JPH01276666A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPH01276666A
JPH01276666A JP63104814A JP10481488A JPH01276666A JP H01276666 A JPH01276666 A JP H01276666A JP 63104814 A JP63104814 A JP 63104814A JP 10481488 A JP10481488 A JP 10481488A JP H01276666 A JPH01276666 A JP H01276666A
Authority
JP
Japan
Prior art keywords
filter
polyimide
layer
dyed
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104814A
Other languages
Japanese (ja)
Inventor
Yoshihiko Machida
町田 佳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63104814A priority Critical patent/JPH01276666A/en
Publication of JPH01276666A publication Critical patent/JPH01276666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a solid state image pickup device employing a bottom type photoelectric transducer having an on-chip filter with excellent characteristics by providing a color separation filter made of polyimide as base material between an insulating transparent substrate and the photoelectric transducer. CONSTITUTION:A dyed polyimide layer 121 is formed on an insulating transparent substrate 111. Further, dyed polyimide layers 122 and 123 with different colors are formed to provide a three-color dyed polyimide filter. With this constitution, an on-chip filter having excellent characteristics and heat-resistant properties sufficient to form a photoelectric converting element 101 can be produced and an on-chip filter type solid state image pickup device employing the photoelectric converting element which has excellent color separation characteristics and to which a light is applied from the substrate side can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野 1 本発明は固体撮像装置のフィルター及びそのほかの構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to filters and other structures of solid-state imaging devices.

[従来の技術 ] 固体撮像装置に用いられる光電変換素子には、基板と反
対の側から光を入射させるタイプと、基板側から光を入
射させるタイプ(以下この形式をボトムタイプと呼ぶ)
とがある。
[Prior art] There are two types of photoelectric conversion elements used in solid-state imaging devices: one type in which light enters from the side opposite to the substrate, and the other type in which light enters from the substrate side (hereinafter this type is referred to as the bottom type).
There is.

前者には半導体基板等の非透明基板を用いることが出来
るため、−膜内にはこのタイプの光電変換素子が用いら
れることが多い。  このタイプでは光が入射する面と
素子面とが同じ側であるため、入射面側に読み取り画像
に影響する汚れ等が付着した場合に、各素子に影響を与
えずにこれを取り去ることは非常に難しい。  このた
め通常はガラス等の透明材質の窓のついた容器内に封入
して用いられる。  しかじ等倍型の撮像系に用いられ
る固体撮像装置では大型であるため、この様に容器内に
封入することが難しく高コストとなってしまう。
Since a non-transparent substrate such as a semiconductor substrate can be used for the former, this type of photoelectric conversion element is often used in the -film. In this type, the surface on which light enters and the element surface are on the same side, so if there is dirt on the entrance surface that affects the read image, it is very difficult to remove it without affecting each element. It's difficult. For this reason, it is usually sealed in a container made of a transparent material such as glass and has a window. Since the solid-state imaging device used in the same-magnification imaging system is large, it is difficult to enclose it in a container like this, resulting in high cost.

そこでこの様な用途の固体撮像装置には後者のタイプの
充電変換素子が用いられることが多い。
Therefore, the latter type of charging conversion element is often used in solid-state imaging devices for such uses.

この場合基板にガラスや石英等の透明な基板を用いる必
要があるが、上述したような問題は起こらない。 つま
り入射面側は単なるガラス等の絶縁体の表面であり、こ
の部分の洗浄は比較的容易である。  また素子面側に
汚れ等が付着した場合でも固体撮像装置の読み取りには
ほとんど影響が無く、簡単な実装形態で用いることがで
きる。
In this case, it is necessary to use a transparent substrate such as glass or quartz, but the above-mentioned problem does not occur. In other words, the incident surface side is simply the surface of an insulator such as glass, and cleaning this portion is relatively easy. Further, even if dirt or the like adheres to the element surface side, there is almost no effect on the reading of the solid-state imaging device, and the device can be used in a simple mounting form.

ところで、充電変換素子上に直接色分解フィルターを形
成したいわゆるフィルターオンチップの固体撮像装置は
カラー画像の読み取りを行う上で非常に有用なものであ
る。  このため、等倍望結像系を用いる上でも、上述
したようなボトムタイプの光電変換素子を用いた固体!
S像装置に対してフィルターオンチップのものが求めら
れている。
Incidentally, a so-called filter-on-chip solid-state imaging device in which a color separation filter is formed directly on a charging conversion element is very useful for reading color images. For this reason, even when using a 1-magnification telephoto imaging system, it is possible to use a solid state camera using a bottom-type photoelectric conversion element as described above.
There is a demand for a filter-on-chip type of S-image device.

現状、このオンチップフィルターを形成する方法として
は (A)ゼラチン、ポリビニルアルコール等の可染色
性の高分子膜を設けてこれを染色する方法、 (B)透
明導電層によるパターンを形成した後、顔料を分散させ
た高分子を電着する方法が知られている。
Currently, the methods for forming this on-chip filter are: (A) providing a dyeable polymer film such as gelatin or polyvinyl alcohol and dyeing it; (B) forming a pattern using a transparent conductive layer; A method is known in which a polymer in which a pigment is dispersed is electrodeposited.

しかし前記(A)の方法によるフィルターは耐熱性が非
常に低く、光電変換素子を形成するのに必要な処理温度
に耐えることが出来ず、また前記(B)の方法によるフ
ィルターでは(A)の方法によるものよりも耐熱性は高
いものの着色剤として顔料を用いているため十分なフィ
ルター特性を1得ることが出来ない。
However, the filter made by method (A) has very low heat resistance and cannot withstand the processing temperature required to form a photoelectric conversion element, and the filter made by method (B) has very low heat resistance. Although the heat resistance is higher than that obtained by this method, sufficient filter properties cannot be obtained because a pigment is used as a coloring agent.

そこで本発明はこの様な課題を解決するためのもので、
良好な特性を持つオンチップフィルターを持つボトムタ
イプの充電変換素子を用いた固体撮像装置を実現するこ
とを目的とする。
Therefore, the present invention is intended to solve such problems.
The objective is to realize a solid-state imaging device using a bottom-type charging conversion element with an on-chip filter with good characteristics.

[課題を解決するための手段 ] 以上のような課題を解決するため本発明の固体撮像装置
は、上記絶縁性透明基板と光電変換素子との間にポリイ
ミドを基材とする色分解フィルターを設けたことを特徴
とする。
[Means for Solving the Problems] In order to solve the above problems, the solid-state imaging device of the present invention includes a color separation filter made of polyimide as a base material, which is provided between the insulating transparent substrate and the photoelectric conversion element. It is characterized by:

更に工数の低減を図るために、上記ポリイミドを基材と
するフィルター層を層間絶縁膜として用いたことを特徴
とする。
Furthermore, in order to reduce the number of man-hours, the present invention is characterized in that the filter layer made of the above-mentioned polyimide is used as an interlayer insulating film.

[実施例 ] 以下実施例により本発明を説明する。[Example ] The present invention will be explained below with reference to Examples.

第1図は本発明の実施例に置ける固体撮像装置の形成方
法を工程順に示す断面図である。
FIG. 1 is a cross-sectional view showing a method for forming a solid-state imaging device according to an embodiment of the present invention in order of steps.

第1図(a)は絶縁性透明基板111上に染色ポリイミ
ド層121を形成したところである。
FIG. 1(a) shows a state in which a dyed polyimide layer 121 is formed on an insulating transparent substrate 111.

通常ポリイミド層の形成はポリアミド酸をN−メチルピ
ロリドン(NMP)や2−メトキシル、シクロヘキサノ
ン等の溶剤に溶かしこれをスピンコードにより塗布後、
高温でキュアし、イミド化することにより行うことがで
きる。 染色ポリイミド層はポリアミド酸を上記溶剤に
溶かす際にその溶剤に可溶な染料を添加することにより
上記の様な工程で形成したものである。 基材として用
いるポリイミドは透明なものが望ましいが、ポリイミド
の光吸収域が用いる染料の光吸収域内もしくはその近傍
であれば利用可能である。 着色剤として染料の代わり
に顔料を用いて同様な方法で着色ポリイミド層を形成す
ることも可能であるが、得られるフィルターの特性が限
られるため後工程で高い温度の熱処理を必要とする場合
のみ利用される。
Normally, a polyimide layer is formed by dissolving polyamic acid in a solvent such as N-methylpyrrolidone (NMP), 2-methoxyl, or cyclohexanone, and applying it using a spin cord.
This can be done by curing at high temperature and imidizing. The dyed polyimide layer is formed by the process described above by adding a dye soluble in the solvent when polyamic acid is dissolved in the solvent. The polyimide used as the base material is preferably transparent, but it can be used as long as the light absorption range of the polyimide is within or near the light absorption range of the dye used. It is also possible to form a colored polyimide layer using a similar method using a pigment instead of a dye as a coloring agent, but this is only possible if high-temperature heat treatment is required in the post-process because the properties of the resulting filter are limited. used.

第1図(a)の染色ポリイミド層の形成時のキュア温度
は120〜160℃として、完全にイミド化されない状
態として置く。  次にモザイクもしくはストライブ状
の多色フィルターを得るためにこの染色ポリイミド層の
パターニングを行う。
The curing temperature during formation of the dyed polyimide layer shown in FIG. 1(a) is set at 120 to 160° C., so that it is not completely imidized. Next, this dyed polyimide layer is patterned to obtain a mosaic or striped multicolor filter.

ポジレジストを用いた通常のフォトリソグラフィーの工
程によりパターニングを行うことができ、第1図(b)
に示す状態となる。  イミド化率の低いポリイミド層
はポジレジストの現像液に可溶であるからポジレジスト
の現像と同時にポリイミド層のエツチングを行うことが
出来る。
Patterning can be performed by a normal photolithography process using a positive resist, as shown in Figure 1(b).
The state shown in is reached. Since the polyimide layer with a low imidization rate is soluble in a positive resist developer, the polyimide layer can be etched at the same time as the positive resist is developed.

酢酸エチルや酢酸ブチル等を用いた剥離液でポジレジス
ト層131を剥離することにより1色めの染色ポリイミ
ド層のパターニング工程を終了する。
The patterning process of the dyed polyimide layer of the first color is completed by peeling off the positive resist layer 131 with a stripping solution using ethyl acetate, butyl acetate, or the like.

ポリイミドは180〜200°C以上の温度でキュアす
ることによりイミド化が進行し、NMP等を含むほとん
どの溶剤に溶けなくなる。  このため各色の染色ポリ
イミド層のバターニング復に180〜200℃以上のキ
ュアを行えば同様な工程を繰り返して異なる色の染色ポ
リイミド層を形成しても、先に形成された染色ポリイミ
ド層が再染色されたり、エツチングされることはない。
When polyimide is cured at a temperature of 180 to 200°C or higher, imidization progresses and it becomes insoluble in most solvents including NMP and the like. Therefore, if the dyed polyimide layer of each color is buttered and then cured at 180 to 200℃ or higher, even if the same process is repeated to form a dyed polyimide layer of a different color, the previously formed dyed polyimide layer will be reused. It is not dyed or etched.

  但しこの場合、染料の耐熱性の関係から余り高温の
処理は出来ないためキュア温度は200〜250°Cと
した。
However, in this case, the curing temperature was set at 200 to 250°C, since treatment at a very high temperature was not possible due to the heat resistance of the dye.

以下同様な工程を繰り返し、異なる色の染色ポリイミド
層122.123を形成することにより第1図(C)に
示すような3色の染色ポリイミドのフィルターを形成す
ることが出来る。
Thereafter, similar steps are repeated to form dyed polyimide layers 122 and 123 of different colors, thereby making it possible to form a filter made of dyed polyimide in three colors as shown in FIG. 1(C).

この例では3色のフィルターを形成する場合を説明した
が同様の工程を繰り返すことで任意の色数のフィルター
を形成することが可能である。
In this example, a case has been described in which filters of three colors are formed, but it is possible to form filters of any number of colors by repeating the same steps.

光電変換素子を形成する前にフィルター上にS、02や
S、Nx等の無機材質によるバッファー層113を形成
する。  これはフィルターと光電変換素子の下電極の
透明導電層114との密着性を向上させるためのもので
、設けなくても以降の工程は行うことは可能である。 
バッファー層は1000〜6000人程度の膜厚が適当
で、ポリイミドのキュア温度以下の温度で成膜が可能な
スパッタリング法やプラズマCVD法により形成する。
Before forming the photoelectric conversion element, a buffer layer 113 made of an inorganic material such as S, 02, S, or Nx is formed on the filter. This is to improve the adhesion between the filter and the transparent conductive layer 114 of the lower electrode of the photoelectric conversion element, and the subsequent steps can be performed without providing it.
The buffer layer has a suitable thickness of about 1,000 to 6,000 layers, and is formed by a sputtering method or a plasma CVD method that can be formed at a temperature below the curing temperature of polyimide.

これは染料の耐熱性の問題ばかりでなく、250℃程度
の処理温度では染色ポリイミド層のイミド化が完全でな
く、処理温度が上がるに従いイミド化が進行し膜が収縮
して波打ったり剥離するためである。
This is not only due to the heat resistance of the dye, but also because the imidization of the dyed polyimide layer is not complete at a processing temperature of around 250°C, and as the processing temperature increases, imidization progresses, causing the film to shrink, become wavy, and peel off. It's for a reason.

上記バッファー層上に透明導電層114による下電極、
光導電層115及び導電層116による上電極からなる
光電変換素子101を形成する。
a lower electrode formed of a transparent conductive layer 114 on the buffer layer;
A photoelectric conversion element 101 including an upper electrode formed of a photoconductive layer 115 and a conductive layer 116 is formed.

透明導電層はITOを素子材としスパッタリング法によ
り、光導電層はa−9:を素子材としプラズマCVD法
により、導電層はAl−81−Cuを素子材としスパッ
タリング法により成膜し、処理温度が染色ポリイミド層
のキュア温度200〜250℃を越えないようにしてい
る。
The transparent conductive layer was formed by a sputtering method using ITO as an element material, the photoconductive layer was formed by a plasma CVD method using a-9: as an element material, and the conductive layer was formed by a sputtering method using Al-81-Cu as an element material, and then processed. The temperature is made not to exceed the curing temperature of the dyed polyimide layer, 200 to 250°C.

この後3層のパッシベーション層117.118.11
9を形成してこの固体撮像装置の作製工程を終了し、第
1図(yりを得る。
After this, three passivation layers 117.118.11
9 is formed to complete the manufacturing process of this solid-state imaging device, and the image shown in FIG. 1 (y-axis) is obtained.

第2図(a)及び(b)は本発明による固体撮像装置の
他の実施例を示す断面図で、同一基板上に薄膜トランジ
スタ202による走査回路を集積したものである。 第
2図(a)の例は薄膜トランジスタの作製工程未冬了浚
層間絶縁膜212を形成した後、上述した工程を行うこ
とにより作製したものである。  光電変換素子の上部
電極をなす導電1’!!216は走査回路の配線として
共用している。
FIGS. 2(a) and 2(b) are cross-sectional views showing another embodiment of the solid-state imaging device according to the present invention, in which a scanning circuit using thin film transistors 202 is integrated on the same substrate. The example shown in FIG. 2(a) is manufactured by performing the above-mentioned steps after forming the interlayer insulating film 212 during the thin film transistor manufacturing process. Conductive 1' which forms the upper electrode of the photoelectric conversion element! ! Reference numeral 216 is commonly used as wiring for the scanning circuit.

第2図(b)は薄膜トランジスタの作製工程終了後直ち
に染色ポリイミド層を形成して、上記層間絶縁膜の役割
を染色ポリイミド層が行うようにし、工程数の低減を図
ったものである。  ポリイミドは高い絶縁性と耐熱性
及び良好な段差被覆性を持つため半導体素子の眉間の絶
縁に広く利用することが可能である。
In FIG. 2(b), a dyed polyimide layer is formed immediately after the manufacturing process of the thin film transistor is completed, so that the dyed polyimide layer plays the role of the interlayer insulating film, thereby reducing the number of steps. Polyimide has high insulation properties, heat resistance, and good step coverage, so it can be widely used for insulation between the eyebrows of semiconductor devices.

[発明の効果 1 以上述べたように本発明により光電変換素子を作製可能
な耐熱性を持ち良好な特性を有するオンチップフィルタ
ーを作製することが可能となり、良好な色分解特性を持
つ基板側から光を入射させるタイプの光電変換素子を用
いたオンチップフィルターの固体111装置を実現する
ことが可能となった。
[Effects of the Invention 1] As described above, the present invention makes it possible to produce an on-chip filter that has heat resistance and good properties that can be used to make photoelectric conversion elements, and also allows the production of on-chip filters that have good color separation properties from the substrate side. It has become possible to realize an on-chip filter solid-state 111 device using a photoelectric conversion element that allows light to enter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の実施例に於ける固体撮
像装置の形成方法を工程順に示す断面図である。 第2図(a)及び(b)は本発明の固体撮像装置の他の
実施例を示す断面図で、同一基板上に薄膜トランジスタ
による走査回路を集積したものである。 第2図(b)
は更に薄膜トランジスタとの眉間絶縁膜として染色ポリ
イミド層を用いた例である。 101 ・・・・・・・・・ 光電変換素子111.2
11 ・・・・・・・・・ 絶縁性透明基板113.2
13 ・・・・・・・・・ バッファー層114.21
4 ・・・・・・・・・ 透明導電層(下電極) 115.215 ・・・・・・・・・ 光導電層116
     ・・・・・・・・・ 導電層(上電極) 117.217 ・・・・・・・・・ パッシベーション層第1層118
.218 ・・・・・・・・・ パッシベーション層第2層119
.219 ・・・・・・・・・ パッジベージ・ヨン層第3層12
1.122.123.221 ・・・・・・・・・ 染色ポリイミド層202    
 ・・・・・・・・・ 薄膜トランジスタ212   
  ・・・・・・・・・ 層間絶縁膜216     
・・・・・・・・・ 導電層(上電極兼素子間配線ン 222     ・・・・・・・・・ 染色ポリイミド
層(フィルター兼層間絶縁膜) 以  上 出願人 セイコーエプソン株式会社 代理人弁理士 上柳雅誉(他1名) (a) (b) 第1図 (d) 第1図
FIGS. 1(a) to 1(e) are cross-sectional views showing a method for forming a solid-state imaging device according to an embodiment of the present invention in the order of steps. FIGS. 2(a) and 2(b) are cross-sectional views showing another embodiment of the solid-state imaging device of the present invention, in which a scanning circuit using thin film transistors is integrated on the same substrate. Figure 2(b)
This is an example in which a dyed polyimide layer is further used as an insulating film between the eyebrows of a thin film transistor. 101 ...... Photoelectric conversion element 111.2
11 ...... Insulating transparent substrate 113.2
13...Buffer layer 114.21
4 ...... Transparent conductive layer (lower electrode) 115.215 ...... Photoconductive layer 116
...... Conductive layer (upper electrode) 117.217 ...... Passivation layer first layer 118
.. 218 ...... Passivation layer second layer 119
.. 219 ・・・・・・Pudgebage Yon layer 3rd layer 12
1.122.123.221 ...... Dyed polyimide layer 202
...... Thin film transistor 212
...... Interlayer insulating film 216
...... Conductive layer (upper electrode and inter-element wiring 222) Dyed polyimide layer (filter and interlayer insulating film) Applicant: Seiko Epson Co., Ltd. Attorney Masayoshi Kamiyanagi (and 1 other person) (a) (b) Figure 1 (d) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性透明基板上に複数の基板側から光が入射す
る形式の光電変換素子を形成してなる固体撮像装置に於
て上記絶縁性透明基板と光電変換素子との間にポリイミ
ドを基材とする色分解フィルターを設けたことを特徴と
する固体撮像装置。
(1) In a solid-state imaging device in which photoelectric conversion elements are formed on an insulating transparent substrate in a format in which light enters from a plurality of substrate sides, a polyimide-based material is used between the insulating transparent substrate and the photoelectric conversion elements. A solid-state imaging device characterized by being provided with a color separation filter as a material.
(2)上記ポリイミドを基材とするフィルター層を層間
絶縁膜として用いたことを特徴とする第1項記載の固体
撮像装置。
(2) The solid-state imaging device according to item 1, wherein the filter layer made of polyimide as a base material is used as an interlayer insulating film.
JP63104814A 1988-04-27 1988-04-27 Solid state image pickup device Pending JPH01276666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104814A JPH01276666A (en) 1988-04-27 1988-04-27 Solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104814A JPH01276666A (en) 1988-04-27 1988-04-27 Solid state image pickup device

Publications (1)

Publication Number Publication Date
JPH01276666A true JPH01276666A (en) 1989-11-07

Family

ID=14390880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104814A Pending JPH01276666A (en) 1988-04-27 1988-04-27 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPH01276666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221134A (en) * 2006-02-17 2007-08-30 Internatl Business Mach Corp <Ibm> Photo-sensor and pixel array using backside illumination and method of forming photo-sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221134A (en) * 2006-02-17 2007-08-30 Internatl Business Mach Corp <Ibm> Photo-sensor and pixel array using backside illumination and method of forming photo-sensor

Similar Documents

Publication Publication Date Title
JPH05134109A (en) Manufacture of color filter
JP3711211B2 (en) Solid-state imaging device
US5053298A (en) Method of manufacturing color filter including exposing planarizing layer through openings in a medium layer
JPH01276666A (en) Solid state image pickup device
EP0298116B1 (en) Light filters for microelectronics
JPH0343701A (en) Method for peeling color filter
JPH01287970A (en) Solid-state image sensor
JPS60103342A (en) Resist composition for color filter
JP2951942B1 (en) Method for manufacturing solid-state imaging device
JPS62106404A (en) Color separating filter and its production
JPH03190168A (en) Manufacture of solid-state image sensing device
JPH0513736A (en) Color solid-state image pickup device
JPH01158770A (en) Manufacture of color image sensor
JPH023968A (en) Manufacture of solid-state colored image sensing element
JPS62147402A (en) Production of color filter
JPH11160515A (en) Production of on-chip color filters
JPH03211528A (en) Production of active matrix substrate
KR100817711B1 (en) Image sensor and method for manufacturing the same
JPS59167053A (en) Manufacture of color solid-state image pickup element
JPH0338063A (en) Color solid image pick-up element and manufacture thereof
JPS623203A (en) Solid-state color image pickup device and its production
JPS63143504A (en) Production of solid state color image pickup device
JPS6382325A (en) Light receiving element
JPS62196603A (en) Production of color filter
JPS6041256A (en) Color solid-state image sensor and manufacture thereof