JPH01275896A - Attenuating method for air pressure noise at tunnel exit - Google Patents

Attenuating method for air pressure noise at tunnel exit

Info

Publication number
JPH01275896A
JPH01275896A JP63101936A JP10193688A JPH01275896A JP H01275896 A JPH01275896 A JP H01275896A JP 63101936 A JP63101936 A JP 63101936A JP 10193688 A JP10193688 A JP 10193688A JP H01275896 A JPH01275896 A JP H01275896A
Authority
JP
Japan
Prior art keywords
tunnel
train
compression
air pressure
compression wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101936A
Other languages
Japanese (ja)
Inventor
Yoshiki Jinno
神野 嘉希
Yoshito Harita
播田 淑人
Yoshio Tokunaga
徳永 芳夫
Akio Kawahara
川原 明生
Kazuo Uchida
内田 一男
Kazuyuki Gomi
五味 一幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHI NIPPON RIYOKAKU TETSUDO KK
West Japan Railway Co
Original Assignee
NISHI NIPPON RIYOKAKU TETSUDO KK
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHI NIPPON RIYOKAKU TETSUDO KK, West Japan Railway Co filed Critical NISHI NIPPON RIYOKAKU TETSUDO KK
Priority to JP63101936A priority Critical patent/JPH01275896A/en
Publication of JPH01275896A publication Critical patent/JPH01275896A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

PURPOSE:To attenuate the scale of a compressed wave generated when a train is rushed into a tunnel, by a simple and economical method, by arranging reflecting plates projected in the radial direction, on the internal wall surface of the tunnel, at proper intervals. CONSTITUTION:On the internal wall surface of a tunnel 11, radially projected reflecting plates 12 are arranged at proper intervals. A pressure wave generated when a train 14 or the like is rushed into the tunnel 11 is struck against the reflecting plates 12 in order, while the pressure wave is propagated in the tunnel 11 at a sound speed, and the wave is gradually attenuated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、列車等が高速でトンネルへ突入した時に発生
する圧縮波を減衰させ、圧縮波によるトンネル出口側で
の空気圧音を低減させる方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for attenuating compression waves generated when a train or the like enters a tunnel at high speed, and reducing air pressure noise at the exit side of the tunnel due to the compression waves. It is related to.

〔従来の技術〕[Conventional technology]

通常、列車が高速でトンネルへ突入すると、トンネル入
口側で圧縮波が発生し、トンネル内を音速で伝播してト
ンネル出口側より外部へ放射される。この圧縮波がトン
ネル出口側から放射される時に、「トーン」という破裂
音(空気圧音)を発生し、また近辺の建物の窓や戸を振
動させて振動騒音を発生させる等の問題があった。前記
空気圧音は、トンネル出口側に到達する圧縮波の波面前
面の圧力勾配(圧縮波の大きさ)が大きい程、音も大き
くなるという性質がある。しかも圧縮波の波面前面の圧
力勾配は、列車がトンネル内へ突入する速度Vの3乗に
比例するという性質がある。
Normally, when a train enters a tunnel at high speed, compression waves are generated at the tunnel entrance, propagate inside the tunnel at the speed of sound, and are radiated outside from the tunnel exit. When this compression wave is radiated from the tunnel exit side, it generates a plosive sound called a "tone" (pneumatic sound), and it also vibrates the windows and doors of nearby buildings, causing vibration noise. . The air pressure sound has a property that the larger the pressure gradient (size of the compression wave) in front of the wave front of the compression wave that reaches the tunnel exit side, the louder the sound becomes. Moreover, the pressure gradient in front of the wave front of the compression wave has a property that it is proportional to the cube of the speed V at which the train rushes into the tunnel.

そのため、従来にあっては、第5FyJ及び第6図に示
す特公昭55−31274号公報に記載された技術等に
より、トンネル出口側で発生する空気圧音を低減させる
ようにしている。すなわち、この第5図及び第6図に示
す技術は、トンネルlの入口側に、開口断面の大きさが
トンネル1よりも大きく、長さがトンネルlの直径の1
〜3倍程度の覆体2を設置し、該覆体2の側面中央部に
、覆体2の開口の断面積と長さとから決められた最適面
積を有する窓部3を形成している。これにより、列車4
がトンネル1内へ突入した時に発生する圧縮波の−部を
前記窓部3から逃がし、圧縮波前面の圧力勾配を緩やか
なものにすることにより、該圧縮波がトンネル1内を音
速で伝播してトンネル出口側で放射される際に生じる空
気圧音を低減させるものである。
Therefore, in the past, the air pressure noise generated at the tunnel exit side has been reduced by techniques such as those described in Japanese Patent Publication No. 55-31274 shown in No. 5FyJ and FIG. In other words, the technology shown in FIGS. 5 and 6 has an opening on the entrance side of the tunnel l, the size of the opening cross section is larger than that of the tunnel 1, and the length is 1 of the diameter of the tunnel l.
A cover 2 about 3 times larger is installed, and a window 3 having an optimum area determined from the cross-sectional area and length of the opening of the cover 2 is formed in the center of the side surface of the cover 2. As a result, train 4
By letting the negative part of the compression wave that is generated when it enters the tunnel 1 escape through the window 3 and making the pressure gradient in front of the compression wave gentle, the compression wave propagates inside the tunnel 1 at the speed of sound. This is to reduce the air pressure sound that occurs when it is radiated at the tunnel exit side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記従来の方法にあっては、既に述べたよう
に、圧縮波の大きさが列車4のトンネル1内への突入速
度の3乗に比例しているため、列車4の高速化を実施し
、且つ空気圧音の大きさをも低減させるためには、列車
4の突入速度の上昇分に対応して、覆体2の長さ及び窓
部3の大きさを増大変更し、覆体2による圧縮波の低減
効果の程度を増強する必要がある。ところが、周囲の地
形等の立地条件や線路付帯設備等によっては、覆体2を
長くできない個所があり、このような個所では列車4の
トンネル1内への突入速度Vを低減させなければならず
、列車速度の高速化を断念せざるを得なかった。また列
車4のトンネル1内への突入速度Vを、例えば時速22
0Km/ h以上等に確保した上で、圧縮波の大きさを
低減させるためには、新幹線のトンネルの場合で覆体2
の長さは16m前後必要である。ところが、このような
長さの覆体2を新たに新設又は増設する場合は、それに
伴って土木工事や電車線、電力線2通信線及びこれらの
架線を支持する鉄柱その他の線路付帯設備を移動又は新
設しなければならず、そのための建設費用の方が覆体2
の建設費用よりも高くつく欠点があった。更に、この覆
体2はトンネル1の両方の坑口に設置しなければ、双方
向からの列車4に対して圧縮波を減衰させる効果がなく
、建設費用の高騰は膨大なものであった。
By the way, in the conventional method, as mentioned above, the magnitude of the compression wave is proportional to the cube of the speed at which the train 4 enters the tunnel 1, so the speed of the train 4 is increased. However, in order to also reduce the loudness of the air pressure noise, the length of the cover 2 and the size of the window portion 3 are increased and changed in response to the increase in the rush speed of the train 4, and the cover 2 is increased. It is necessary to enhance the degree of compression wave reduction effect. However, depending on the location conditions such as the surrounding topography and track equipment, there are places where the cover 2 cannot be made longer, and in such places, the speed V of the train 4 entering the tunnel 1 must be reduced. , we had no choice but to give up on increasing train speed. Also, the speed V of the train 4 entering the tunnel 1 is set to, for example, 22 per hour.
In order to reduce the size of compression waves while ensuring a speed of 0 km/h or more, in the case of Shinkansen tunnels, coverings 2
The length is required to be around 16m. However, when constructing or expanding a new covering structure 2 of such length, civil engineering work, overhead contact lines, power line 2 communication lines, steel poles supporting these overhead lines, and other track incidental equipment must be moved or It is necessary to construct a new building, and the construction cost for that is more than worth it.2
The drawback was that it cost more than the construction cost of the Furthermore, unless the cover 2 is installed at both entrances of the tunnel 1, it will not have the effect of attenuating compression waves against the trains 4 coming from both directions, resulting in an enormous increase in construction costs.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、従来の前記欠点に鑑みてこれを改良除去した
ものであって、簡単且つ低廉な方法で列車がトンネルへ
突入した時に発生する圧縮波の大きさを低減させること
のできる方法を提供せんとするものである。
The present invention improves and eliminates the above drawbacks of the conventional technology, and provides a simple and inexpensive method for reducing the magnitude of compression waves generated when a train enters a tunnel. This is what I am trying to do.

而して、前記課題を解決するために本発明が採用した手
段は、トンネルの内壁面に半径方向へ突出する反射板を
適宜間隔で配設し、列車等がトンネルへ突入した時に発
生する圧縮波の一部を前記反射板に衝突させて反射、攪
乱させ、圧縮波を減衰させるようにしている。
Therefore, the means adopted by the present invention to solve the above problem is to arrange reflector plates projecting in the radial direction on the inner wall surface of the tunnel at appropriate intervals, so as to reduce the compression that occurs when a train or the like rushes into the tunnel. A portion of the wave collides with the reflecting plate to be reflected and disturbed, thereby attenuating the compression wave.

〔作 用〕[For production]

トンネル内へ列車が高速で突入すると圧縮波が発生する
。ところが、この圧縮波はトンネル内壁面に適宜間隔で
配設された反射板にその一部が衝突し、反射、攪乱され
、減衰する0反射板は、トンネル内壁面に適宜間隔で配
設されているため、前記圧縮波はトンネル内を音速で伝
播する間にこれらの反射板と順次衝突し、次第に減衰す
る。従って、トンネル出口側から放射される圧縮波によ
り発生する空気圧音を低減させることが可能である。
When a train enters a tunnel at high speed, compression waves are generated. However, a portion of this compression wave collides with the reflection plates arranged at appropriate intervals on the tunnel inner wall surface, and is reflected, disturbed, and attenuated.The reflection plates are arranged at appropriate intervals on the tunnel inner wall surface. Therefore, while propagating at the speed of sound in the tunnel, the compression wave collides with these reflecting plates one after another and is gradually attenuated. Therefore, it is possible to reduce air pressure noise generated by compression waves radiated from the tunnel exit side.

〔実施例〕〔Example〕

以下に、本発明の方法を図面に示す実施例に基づいて説
明すると次の通りである。
The method of the present invention will be explained below based on the embodiments shown in the drawings.

第1図は本発明の一実施例に係るトンネル11の縦断面
正面図、第2図は反射板12を示す横断面図である。同
図に示す如く、この反射板12は断面形状がL字状であ
り、厚みは9m、垂直方向に交差する二面12a、 1
2bの幅は共に200m、長さは2500鶴の大きさを
呈している。そして、この反射板12はトンネル11の
内壁面のうち、左右の側壁部位に、L字状の一片12a
がトンネル11の半径方向へ突出すべく (図示の実施
例では線路に対して直交する方向へ)配設され、アンカ
ーボルト13等で固定されている。なお、反射板12は
トンネル11の全長に亘って所定ピッチで配設してもよ
く、またトンネル11の入口側又は出口側のみに所定数
ずつを配設してもよく、更にはトンネル11の中央部の
みに配設してもよい、また価々の反射板12どうしのピ
ッチも適宜に選択することが可能である。
FIG. 1 is a vertical cross-sectional front view of a tunnel 11 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a reflecting plate 12. As shown in the figure, this reflecting plate 12 has an L-shaped cross section, a thickness of 9 m, and two vertically intersecting surfaces 12a, 1.
The width of both 2b is 200m, and the length is 2500 cranes. This reflecting plate 12 is provided with an L-shaped piece 12a on the left and right side walls of the inner wall surface of the tunnel 11.
are arranged to protrude in the radial direction of the tunnel 11 (in the illustrated embodiment, in a direction perpendicular to the railroad tracks), and are fixed with anchor bolts 13 or the like. Note that the reflectors 12 may be arranged at a predetermined pitch over the entire length of the tunnel 11, or may be arranged in a predetermined number only on the entrance or exit side of the tunnel 11. The reflective plates 12 may be disposed only in the center, and the pitch between the reflective plates 12 may be appropriately selected.

このような反射板12を設けたトンネル11へ高速で列
車14が突入、すると、トンネル11の入口側で圧縮波
が発生する。この圧縮波は、前述した如く、列車14が
突入する速度の3乗に比例した大きさを有している。然
しなから、発生した圧縮波はその一部がトンネル11の
内壁面に所定間隔で配設された反射板12に衝突し、反
射、攪乱され、減衰する。
When a train 14 rushes at high speed into a tunnel 11 provided with such a reflecting plate 12, a compression wave is generated at the entrance side of the tunnel 11. As described above, this compression wave has a magnitude proportional to the cube of the speed at which the train 14 enters. However, a portion of the generated compression waves collides with the reflection plates 12 arranged at predetermined intervals on the inner wall surface of the tunnel 11, is reflected, disturbed, and attenuated.

しかも、前記反射板12は所定間隔で多数個のものが配
設されているので、圧縮波は順次その大きさが減衰する
。そのため、トンネルll内を音速で伝播する圧縮波は
、トンネル11の出口側に至る間にその大きさ(圧縮波
前面の圧力勾配)が極めて小さくなる。従ってトンネル
11の出口から前記圧縮波が放射されるときに発生する
空気圧音も小さくなる。
Furthermore, since a large number of reflecting plates 12 are arranged at predetermined intervals, the magnitude of the compression waves is attenuated sequentially. Therefore, the compression wave propagating at the speed of sound in the tunnel 11 becomes extremely small in size (pressure gradient in front of the compression wave) while reaching the exit side of the tunnel 11. Therefore, the air pressure sound generated when the compression wave is radiated from the exit of the tunnel 11 is also reduced.

第3図及び第4図は、全長5132mの新幹線岩国トン
ネルの東口に、坑口から長さ1500mに亘って前述し
た大きさ並びに形状の反射板12を6mピッチで設置し
、東口と西口とでそれぞれ列車14の突入速度と、圧縮
波の最大値(圧縮波前面の圧力勾配)との関係を実測し
て平均化した特性図面である。第3図の特性図面は、列
車14が西口からトンネル内へ入坑したときの東口側で
の圧縮波の最大値を測定したものであり、第4図の特性
図面は、列車14が東口からトンネル内へ入坑したとき
の西口側での圧縮波の最大値を測定したものである。
Figures 3 and 4 show that at the east exit of the Shinkansen Iwakuni Tunnel, which has a total length of 5132 m, reflectors 12 of the above-mentioned size and shape are installed at a pitch of 6 m over a length of 1500 m from the tunnel entrance. This is a characteristic diagram obtained by actually measuring and averaging the relationship between the inrush speed of the train 14 and the maximum value of the compression wave (pressure gradient in front of the compression wave). The characteristic drawing in Figure 3 is a result of measuring the maximum value of the compression wave on the east exit side when the train 14 enters the tunnel from the west exit, and the characteristic drawing in Figure 4 is the result of measuring the maximum value of the compression wave on the east exit side when the train 14 enters the tunnel from the east exit. The maximum value of the compression wave was measured at the west entrance when entering the tunnel.

第3図に示す特性図面によれば、列車14が220Km
/hの突入速度で西口へ入坑したときに、反射板12を
設置しない従来の場合の東口での圧縮波の最大値は13
Kg/rrfであり、反射板12を設置した場合の東口
での圧縮波の最大値は10にglrdであった。
According to the characteristic drawing shown in Fig. 3, train 14 is 220 km long.
When entering the west exit at an entry speed of /h, the maximum value of the compression wave at the east exit in the conventional case where the reflector 12 is not installed is 13
Kg/rrf, and the maximum value of the compression wave at the east exit when the reflector 12 was installed was 10 glrd.

従って、反射板12の設置後は、3Kg1rdの圧縮波
の減衰効果が得られた。また第4図に示す特性図面によ
れば、列車14が220に+m/ hの突入速度で東口
へ入坑したときに、反射板12を設置しない従来の場合
の西口での圧縮波の最大値は12Kg/n4であり、反
射板12を設置した後の西口での圧縮波の最大値は9 
Kg/ rdであった。このことから、反射板12を設
置した後は、西口側でもやはり3 Kg/ rdの圧縮
波の減衰効果が得られた。
Therefore, after installing the reflection plate 12, a compression wave attenuation effect of 3 kg1rd was obtained. Furthermore, according to the characteristic diagram shown in Fig. 4, when the train 14 enters the east exit at an entry speed of 220 m/h, the maximum value of the compression wave at the west exit in the conventional case where the reflector 12 is not installed. is 12Kg/n4, and the maximum value of the compression wave at the west exit after installing the reflector 12 is 9
Kg/rd. From this, after installing the reflector 12, a compression wave attenuation effect of 3 Kg/rd was also obtained on the west exit side.

以上の実測結果から明らかなことは、圧縮波の減衰効果
を得るための反射板12の設置位置と、列車14の入坑
方向とは無関係であって、トンネル11内の任意の部分
(東口寄り、西口寄り、中央部等の少な(ともどちらか
一方側)に反射板12が設置されていれば、充分に圧縮
波を減衰させる効果があるということである。
What is clear from the above measurement results is that the installation position of the reflector 12 to obtain the effect of attenuating compression waves has nothing to do with the direction in which the train 14 enters the tunnel. If the reflector plate 12 is installed in a small area (on either side), such as near the west exit or in the center, it will be effective to sufficiently attenuate compression waves.

本発明は上述した実施例に限定されるものではなく、適
宜の変更が可能である0例えば、反射板12(複数)は
これらを単独で用いてもよく、また既に覆体2(第5図
及び第6図参照)が設置されたトンネル1にあっては、
この覆体2と併用するようにしてもよい。反射板12と
覆体2とを併用した場合には、圧縮波の減衰効果に相乗
的効果を得ることが可能である。また反射板12の大き
さ、形状、配設位置、配設ピッチ、配設長さ等はトンネ
ル11の大きさや列車14のトンネル11内への突入速
度並びに施工作業性等を考慮して決定するようにすれば
よい。更にまた、本発明は鉄道以外の七ノ  ル−ルや
その他の輸送機関のトンネルへ適用することも可能であ
る。
The present invention is not limited to the embodiments described above, and can be modified as appropriate. For example, the reflecting plates 12 (plurality) may be used alone, or the covering 2 (see FIG. 5) may be used alone. and Figure 6) is installed in tunnel 1,
It may also be used together with this cover 2. When the reflection plate 12 and the cover 2 are used together, it is possible to obtain a synergistic effect on the attenuation effect of compression waves. In addition, the size, shape, arrangement position, arrangement pitch, arrangement length, etc. of the reflector 12 are determined in consideration of the size of the tunnel 11, the speed at which the train 14 enters the tunnel 11, construction workability, etc. Just do it like this. Furthermore, the present invention can also be applied to tunnels of railways and other transportation means other than railways.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明にあっては、トンネル内壁面
へ反射板を設置することにより、列車が高速でトンネル
内へ突入した時に発生する圧縮波の一部を前記反射板に
衝突させて反射、攪乱させ、これにより圧縮波の大きさ
を減衰させて、トンネル出口から放射される圧縮波によ
る空気圧音を低減させることが可能である。しかも、ト
ンネル内壁面へ簡単な構造の反射板を設置するだけでト
ンネル出口側での空気圧音を低減させることができるの
で、線路の付帯設備等を移動させる必要はなく、その施
工作業並びに費用等の負担を著しく低減することが可能
である。更には、トンネル出入口の立地条件等に制約を
受けることがなく、しかもトンネル内の任意の位置に設
置することが可能である。それ故、従来のようにトンネ
ル坑口の双方向に設置する必要もなく、極めて便利であ
る。
As explained above, in the present invention, by installing a reflecting plate on the inner wall surface of the tunnel, a part of the compression waves generated when a train rushes into the tunnel at high speed collides with the reflecting plate and is reflected. , it is possible to attenuate the magnitude of the compression wave and thereby reduce the pneumatic noise caused by the compression wave radiated from the tunnel exit. In addition, air pressure noise at the tunnel exit can be reduced by simply installing a reflector with a simple structure on the inner wall of the tunnel, so there is no need to move the track equipment, etc., and the construction work and costs are reduced. It is possible to significantly reduce the burden on Furthermore, there are no restrictions on the location conditions of tunnel entrances and exits, and moreover, it is possible to install it at any position within the tunnel. Therefore, there is no need to install it on both sides of the tunnel entrance, which is extremely convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明に係るものであり、第1図は
トンネルの縦断面正面図、第2図は反射板の取付状態を
示すトンネルの一部横断面図、第3図及び第4図はトン
ネル内での列車の突入速度と圧縮波の最大値との関係を
示す図面、第5図及び第6図は従来技術に係るものであ
り、第5図はトンネル入口に覆体を設置した場合の側面
図で、第6図は同一部縦断面正面図である。 11・・・トンネル    12・・・反射板14・・
・列車 特許出願人  西日本旅客鉄道株式会社代 理 人  
弁理士 内田敏彦 第1図 第2図
1 to 4 are related to the present invention, in which FIG. 1 is a vertical cross-sectional front view of the tunnel, FIG. 2 is a partial cross-sectional view of the tunnel showing how the reflector is attached, and FIG. Figure 4 is a drawing showing the relationship between the speed of a train entering a tunnel and the maximum value of compression waves, Figures 5 and 6 are related to the prior art, and Figure 5 is a diagram showing the relationship between the speed of a train entering a tunnel and the maximum value of compression waves. FIG. 6 is a side view of the installed case, and FIG. 6 is a longitudinal cross-sectional front view of the same part. 11...Tunnel 12...Reflector 14...
・Train patent applicant West Japan Railway Company Agent
Patent Attorney Toshihiko Uchida Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、トンネルの内壁面に半径方向へ突出する反射板を適
宜間隔で配設し、列車等がトンネルへ突入した時に発生
する圧縮波の一部を前記反射板に衝突させて反射、撹乱
させ、圧縮波を減衰させることを特徴とするトンネル出
口における空気圧音の低減方法。
1. Reflection plates protruding in the radial direction are arranged on the inner wall surface of the tunnel at appropriate intervals, and a part of the compression waves generated when a train or the like enters the tunnel collides with the reflection plates to be reflected and disturbed. A method for reducing air pressure noise at a tunnel exit, characterized by attenuating compression waves.
JP63101936A 1988-04-25 1988-04-25 Attenuating method for air pressure noise at tunnel exit Pending JPH01275896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101936A JPH01275896A (en) 1988-04-25 1988-04-25 Attenuating method for air pressure noise at tunnel exit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101936A JPH01275896A (en) 1988-04-25 1988-04-25 Attenuating method for air pressure noise at tunnel exit

Publications (1)

Publication Number Publication Date
JPH01275896A true JPH01275896A (en) 1989-11-06

Family

ID=14313799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101936A Pending JPH01275896A (en) 1988-04-25 1988-04-25 Attenuating method for air pressure noise at tunnel exit

Country Status (1)

Country Link
JP (1) JPH01275896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446644B1 (en) * 2000-10-31 2004-09-04 한국철도기술연구원 Slit cover shelter by train tunnel
CN111425252A (en) * 2020-03-31 2020-07-17 中铁二院工程集团有限责任公司 Tunnel construction soft rock large deformation grading method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446644B1 (en) * 2000-10-31 2004-09-04 한국철도기술연구원 Slit cover shelter by train tunnel
CN111425252A (en) * 2020-03-31 2020-07-17 中铁二院工程集团有限责任公司 Tunnel construction soft rock large deformation grading method
CN111425252B (en) * 2020-03-31 2021-07-20 中铁二院工程集团有限责任公司 Tunnel construction soft rock large deformation grading method

Similar Documents

Publication Publication Date Title
JPS5842324B2 (en) noise control device
US5739482A (en) Soundproof wall
JPH01275896A (en) Attenuating method for air pressure noise at tunnel exit
KR20010047231A (en) Hood by train tunnel
WO2003080997A1 (en) Buffer plate
JP2556439B2 (en) Method of reducing air pressure noise at tunnel exit
JP2018204380A (en) Soundproof door
JP3898110B2 (en) Soundproof structure and soundproof wall
JPH0476000B2 (en)
KR200323068Y1 (en) Noise-Proof Tunnel with Double Deflection Type Cable Tension Unit
JP4198632B2 (en) Soundproof unit
JP3914395B2 (en) Noise reduction device, sound insulation wall with the noise reduction device, and method of mounting the same
WO2012147908A1 (en) Sound attenuation system
JPH09115747A (en) Noise eliminating device for stationary induction apparatus
JP3802438B2 (en) Active silencer
JP7441986B2 (en) Explosion sound reduction method and Explosion noise reduction device
JPH1025712A (en) Acoustic absorption panel
Pancholy et al. Design and construction of an anechoic chamber at the National Physical Laboratory of India
JP2016132929A (en) Buffer construction and cover member
KR100422202B1 (en) Hood by train tunnel
JP2004257230A (en) Passing wave damping structure for fixed construction
KR100365955B1 (en) Hood by train tunnel
KR100446644B1 (en) Slit cover shelter by train tunnel
JPH041311A (en) Interference type sound proof device
JPH10278892A (en) Sound absorption construction and aircraft engine test facility using it