JPH01276704A - Manufacture of oxide voltage-nonlinear resistor - Google Patents

Manufacture of oxide voltage-nonlinear resistor

Info

Publication number
JPH01276704A
JPH01276704A JP63106524A JP10652488A JPH01276704A JP H01276704 A JPH01276704 A JP H01276704A JP 63106524 A JP63106524 A JP 63106524A JP 10652488 A JP10652488 A JP 10652488A JP H01276704 A JPH01276704 A JP H01276704A
Authority
JP
Japan
Prior art keywords
solution
alcohol
metallic salt
alcohole
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63106524A
Other languages
Japanese (ja)
Other versions
JP2563971B2 (en
Inventor
Shinichi Hirano
眞一 平野
Motomasa Imai
今井 基真
Yoshiaki Okamoto
岡本 芳明
Mitsuo Harada
光雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63106524A priority Critical patent/JP2563971B2/en
Publication of JPH01276704A publication Critical patent/JPH01276704A/en
Application granted granted Critical
Publication of JP2563971B2 publication Critical patent/JP2563971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To stabilize quality and to improve varistor characteristics by dissolving metallic salt of additive composition containing Mn which is dissolved by polyatomic alcohole into alcohole and by sintering material powders which is added into zinc oxide alcohole slurry and hydrolyzed. CONSTITUTION:Among metallic salt of additive component, at least metallic salt of Mn is dissolved by polyatomic alcohol, and metallic salt or metallic salt solution of additive component containing this solution is dissolved by alcohole solution and then added into zinc oxide alcohol slurry. It is then hydrolyzed to acquire sediment which is homogeneously diffused and attached on a surface of ZnO powders at an order of atomic level. Fine structure where oxide of a number of additive components is interposed as a homogeneous intergranular phase among ZnO powders can be acquired by eliminating solvent from the sediment to prepare material powders and by burning them. Quality can be stabilized in this way, and varistor characteristics can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物電圧非直線抵抗体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an oxide voltage nonlinear resistor.

(従来の技術) ZnOを主成分とし、B12O3等の添加成分を含む焼
結体からなる酸化亜鉛電圧非直線抵抗体は、非直線の電
圧−電流特性を有し、印加電圧の増大に伴いその抵抗が
急激に減少し、電流が急増するので、異常な高電圧を吸
収する避雷器、サージ吸収素子などに広く使用されてい
る。
(Prior art) A zinc oxide voltage nonlinear resistor made of a sintered body containing ZnO as a main component and additive components such as B12O3 has nonlinear voltage-current characteristics, and its characteristics change as the applied voltage increases. Because resistance rapidly decreases and current increases rapidly, it is widely used in lightning arresters and surge absorption elements that absorb abnormally high voltages.

上述した酸化亜鉛電圧非直線抵抗体は、従来、次のよう
な方法により製造されている。まず、主成分である酸化
亜鉛(Zn O)の粉末と添加成分である酸化ビスマス
(Bl 203 ) 、酸化マンガン(Mn O)など
の金属酸化物の微粉末とを所定の割合で混合し、これを
適宜な混合・粉砕器中で媒体(例えばジルコニアボール
)を用いて混合、粉砕した後、適宜なバインダで造粒す
る。つづいて、この造粒物を金型に充填し、加圧成形し
てペレットした後t 1100〜1350℃の温度域で
焼成して酸化亜鉛電圧非直線抵抗体を製造する。かかる
方法で製造された酸化亜鉛電圧非直線抵抗体は、主成分
であるZnOが通常、数μm〜数十μmと比較的大きな
粒を構成し、添加成分の大部分は該ZnO粒子の粒界に
介在して粒界相を構成している。こうした微細構造を有
する酸化亜鉛電圧非直線抵抗体においては、各成分の組
織上の均一度がサージ吸収を目的とする非直線抵抗体の
安定向上化にとって重要な因子として働く。
The zinc oxide voltage nonlinear resistor described above has conventionally been manufactured by the following method. First, zinc oxide (ZnO) powder, which is the main component, and fine powder of metal oxides, such as bismuth oxide (Bl 203 ) and manganese oxide (MnO), which are additive components, are mixed in a predetermined ratio. are mixed and crushed using a medium (for example, zirconia balls) in an appropriate mixing/pulverizer, and then granulated with an appropriate binder. Subsequently, this granulated material is filled into a mold, pressure-molded to form pellets, and then fired in a temperature range of 1,100 to 1,350° C. to produce a zinc oxide voltage nonlinear resistor. In the zinc oxide voltage nonlinear resistor manufactured by this method, ZnO, which is the main component, usually constitutes relatively large grains of several μm to several tens of μm, and most of the additive components are located at the grain boundaries of the ZnO particles. The grain boundary phase is formed by intervening in the grain boundary phase. In a zinc oxide voltage nonlinear resistor having such a fine structure, the structural uniformity of each component acts as an important factor for improving the stability of the nonlinear resistor for the purpose of absorbing surges.

しかしながら、従来の製造方法にあっては原料として用
いるZnOの粉末や添加成分の粉末の粒径を均一に揃え
ることが困難であり、かつ一般に添加成分の添加量はZ
nO粉末の量に比べて極めて少ないため、該添加成分と
該ZnO粉末との混合が不均一になり易くなる。その結
果、均一な微細構造をaする酸化亜鉛電圧非直線抵抗体
を得ることが困難となる。このことは、製造ロット間又
はロフト内の特性バラツキを大きくし、品質安定性の低
下を招くばかりか、得られた酸化亜鉛電圧非直線抵抗体
の電圧非直線性、寿命特性、サージエネルギー耐量など
のバリスタ特性そのものの低下を招くことになる。
However, in conventional manufacturing methods, it is difficult to uniformize the particle size of ZnO powder used as a raw material and powder of additive components, and in general, the amount of additive components added is
Since the amount is extremely small compared to the amount of nO powder, the additive component and the ZnO powder tend to be mixed non-uniformly. As a result, it becomes difficult to obtain a zinc oxide voltage nonlinear resistor with a uniform microstructure. This not only increases the variation in characteristics between manufacturing lots or within a loft, leading to a decrease in quality stability, but also causes problems such as voltage nonlinearity, life characteristics, surge energy resistance, etc. of the obtained zinc oxide voltage nonlinear resistor. This results in a deterioration of the varistor characteristics themselves.

一方、粒径が細かく、比較的粒径の揃った粉末を得る方
法として共沈法が知られている。この共沈法を採用した
原料粉末の製造方法としては、特開昭58−22580
4号に開示された水溶液中でZn塩とBl塩を共沈させ
る方法がある。しかしながら、かかる方法では酸化亜鉛
電圧非直線抵抗体の種々の特性を向上させるために添加
する多くの成分を目的とする組成通りに共沈させること
が困難であったり、溶液濃度に制限があるため取扱う溶
液が膨大になったり、共沈により生成した亜鉛成分の粒
径が非常に細かいため成形が困難になったりする等、製
造上多くの問題があった。
On the other hand, a coprecipitation method is known as a method for obtaining powder with fine particle size and relatively uniform particle size. A method for producing raw material powder using this coprecipitation method is disclosed in Japanese Patent Application Laid-Open No. 58-22580.
There is a method disclosed in No. 4 in which Zn salt and Bl salt are co-precipitated in an aqueous solution. However, with this method, it is difficult to co-precipitate the many components added to improve the various properties of the zinc oxide voltage nonlinear resistor according to the desired composition, and there is a limit to the concentration of the solution. There were many problems in manufacturing, such as the large amount of solution to be handled and the difficulty of molding because the particle size of the zinc component produced by coprecipitation was extremely small.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、多数の添加成分を均一に混合することを可能とし
、均一な微細構造を形成し、品質の安定化とバリスタ特
性の向上を達成した酸化物電圧非直線−低抗体を簡単に
製造し得る方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention was made to solve the above-mentioned conventional problems, and it makes it possible to uniformly mix a large number of additive components, form a uniform microstructure, and achieve quality. The present invention aims to provide a method for easily producing an oxide voltage nonlinearity-low antibody that achieves stabilization of varistor characteristics and improved varistor characteristics.

[発明の構成] (課題を解決するための手段) 本発明は、添加成分の金属塩のうち少なくともMnの金
属塩を多価アルコールで溶液化する第1の工程と、この
溶液を含む添加成分の金属塩又は金属塩溶液をアルコー
ル溶液に溶解する第2の工程と、酸化亜鉛アルコールス
ラリー中に前記第2の工程で得られた溶液を添加する第
3の工程と、この溶液を加水分解して沈澱物を生成する
第4の工程と、この沈澱物から溶媒を除去する第5の工
程と、を備えた方法により調製した原料粉末を焼結する
ことを特徴とする酸化物電圧非直線抵抗体の製造方法で
ある。
[Structure of the Invention] (Means for Solving the Problems) The present invention comprises a first step of making a solution of at least a Mn metal salt among the metal salts of additive components with a polyhydric alcohol, and an additive component containing this solution. a second step of dissolving the metal salt or metal salt solution in an alcohol solution, a third step of adding the solution obtained in the second step into the zinc oxide alcohol slurry, and hydrolyzing this solution. An oxide voltage nonlinear resistance characterized by sintering a raw material powder prepared by a method comprising: a fourth step of producing a precipitate; and a fifth step of removing a solvent from the precipitate. It is a method of manufacturing the body.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1の工程は、添加成分の金属塩のうち少なくともMn
を含む金属塩(例えば硝酸マンガン等)で多価アルコー
ルに溶解する工程である。ここに用いる添加成分として
は、前記Mnの他にB1、Sbs Cos Nl、Cr
、Sl等を挙げることができる。これらの金属塩として
は、硝酸化物、塩化物、金属アルコキシド、アセチルア
セトン塩等を挙げることができる。また、これら添加成
分の中で前記Mnの他にB1の金属塩等を多価アルコー
ルで溶解してもよい。前記多価アルコールとしては、例
えばエチレングリコール、グリセリン等を挙げることが
できる。
In the first step, at least Mn of the metal salt as an additive component is added.
This is a process in which a metal salt containing (for example, manganese nitrate) is dissolved in a polyhydric alcohol. In addition to the above-mentioned Mn, the additive components used here include B1, Sbs Cos Nl, and Cr.
, Sl, etc. Examples of these metal salts include nitrates, chlorides, metal alkoxides, acetylacetone salts, and the like. Further, among these additive components, in addition to the above-mentioned Mn, a metal salt of B1, etc. may be dissolved in a polyhydric alcohol. Examples of the polyhydric alcohol include ethylene glycol and glycerin.

第2の工程は、前記第1の工程で得た溶液を含む添加成
分の金属塩又は金属塩溶液をアルコールに溶解する工程
である。ここに用いるアルコールとしては、例えばエチ
ルアルコール、メチルアルコール、プロピルアルコール
、ブチルアルコール等を挙げることができる。
The second step is a step of dissolving the metal salt or metal salt solution of the additive component, including the solution obtained in the first step, in alcohol. Examples of the alcohol used here include ethyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol, and the like.

第3の工程は、酸化亜鉛のアルコールスラリー中に前記
第2の工程で得られた溶液を添加する工程である。この
スラリーは、酸化亜鉛の粉末をエチルアルコール等のア
ルコール中に分散させることにより調製される。このス
ラリー中の酸化亜鉛の粒径については、あまり大きくす
ると活性度が低下して焼結・体の密度向上を達成できな
くなり、かといってあまり小さいと成形し難くなること
から、0.3〜0.7μm程度とすることが好ましい。
The third step is a step of adding the solution obtained in the second step to the alcohol slurry of zinc oxide. This slurry is prepared by dispersing zinc oxide powder in an alcohol such as ethyl alcohol. Regarding the particle size of zinc oxide in this slurry, if it is too large, the activity will decrease and it will be impossible to achieve sintering and increase the density of the body, but if it is too small, it will be difficult to mold, so it is 0.3~ It is preferable to set it to about 0.7 μm.

また、前記スラリーに対する添加成分である金属塩の量
は、B1の場合、Bl酸化物に換算して0.1〜2.0
 rBo1%、その他のMn、5bSCo、Nl 、C
r、St等の場合、それらの酸化物に換算して合計量で
3〜5 mo1%とすることが望ましい。
In addition, in the case of B1, the amount of metal salt as an additive component to the slurry is 0.1 to 2.0 in terms of Bl oxide.
rBo1%, other Mn, 5bSCo, Nl, C
In the case of r, St, etc., it is desirable that the total amount is 3 to 5 mo1% in terms of their oxides.

第4の工程は、前記第3の工程で得られた溶液(Zn 
Oを含む混合金属イオンのアルコール溶液)を加水分解
して沈澱物を生成する工程である。加水分解は、濃度調
節したアンモニア水(例えば水で1150に希釈したア
ンモニア水)を前記ZnOを含む混合金属イオンのアル
コール溶液に滴下して行ない、全体の溶液をpH7〜8
程度にする。
In the fourth step, the solution (Zn
This is a step in which a precipitate is produced by hydrolyzing an alcoholic solution of mixed metal ions containing O. Hydrolysis is carried out by dropping ammonia water with adjusted concentration (for example, ammonia water diluted to 1150 with water) into the alcohol solution of the mixed metal ion containing ZnO, and the entire solution is brought to a pH of 7 to 8.
to a certain degree.

アンモニア水以外では、KOH等のアルカリ溶液を用い
てもよい。pHが7〜8程度で前記アルコール中の総て
の金属イオンがほぼ完全に沈澱するが、低pH領域では
pHによって沈澱する金属イオンが異なるため、該沈澱
時期のずれによるへんせきを防止する観点から加水分解
を早めるためにZnOを含む混合金属イオンのアルコー
ル溶液を充分に攪拌することが望ましい。こうした加水
分解により、ZnOの粉末表面に添加成分の水酸化物(
金属水酸化物)が均一に分散して析出、沈澱する。生成
した金属水酸化物は、ZnO粉末表面において原子レベ
ルのオーダーで均一に分散、付着する。かかる原子レベ
ルのオーダーでの金属水酸化物のZnO粉末への分散は
、従来の粉末同士の機械的な混合方法では到底達成する
ことができない。
In addition to ammonia water, an alkaline solution such as KOH may be used. All the metal ions in the alcohol are almost completely precipitated when the pH is about 7 to 8, but since the metal ions that precipitate differ depending on the pH in the low pH region, this is a point of view to prevent problems due to shifts in the precipitation timing. It is desirable to sufficiently stir the alcohol solution of mixed metal ions containing ZnO in order to accelerate the hydrolysis. Due to this hydrolysis, the added component hydroxide (
metal hydroxides) are uniformly dispersed and precipitated. The generated metal hydroxide is uniformly dispersed and attached on the ZnO powder surface on an atomic level order. Such dispersion of metal hydroxide into ZnO powder on the order of the atomic level cannot be achieved by conventional mechanical mixing methods of powders.

第5の工程は、前記第4の工程で生成した沈澱物を濾過
洗浄、加熱する工程である。前記第4工程で加水分解し
た溶液から濾過した沈澱物には、アルコール、水、アン
モニア水、多価アルコール等が混入され、これを直接加
熱して前記アルコール等を除去しようとすると沈澱物中
に含まれているカーボン等により沈澱物粉末表面に黒っ
ぽい粉が付着する。かかる粉の付着を防止するために、
加水分解後の、沈澱物を濾過した後に純水で3回程度洗
浄し、更に沈澱成分の比重による分離を防ぐためにスタ
ーラーで攪拌しながら混入される水等を蒸発させる。こ
のような洗浄、加熱蒸発により得られた原料粉末は、X
線回折試験からはZnO以外のピークは観察されず、各
金属水酸化物はアモルファス状態で存在し、非常に活性
であることが確認された。
The fifth step is a step of filtering, washing, and heating the precipitate produced in the fourth step. Alcohol, water, aqueous ammonia, polyhydric alcohol, etc. are mixed in the precipitate filtered from the hydrolyzed solution in the fourth step, and when trying to remove the alcohol etc. by directly heating it, the precipitate contains alcohol, water, aqueous ammonia, polyhydric alcohol, etc. A dark powder adheres to the surface of the precipitate powder due to the carbon contained therein. To prevent the adhesion of such powder,
After the hydrolysis, the precipitate is filtered and washed with pure water about three times, and the mixed water is evaporated while stirring with a stirrer to prevent separation due to the specific gravity of the precipitated components. The raw material powder obtained by such washing and heating evaporation is
No peaks other than ZnO were observed in the line diffraction test, and it was confirmed that each metal hydroxide existed in an amorphous state and was very active.

次いで、前記第5の工程により調製された原料粉末に適
宜なバインダを添加し、成形した後、焼成することによ
り酸化物電圧非直線抵抗体を製造する。この焼成におい
て、原料粉末の活性が高いために従来の粉末の焼結に比
べて低い温度で焼結させることが可能となる。また、原
料粉末を直接焼結せずに、予め400〜700℃で仮焼
し、原料粉末中の総ての化合物を酸化物の状態にした後
、焼成させてもよい。但し、一般に高温で仮焼するほど
粉末の活性度が低下し、粉末同士の凝集が生じ易くなる
ため好ましくないが、非直線性などのバリスタ特性には
仮焼が好ましい場合もある。
Next, an appropriate binder is added to the raw material powder prepared in the fifth step, molded, and fired to produce an oxide voltage nonlinear resistor. In this firing, since the raw material powder has high activity, it is possible to sinter at a lower temperature than in conventional powder sintering. Alternatively, instead of directly sintering the raw material powder, it may be calcined in advance at 400 to 700°C to convert all compounds in the raw material powder into oxides, and then fired. However, in general, calcination at a higher temperature is not preferable because the activity of the powder decreases and agglomeration of powders becomes more likely to occur, but calcination may be preferable for varistor characteristics such as nonlinearity.

(作用) 本発明によれば、添加成分の金属塩のうち少なくともM
nの金属塩を多価アルコールで溶液化し、この溶液を含
む添加成分の金属塩又は金属塩溶液をアルコール溶液に
溶解し、これを酸化亜鉛アルコールスラリー中に添加し
、加水分解することによって、ZnO粉末表面において
原子レベルのオーダーで均一に分散、付着した沈澱物が
得られる。従って、かかる沈澱物から溶媒を除去して原
料粉末を調製し、これを焼成することによって、多数の
添加成分の酸化物がZnO粉末間に均一な粒界相として
介在した微細構造を有し、品質の安定化とバリスタ特性
の向上を達成した酸化物電圧非直線抵抗体を簡単な工程
で製造することができる。
(Function) According to the present invention, at least M
ZnO A precipitate is obtained that is uniformly dispersed and adhered to the powder surface on the order of the atomic level. Therefore, by removing the solvent from the precipitate to prepare a raw material powder and firing it, a fine structure in which the oxides of many additive components are interposed as a uniform grain boundary phase between the ZnO powders is obtained. It is possible to manufacture an oxide voltage nonlinear resistor with stable quality and improved varistor characteristics through a simple process.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

まず、Mn  (NO3) 2 、Bl  (NO3)
 3  ・5H20を金属酸化物に換算して夫々0.5
モル%、0.25モル%となるように秤量し、これらを
少量のエチレングlルコールに夫々溶解させた後、これ
ら溶液をエチルアルコールに溶解させた。つづいて、Z
nO粉末(平均粒径0,4μm) 10!iFとエチル
アルコール30gを混合・粉砕器で1時間程度混合させ
てZnOをエチルアルコール中に分散させることにより
ZnOエチルアルコールスラリーを調製した。ひきつづ
き、前記エチレングリコールで溶解させたMn5Biの
硝酸塩のエチルアルコール溶液を、前記ZnOエチルア
ルコールスラリー中(;1滴づつ滴下し、約1時間混合
した。次いでこの混合液に水で1150程度希釈したア
ンモニア水を添加して加水分解を行ない全体のpHを7
〜8に調節した。こうした加水分解により生成された沈
澱物を濾過し、純水で3回洗浄した後、溶媒の水を加熱
除去して原料粉末とした。
First, Mn (NO3) 2 , Bl (NO3)
3 ・5H20 is converted to metal oxide and is 0.5 respectively.
They were weighed to give a mol% of 0.25 mol%, dissolved in a small amount of ethylene glycol, and then dissolved in ethyl alcohol. Next, Z
nO powder (average particle size 0.4 μm) 10! A ZnO ethyl alcohol slurry was prepared by mixing iF and 30 g of ethyl alcohol using a mixer/pulverizer for about 1 hour to disperse ZnO in ethyl alcohol. Subsequently, an ethyl alcohol solution of Mn5Bi nitrate dissolved in ethylene glycol was added dropwise to the ZnO ethyl alcohol slurry and mixed for about 1 hour.Next, ammonia diluted with water to about 1150 was added to the mixed solution. Add water to perform hydrolysis and bring the overall pH to 7.
Adjusted to ~8. The precipitate produced by such hydrolysis was filtered, washed three times with pure water, and the solvent water was removed by heating to obtain a raw material powder.

次いで、前記原料粉末にポリビニルアルコールを添加し
、造粒した後、該造粒物を所定形状の金型内に充填して
加圧成形した。得られたペレットを1100℃で2時間
焼成してバリスタ焼結体を製造した。
Next, polyvinyl alcohol was added to the raw material powder and granulated, and then the granulated product was filled into a mold having a predetermined shape and press-molded. The obtained pellets were fired at 1100°C for 2 hours to produce a varistor sintered body.

比較例 ZnO粉末にBi2O3及びMnOを実施例と同組成と
なるように添加し、ボットミルにて混合粉砕し、更に乾
燥させて得た原料粉末を用いた以外、実施例と同様な方
法によりバリスタ焼結体を製造した。
Comparative Example Varistor firing was carried out in the same manner as in the example except that Bi2O3 and MnO were added to the ZnO powder to have the same composition as in the example, mixed and ground in a bot mill, and further dried to obtain a raw material powder. A body was produced.

しかして、本実施例及び比較例のバリスタ焼結体につい
て相対密度を測定した。また、各焼結体の両面を研磨し
た後、AJ!電極を蒸着して電圧変化率(V  の変化
率)及びI/Ioを測定した。
The relative densities of the varistor sintered bodies of this example and comparative example were measured. Also, after polishing both sides of each sintered body, AJ! The electrodes were deposited and the voltage change rate (V 2 change rate) and I/Io were measured.

mA これらの結果を下記第1表に示した。なお、電圧変化率
はバリスタ焼結体にAI電極を通して8/10μsの衝
撃電流を100A/dで1000回印加後の■  の変
化を百分率で表したものである。また、mA 1/Ioは前記バリスタ焼結体を120℃の恒温槽に入
れ、V  の85%の電圧を印加した時の初期mA 電流(工0)と500時間経過後の電流(I)の比によ
り表したものである。
mA These results are shown in Table 1 below. Note that the voltage change rate is the change in (2) expressed as a percentage after applying an 8/10 μs impact current at 100 A/d 1000 times to the varistor sintered body through an AI electrode. In addition, mA 1/Io is the initial mA current (process 0) when the varistor sintered body is placed in a constant temperature oven at 120°C and a voltage of 85% of V is applied, and the current (I) after 500 hours. It is expressed as a ratio.

第1表 上記第1表から明らかなように本実施例のバリスタ焼結
体は比較例の同焼結体に比べて密度が高く、■  の変
化率が低く、更に寿命特性も500mA 時間経過後のもれ電流の変化率(I / I o )が
小さく良好であることがわかる。
Table 1 As is clear from Table 1 above, the varistor sintered body of this example has a higher density than the same sintered body of the comparative example, has a lower rate of change of It can be seen that the rate of change in leakage current (I/I o ) is small and good.

また、本実施例及び比較例のバリスタ焼結体について電
圧−電流特性を調べたところ、第1図に示す特性図を得
た。なお、第1図中のAは本実施例のバリスタ焼結体の
特性線、Bは比較例の同特性線を示す。この第1図から
明らかなように、本実施例のバリスタ焼結体は比較例の
同焼結体に比べて非直線性が著しく優れていることがわ
かる。
Further, when the voltage-current characteristics of the varistor sintered bodies of the present example and the comparative example were investigated, the characteristic diagram shown in FIG. 1 was obtained. In addition, A in FIG. 1 shows the characteristic line of the varistor sintered body of this example, and B shows the same characteristic line of the comparative example. As is clear from FIG. 1, it can be seen that the varistor sintered body of this example has significantly superior nonlinearity compared to the same sintered body of the comparative example.

[尭明の効果] 以上詳述した如く、本発明によれば粉砕工程が不要で工
程の簡略化と不純物の混入を防止できること、原料粉末
の微細化と活性化により比較的低温の焼成で緻密構造に
できること、多数の添加成分の酸化物がZnO粉末間に
均一な粒界相として介在した微細構造を有し、非直線性
に優れ、サージエネルギー耐量が大きく寿命特性も良好
で、更に優れた品質安定性を達成できること等の種々の
効果を奏する酸化物電圧非直線抵抗体の製造方法を提供
できる。
[Effects of Gyomei] As detailed above, according to the present invention, there is no need for a pulverization process, which simplifies the process and prevents contamination of impurities, and by making the raw material powder fine and activating it, it can be made dense by firing at a relatively low temperature. It has a fine structure in which the oxides of many additive components are interposed as a uniform grain boundary phase between ZnO powders, and has excellent nonlinearity, large surge energy resistance, and good life characteristics. It is possible to provide a method for manufacturing an oxide voltage nonlinear resistor that has various effects such as achieving quality stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例及び比較例のバリスタ焼結体の
電圧−電流特性を示す線図である。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a diagram showing voltage-current characteristics of varistor sintered bodies of examples of the present invention and comparative examples. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 添加成分の金属塩のうち少なくともMnの金属塩を多価
アルコールで溶液化する第1の工程と、この溶液を含む
添加成分の金属塩又は金属塩溶液をアルコール溶液に溶
解する第2の工程と、酸化亜鉛アルコールスラリー中に
前記第2の工程で得られた溶液を添加する第3の工程と
、この溶液を加水分解して沈澱物を生成する第4の工程
と、この沈澱物から溶媒を除去する第5の工程と、を備
えた方法により調製した原料粉末を焼結することを特徴
とする酸化物電圧非直線抵抗体の製造方法。
A first step of dissolving at least Mn metal salt among the metal salts of the additive component in a polyhydric alcohol, and a second step of dissolving the metal salt of the additive component or the metal salt solution containing this solution in an alcohol solution. , a third step of adding the solution obtained in the second step to the zinc oxide alcohol slurry, a fourth step of hydrolyzing this solution to produce a precipitate, and removing the solvent from the precipitate. A method for manufacturing an oxide voltage nonlinear resistor, comprising: sintering raw material powder prepared by a method comprising: a fifth step of removing;
JP63106524A 1988-04-28 1988-04-28 Oxide voltage nonlinear resistor manufacturing method Expired - Lifetime JP2563971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106524A JP2563971B2 (en) 1988-04-28 1988-04-28 Oxide voltage nonlinear resistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106524A JP2563971B2 (en) 1988-04-28 1988-04-28 Oxide voltage nonlinear resistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH01276704A true JPH01276704A (en) 1989-11-07
JP2563971B2 JP2563971B2 (en) 1996-12-18

Family

ID=14435788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106524A Expired - Lifetime JP2563971B2 (en) 1988-04-28 1988-04-28 Oxide voltage nonlinear resistor manufacturing method

Country Status (1)

Country Link
JP (1) JP2563971B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128401A (en) * 1987-11-12 1989-05-22 Toshiba Corp Manufacture of zinc oxide system voltage nonlinear resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128401A (en) * 1987-11-12 1989-05-22 Toshiba Corp Manufacture of zinc oxide system voltage nonlinear resistor

Also Published As

Publication number Publication date
JP2563971B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US5039452A (en) Metal oxide varistors, precursor powder compositions and methods for preparing same
EP0097923B1 (en) Metal oxide varistor
DE112019002838T5 (en) ZINC OXIDE VARISTOR
US4996510A (en) Metal oxide varistors and methods therefor
CA1332278C (en) Metal oxide varistors, precursor powder, compositions and methods for preparing same
CA2034106C (en) Process for fabricating doped zinc oxide microspheres
JPH01276704A (en) Manufacture of oxide voltage-nonlinear resistor
JPS59903A (en) Voltage nonlinear resistor
JPH01128401A (en) Manufacture of zinc oxide system voltage nonlinear resistor
JP2563970B2 (en) Oxide voltage nonlinear resistor manufacturing method
JPS6249961B2 (en)
JPH02164006A (en) Zinc oxide type varistor
JPH03257902A (en) Manufacture of voltage nonlinear resistor
JPH05234716A (en) Zinc oxide varistor
JPS60926B2 (en) Manufacturing method of voltage nonlinear resistor
JPH0346962B2 (en)
CN117303885A (en) Method for preparing ZnO pressure-sensitive ceramic by doping soluble salt
JPS60928B2 (en) Manufacturing method of voltage nonlinear resistor
JP2533305B2 (en) Manufacturing method of dielectric resonator material
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPS62237704A (en) Manufacture of voltage nonlinear resistance element
JPH06651B2 (en) Method for producing piezoelectric ceramic powder
JPH01289214A (en) Manufacture of varistor
JPH0224361B2 (en)
JPH05258914A (en) Manufacture of voltage non-linear resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12