[Conventional technology]

第3図に従来のボロンを不純物として用いたP壁高濃度
シリコン基板上に、ボロンを不純物として用いたP型低
濃度シリコンエピタキシャル膜を設けたP/P’型シリ
コン基板を用いてCMOSを製造する工程順の断面図を
示す。
Figure 3 shows CMOS fabrication using a P/P' type silicon substrate in which a P-type low-concentration silicon epitaxial film using boron as an impurity is provided on a conventional P-wall high-concentration silicon substrate using boron as an impurity. A cross-sectional view of the process order is shown.

第3図(alはP/P”型シリコン基板中に比較的深い
N型ウェル3を拡散により形成した様子を示す。
FIG. 3 (al indicates a state in which a relatively deep N-type well 3 is formed in a P/P" type silicon substrate by diffusion.

これはP/P”型シリコン基板からの外方拡散を防ぐた
めに、化学気相成長法(CVD法)により約5000人
酸化膜を裏面に被着したP/P”型シリコン基板を用い
て、まず酸化により5000〜6000人の酸化膜を成
長させ、次にフォトリソグラフィー工程によりフォトレ
ジストをパターニングし、ウェットエツチングにより後
にN型ウェルとなる場所の上の酸化膜を除去する。次に
酸化膜をシリコンが露出している部位上の厚さが約10
00人となるように成長させ、イオン注入法によりリン
イオンを1〜5×10′!/ci程度打ち込み、110
0℃〜1200°Cの温度にて、5〜15時間非酸化性
雰囲気中にて拡散を行う事により形成される。この時点
までP/P”型シリコン基板裏面の酸化膜は最初の酸化
により5000人から約10000人となり、酸化膜ウ
ェットエツチングにより1500〜2000人、イオン
注入前の酸化により2000〜2500人となっており
、P/P’型シリコン基板裏面は常に1000Å以上の
酸化膜により覆われておりP/P’型シリコン基板裏面
から不純物が外方拡散する事はない。
This uses a P/P" type silicon substrate with approximately 5,000 oxide films deposited on the back side by chemical vapor deposition (CVD) to prevent outward diffusion from the P/P" type silicon substrate. First, an oxide film of 5,000 to 6,000 layers is grown by oxidation, then the photoresist is patterned by a photolithography process, and the oxide film above the area that will later become an N-type well is removed by wet etching. Next, apply an oxide film to a thickness of approximately 10 mm on the exposed silicon area.
00 people, and 1 to 5 x 10' of phosphorous ions are added using ion implantation method! /ci input, 110
It is formed by diffusion in a non-oxidizing atmosphere at a temperature of 0°C to 1200°C for 5 to 15 hours. Up to this point, the oxide film on the back side of the P/P" type silicon substrate had grown from 5,000 to about 10,000 due to initial oxidation, 1,500 to 2,000 due to oxide film wet etching, and 2,000 to 2,500 due to oxidation before ion implantation. The back surface of the P/P' type silicon substrate is always covered with an oxide film with a thickness of 1000 Å or more, so that impurities do not diffuse outward from the back surface of the P/P' type silicon substrate.

次にP/P”型シリコン基板表面の熱酸化膜4aを除去
するが、N型ウェル以外の領域上の酸化膜厚は6000
〜6500人であり、裏面の酸化膜厚は2000〜25
00人であるためそのままシェフトエソチングにより酸
化膜除去を行うとP/P”型シリコン基Fi裏面のシリ
コンは露出し、次工程の酸化において不純物の外方拡散
が起こる。そこで第3図(′b)に示すようにフォトレ
ジスト6をP/P”型シリコン基板裏面にコートして、
ウェットエツチングにより表面の酸化膜4aだけを除去
する。
Next, the thermal oxide film 4a on the surface of the P/P" type silicon substrate is removed, but the oxide film thickness on the area other than the N type well is 6000.
~6500 people, and the oxide film thickness on the back side is 2000~25
00, so if the oxide film is removed by sheft etching, the silicon on the back surface of the P/P'' type silicon base Fi will be exposed, and the outward diffusion of impurities will occur in the next oxidation process. As shown in b), photoresist 6 is coated on the back surface of the P/P" type silicon substrate,
Only the surface oxide film 4a is removed by wet etching.

次に硫酸と過酸化水素の混合液によりフォトレジスト6
を除去しく第3図(C1)、次工程の酸化に進む。以後
裏面は常に酸化膜又は他の絶縁膜により覆われ熱処理や
酸化工程において不純物が外方拡散する心配はない。
Next, photoresist 6 was applied using a mixture of sulfuric acid and hydrogen peroxide.
3 (C1), proceed to the next step of oxidation. Thereafter, the back surface is always covered with an oxide film or other insulating film, so there is no fear that impurities will diffuse outward during heat treatment or oxidation steps.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしP/P”型シリコン基板裏面にフォトレジストを
コートする際、素子を形成する側の表面はコーターの搬
送のためのベルトや真空チャックと接触し、表面が汚染
されたり、キズがついて歩留まりを下げる要因となる。
However, when coating the back side of a P/P" type silicon substrate with photoresist, the surface on which elements will be formed comes into contact with the conveyor belt of the coater and the vacuum chuck, resulting in contamination or scratches on the surface, which reduces yield. This is a factor that lowers the amount.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明は、U型ウェル形成後
の酸化膜除去工程をHF蒸気エツチャーにて行うように
した。
In order to solve the above problems, the present invention uses an HF vapor etcher to perform the oxide film removal step after forming the U-shaped well.

〔作用〕[Effect]

上記によると、表面の酸化膜だけを選択的に除去でき、
裏面は酸化膜を残したままである事から工程を削減し、
しかも熱処理工程における不純物外方拡散を阻止できる
。さらに表面は常に非接触であり、歩留まりを落とす事
もない。
According to the above, only the surface oxide film can be selectively removed,
The oxide film remains on the back side, reducing the number of steps.
Furthermore, outward diffusion of impurities during the heat treatment process can be prevented. Furthermore, the surface is always non-contact, so there is no reduction in yield.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。第1
図はP/P”型シリコン基板を用いて、N型ウェル3を
形成した後、HF 77気エツチヤーチエンバー中に置
かれた様子を示す。HF蒸気エツチャーとしては例えば
米国FSI社製Excalibur等がある。ウェハー
はターンテーブル上に置かれており、HF蒸気は上方か
ら導入されるため、表面の酸化膜4aを除去した後でも
、裏面酸化膜4bのターンテーブル上に置かれた酸化膜
の減少は全くなく、ターンテーブル上ではない所はHF
蒸気の回り込みにより多少減少する。6インチ径ウェハ
ーを用いて、熱酸化膜6000人成長させ、表面の酸化
膜を除去した場合、裏面酸化膜厚はウェハーエッヂによ
り5龍の所は約500〜1000人の酸化膜が残り、1
0nの所は約3000人残り中心は6000人残る0第
2図はその様子を示した図である。従って、裏面の大部
分が2000Å以上の酸化膜に覆われており、後の熱処
理工程において、ボロンの外方拡散をほぼ完全に抑制で
きる。
Embodiments of the present invention will be described below based on the drawings. 1st
The figure shows how a P/P" type silicon substrate is placed in a HF 77-gas etcher chamber after forming an N-type well 3. Examples of the HF steam etcher include Excalibur manufactured by FSI, USA, etc. Since the wafer is placed on a turntable and the HF vapor is introduced from above, even after removing the oxide film 4a on the front surface, the oxide film placed on the turntable on the back side oxide film 4b is removed. There is no decrease at all, and the area not on the turntable is HF.
It decreases somewhat due to the circulation of steam. When a 6-inch diameter wafer is used to grow a thermal oxide film of 6,000 layers and the surface oxide film is removed, the backside oxide film thickness will be approximately 500 to 1,000 layers depending on the wafer edge, and 1.
About 3,000 people remain at 0n, and 6,000 people remain at the center.Figure 2 shows this situation. Therefore, most of the back surface is covered with an oxide film of 2000 Å or more, and the outward diffusion of boron can be almost completely suppressed in the subsequent heat treatment process.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、P/P”型シリコン基板
を用いた場合のNウェル形成後の酸化膜除去をHF蒸気
エフチャーにて行う事により、レジストコート工程を削
減でき、表面は常に非接触であるため歩留まりを落とす
事もない。また、基板裏面の大部分を厚い酸化膜で覆っ
ているため、不純物の外方拡散を生じない。
As explained above, the present invention uses HF vapor etcher to remove the oxide film after N-well formation when using a P/P'' type silicon substrate, thereby reducing the resist coating process and keeping the surface clean. Since it is a contact, there is no drop in yield.Also, since most of the back surface of the substrate is covered with a thick oxide film, outward diffusion of impurities does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するためのHF蒸気エツチャー中
のシリコン基板の様子を示す断面図、第2図はHF蒸気
エフチャー処理後の基板裏面の酸化膜残り具合を示す断
面図、第3図fal〜(C1は従来の製造方法の工程順
断面図である。 1・・・高不純物濃度シリコン基板 2・・・低不純物濃度シリコンエピタキシャル膜3・・
・N型ウェル 4a、4b・・・酸化膜 5・・・フォトレジスト 以上 出廓人 セイコー電子工業株式会社 狡峡MO5手導那置a肚加斜零オニ象・頂酢面図第3図
FIG. 1 is a cross-sectional view showing the condition of a silicon substrate during HF vapor etching to explain the present invention, FIG. 2 is a cross-sectional view showing the amount of oxide film remaining on the back side of the substrate after the HF vapor etching process, and FIG. fal ~ (C1 is a cross-sectional view of a conventional manufacturing method in the order of steps. 1... High impurity concentration silicon substrate 2... Low impurity concentration silicon epitaxial film 3...
・N-type wells 4a, 4b...Oxide film 5...Photoresist and above Suppliers Seiko Electronics Co., Ltd. Kokyo MO5 Hand guide na position a belly Calculating zero Oni Elephant / Top surface view Figure 3

Claims (1)

【特許請求の範囲】[Claims]  不純物を高濃度に含むシリコン基板上に低不純物濃度
シリコンエピタキシャル膜を設けたシリコン基板を用い
たCMOS半導体装置の製造方法において、基板と逆導
伝型の深い拡散層を形成した後の酸化膜除去工程をHF
蒸気エッチャーにより表面の酸化膜だけを選択的に除去
することを特徴とするCMOS半導体装置の製造方法。
In a method for manufacturing a CMOS semiconductor device using a silicon substrate in which a low impurity concentration silicon epitaxial film is provided on a silicon substrate containing high impurity concentration, oxide film removal after forming a deep diffusion layer of conductivity type opposite to that of the substrate. HF process
A method for manufacturing a CMOS semiconductor device, characterized in that only a surface oxide film is selectively removed using a steam etcher.
JP63105795A 1988-04-28 1988-04-28 Manufacture of cmos semiconductor device Pending JPH01276754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105795A JPH01276754A (en) 1988-04-28 1988-04-28 Manufacture of cmos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105795A JPH01276754A (en) 1988-04-28 1988-04-28 Manufacture of cmos semiconductor device

Publications (1)

Publication Number Publication Date
JPH01276754A true JPH01276754A (en) 1989-11-07

Family

ID=14417061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105795A Pending JPH01276754A (en) 1988-04-28 1988-04-28 Manufacture of cmos semiconductor device

Country Status (1)

Country Link
JP (1) JPH01276754A (en)

Similar Documents

Publication Publication Date Title
US5476813A (en) Method of manufacturing a bonded semiconductor substrate and a dielectric isolated bipolar transistor
JPS6281764A (en) Manufacture of silicon carbide device
EP0076106B1 (en) Method for producing a bipolar transistor
US5789308A (en) Manufacturing method for wafer slice starting material to optimize extrinsic gettering during semiconductor fabrication
US5897362A (en) Bonding silicon wafers
US7064073B1 (en) Technique for reducing contaminants in fabrication of semiconductor wafers
JPH01276754A (en) Manufacture of cmos semiconductor device
JPS60247928A (en) Cleaning method of semiconductor substrate
JPH0210730A (en) Forming method and construction of field isolation for field effect transistor on integrated circuit chip
JP2004152920A (en) Method of manufacturing semiconductor device and method of managing semiconductor manufacturing process
JPH03163821A (en) Manufacture of semiconductor device
JPS63269562A (en) Manufacture of mos semiconductor device
CN114188213B (en) Method for solving problem of transmission failure of silicon carbide wafer
JPS6467910A (en) Manufacture of semiconductor device
JPS63244875A (en) Manufacture of mos type semiconductor device
JPH05206145A (en) Manufacture of semiconductor device
JPH0313745B2 (en)
JPH03173131A (en) Manufacture of semiconductor device
JPH08306699A (en) Manufacture of semiconductor device
JPH0335528A (en) Manufacture of semiconductor device
JPH04103133A (en) Manufacture of semiconductor device
JPH03227023A (en) Manufacture of bipolar transistor
JPH08172214A (en) Manufacture of photoelectric conversion semiconductor device
JPH0494567A (en) Manufacture of semiconductor device
JPH0254583A (en) Mis type semiconductor integrated circuit device