JPH01274505A - Patch antenna - Google Patents
Patch antennaInfo
- Publication number
- JPH01274505A JPH01274505A JP10477188A JP10477188A JPH01274505A JP H01274505 A JPH01274505 A JP H01274505A JP 10477188 A JP10477188 A JP 10477188A JP 10477188 A JP10477188 A JP 10477188A JP H01274505 A JPH01274505 A JP H01274505A
- Authority
- JP
- Japan
- Prior art keywords
- patch
- feeding points
- radiation patch
- polarized wave
- changeover switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 4
- 239000013598 vector Substances 0.000 abstract description 12
- 230000010287 polarization Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 235000011511 Diospyros Nutrition 0.000 description 1
- 244000236655 Diospyros kaki Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はレーダや通信用に用いるt4フチアンテナに
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a T4 edge antenna used for radar and communications.
第7図は電子通信学会編“アンテナ工学ノ1ンドブ、り
”第110頁に示された従来のノf・ツチアンテナの構
成図であり2図において(+)は誘電体基板(3)は上
記誘電体基板(1)の表面に形成され直径りの円形の放
射パッチ、(4)はこの放射パッチ(3)へ?tt波を
給電する給電点、(5)は上記誘電体基板(1)の裏側
から誘電体基板(1)を通して上記給電点(4)で上記
放射パッチ(3)に接続された給電線、(6)はこの給
電線(5)に接続された送信源、(7)は上記放射パッ
チ(3)より空間に放射する電波の偏波方向を示す偏波
ベクトルである。Figure 7 is a configuration diagram of the conventional NoF-Tsuchi antenna shown in page 110 of "Antenna Engineering No.1 Book" edited by the Institute of Electronics and Communication Engineers. In Figure 2, (+) indicates the dielectric substrate (3). The circular radiation patch (4) formed on the surface of the dielectric substrate (1) is directed to this radiation patch (3)? The feed point (5) for feeding the tt wave is a feed line connected from the back side of the dielectric substrate (1) to the radiation patch (3) at the feed point (4) through the dielectric substrate (1), ( 6) is a transmission source connected to this feeder line (5), and (7) is a polarization vector indicating the polarization direction of radio waves radiated into space from the radiation patch (3).
次に動作について説明する。送信源(6)から送信され
た電波は給電線(5)を伝搬し、給電点(4)より放射
パッチ(3)に給電される。モして」−記放射パッチ(
3)に給電された電波は偏波ベクトル(7)の方向の直
線偏波となり、−h記放射パッチ(3)から空間に放射
される。なお上記は送信の場合であるが、受信において
は上記手順と逆の手順で動作する。Next, the operation will be explained. Radio waves transmitted from the transmission source (6) propagate through the feed line (5) and are fed to the radiation patch (3) from the feed point (4). "More" - Recorded radiant patch (
The radio wave fed to 3) becomes a linearly polarized wave in the direction of the polarization vector (7), and is radiated into space from the -h radiation patch (3). Note that the above is for transmission, but for reception, the operation is performed in the reverse order to the above procedure.
従来のアンテナ装置は以上のように構成されているので
、放射パッチ(3)から空間に放射された電波の偏波は
偏波ベクトル(7)の方向に固定され。Since the conventional antenna device is configured as described above, the polarization of the radio waves radiated into space from the radiation patch (3) is fixed in the direction of the polarization vector (7).
この偏波ベクトル(7)の方向と異なる方向の直線偏波
の電波を送信あるいは受信できないという課題があった
。There is a problem in that it is not possible to transmit or receive linearly polarized radio waves in a direction different from the direction of the polarization vector (7).
この発明は上記のような課題を解消するためになされた
もので、任意方向の直線偏波の電波を送受信するパッチ
アンテナを得ることを目的とする。This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a patch antenna that transmits and receives linearly polarized radio waves in any direction.
この発明に係るパッチアンテナは1円形の放射パッチ上
で放射パッチと同心の円周上に複数個の給電点を設け、
各給電点に接続された給電線を切替スイッチによりひと
つずつ切り替えるようにしたものである。The patch antenna according to the present invention provides a plurality of feeding points on a circumference concentric with the radiation patch on one circular radiation patch,
The power supply lines connected to each power supply point are switched one by one using a changeover switch.
この発明におけるパッチアンテナは、切替スイッチを用
いて給電線をひとつずつ切り替え、これにより放射パッ
チの給電点を切り替えることにより放射バッチより空間
に放射される電波の直線偏波の方向を可変にでき、任意
方向の直線偏波の電波を送受信することができる。The patch antenna according to the present invention uses a changeover switch to switch the feed lines one by one, thereby changing the feeding point of the radiation patch, thereby making it possible to vary the direction of linearly polarized radio waves radiated into space from the radiation patch. It can transmit and receive linearly polarized radio waves in any direction.
以下この発明の一実施例を図について説明する第1図は
実施例におけるパッチアンテナの構成図第2図は実施例
における切替スイッチ接続図、第3図は偏波ベクトルの
方向を示す図であり、各図おいて、(1)は誘電体基板
、(2)はこの誘電体基板(1)の裏面に形成された金
属地板、(3)は上記誘電体基板(1)の表面に形成さ
れた直径りの円形の放射バッチ、 (4a)〜(4h)
は、この放射バッチ(3) −11の、放射パッチ(3
)と同心な直径d (d≦D)の円周−1−に角度0
= 22.5°間隔で配置され、−上記放射バッチ(3
)へ電波を給電する給電点(5a)〜(5h)は」−記
誘71体基板(1)の裏側から誘電体基板(1)を通し
て上記給電点(4a)〜(4h)で各々上記放射パッチ
(3)に接続された長さeの給電線(6)は送信源(7
a)〜(7h)は」−記放射バッチ(3)より空間に放
射する電波の偏波方向を示す偏波ベクトル、(8)は上
記給電線(5a)(5h)に接続され給電線(5a)〜
(5h)をひとつずつ切り替える切替スイッチ、(9)
はこの切替スイッチ(8)と上記送信源(6)を接続す
る接続線(10)は上記切替スイッチ(8)の制御信号
を通す制御線、 (11)は上記切替スイッチ(8)の
制御回路である。An embodiment of the present invention will be explained below with reference to figures. Fig. 1 is a configuration diagram of a patch antenna in the embodiment, Fig. 2 is a connection diagram of a changeover switch in the embodiment, and Fig. 3 is a diagram showing the direction of a polarization vector. In each figure, (1) is a dielectric substrate, (2) is a metal base plate formed on the back surface of this dielectric substrate (1), and (3) is a metal base plate formed on the surface of the dielectric substrate (1). Circular radiation badges with diameter (4a) to (4h)
is the radiation patch (3) of this radiation batch (3)-11.
) and the angle 0 to the circumference -1- of the diameter d (d≦D)
= 22.5° apart, - the above radiation batches (3
) The feeding points (5a) to (5h) that feed radio waves to the 71-recording board (1) pass through the dielectric substrate (1) from the back side of the dielectric substrate (1) to the feeding points (4a) to (4h), respectively. A feeder line (6) of length e connected to the patch (3) is connected to the transmission source (7
a) to (7h) are polarization vectors indicating the polarization direction of radio waves radiated into space from radiation batch (3), and (8) are power supply lines ( 5a)~
(9) Switch to switch (5h) one by one
The connection line (10) connecting this changeover switch (8) and the transmission source (6) is a control line through which the control signal of the changeover switch (8) passes, and (11) is the control circuit of the changeover switch (8). It is.
次に動作について説明する。送信源(6)から送信され
た電波は接続線(9)を伝搬し切替スイッチ(8)に入
力する。切替スイッチ(8)は制御回路(11)から制
御線(lO)を通って人力した制御信号により−1−記
接続線(9)を給電線(5a)〜(5h)のうちの1本
と接続する。ここではまず上記制御信号により切替スイ
ッチ(8)で接続線(9)と給電線(5a)が接続され
た場合を考える。上記切替スイッチ(8)に入力した」
二記?1i彼は給電線(5a)を伝搬し、給電点(4a
)より放射バッチ(3)に給電される。上記切替スイッ
チ(8)により上記接続線(9)と接続されていない給
電線(5b)〜(5h)の上記切替スイッチ(8)側の
端部が開放状態であるならば、」二記給電線(5a)〜
(5h)の長さ!を。Next, the operation will be explained. Radio waves transmitted from the transmission source (6) propagate through the connection line (9) and are input to the changeover switch (8). The changeover switch (8) connects the connection line (9) in -1- to one of the power supply lines (5a) to (5h) by a control signal manually input from the control circuit (11) through the control line (lO). Connecting. First, consider a case where the connection line (9) and the power supply line (5a) are connected by the changeover switch (8) in response to the control signal. input to the above selector switch (8).
Second record? 1i He propagates through the feed line (5a) and reaches the feed point (4a
) supplies power to the radiation batch (3). If the ends of the feeder lines (5b) to (5h) that are not connected to the connection line (9) by the changeover switch (8) on the changeover switch (8) side are open, Electric wire (5a) ~
(5h) length! of.
l−λ/2・n (n=o、1.2.−)
(+)端部が短絡状態であるならば。l-λ/2・n (n=o, 1.2.-)
If the (+) end is shorted.
g=λ/4(2n−1) (n=1.2,3.−)
(2)とすることにより、給電点(柿)〜(4h)
から上記給電線(5b)〜(5h)側は開放状態にみえ
る。なお上式のλは上記給電線(5a)〜(5h)を伝
搬する電波の波長である。この状態では、上記放射パッ
チ(3)は上記給電点(4b)〜(4h)がない場合と
同様に動作するので、」−配給電点(4a)より上記放
射バッチ(3)に給電された電波は偏波ベクトル(7a
)の方向の直線偏波となり、上記放射パッチ(3)から
空間に放射される。同様にして上記制御回路(11)か
らの制御信号により上記切替スイッチを介して上記接続
線(9)と給電線(5b)〜(5h)のうちの1本が接
続された場合には、上記切替スイッチ(8)に入力した
上記電波は給電線(5b)〜(5h)をそれぞれ伝搬し
、給電点(4b)〜(4h)よりそれぞれ」二記放射パ
ッチ(3)に給電される。各給電点(4b)〜(4h)
より上記放射パッチ(3)に給電された電波は各々給電
点(4b)〜(4h)に対応した偏波ベクトル(7b)
〜(7h)の方向の直線偏波となり、上記放射パッチ(
3)から空間に放射される。上記給電点(4a)〜(4
h)は直径dの円周上に角度0=22.5°間隔で配列
されているので第3図に示すように偏波ベクトル(7a
)〜(7h)も角度θ間隔で回転させることができる。g=λ/4(2n-1) (n=1.2, 3.-)
By setting (2), the power supply point (persimmon) ~ (4h)
From this, the power supply lines (5b) to (5h) appear to be in an open state. Note that λ in the above equation is the wavelength of the radio waves propagating through the feed lines (5a) to (5h). In this state, the radiating patch (3) operates in the same way as if the feeding points (4b) to (4h) were not present. Radio waves have a polarization vector (7a
) and is radiated into space from the radiation patch (3). Similarly, when the connection line (9) and one of the power supply lines (5b) to (5h) are connected via the changeover switch by a control signal from the control circuit (11), the The radio waves input to the changeover switch (8) propagate through the feed lines (5b) to (5h), respectively, and are fed to the two radiation patches (3) from the feed points (4b) to (4h), respectively. Each power supply point (4b) to (4h)
Therefore, the radio waves fed to the radiation patch (3) have polarization vectors (7b) corresponding to feeding points (4b) to (4h), respectively.
It becomes a linearly polarized wave in the direction of ~ (7h), and the above radiation patch (
3) is radiated into space. The above feeding points (4a) to (4)
Since the polarization vectors (7a
) to (7h) can also be rotated at intervals of angle θ.
なお上記は送信の場合であるが、受信においては上記手
順と逆の手順で動作し、同様の効果が得られる。上記実
施例では、給電点は給電点(4a)〜(4h)の8点と
し、これを角度0 = 22.5°間隔で配置したが、
第4図に示すように直径dの円周の全周上に給電点(4
a)〜(4h)を配置してもよい、また給電点の数8点
に限らず任意の点数でかまわない、給電点の間隔θも任
意の角度でよく、給電点を不等間隔で配置しても同様の
効果が期待できる。また給電線(5a)〜(5h)の構
造は特に問わず例えば第5図に示すように誘電体基板(
1)上のマイクロストリップ線路を用いて上記誘電体基
板(+)の表面で上記放射パッチ(3)を給電してもよ
い、切替スイッチ(8)も単極多投スイッチであればそ
の種類、構成は特に問わない。Note that the above is a case of transmission, but in reception, the operation is performed in the reverse order to the above procedure, and the same effect can be obtained. In the above embodiment, there were eight feeding points (4a) to (4h), which were arranged at an angle of 0 = 22.5°.
As shown in Figure 4, there are four power feeding points (4
a) to (4h) may be arranged; the number of feeding points is not limited to 8; any number of feeding points may be used; the interval θ between feeding points may be any angle; the feeding points may be arranged at uneven intervals. Similar effects can be expected. Moreover, the structures of the feeder lines (5a) to (5h) are not particularly limited; for example, as shown in FIG.
1) The above microstrip line may be used to supply power to the radiation patch (3) on the surface of the dielectric substrate (+), and if the selector switch (8) is also a single-pole multi-throw switch, its type; The configuration is not particularly important.
第6図は光により制御する切替スイッチ(8)の構成例
を示す図であり、 (12a)〜(12h)、(13a
)〜(+3h)は光が当たると導通状態、光が当たらな
いと遮断状態となるフォトダイオード、 (14)はこ
のフォトダイオード(12a)〜(12h)、 (13
a)〜(13h)に制御用光信号を送る光ファイバ、
(15)はアースである。フォトダイオード(12a)
〜(12h)のアノードとフォトダイオード(13a)
〜(+3h)のカソード及び給電線(5a)〜(5h)
が各々接続されており、フォトダイオード(+3a)〜
(+3h)のアノードは接続線(9)に、フォトダイオ
ード(12a)〜(12h)のカソードはアース(15
)に接続されている。第6図の切替スイッチ(8)では
上記実施例における制御線(10)の代わりに、上記光
ファイバ(14)で制御信号を光の形で送り、上記フォ
トダイオード(12a)〜(12h)、 (13a)〜
(13h)の導通、遮断状態をこの制御信号で制御する
ことにより、切替スイッチ(8)は単極多投スイッチと
して動作する。また上記実施例では、放射パッチ(3)
を単独で用いる場合について示したが、放射パッチ(3
)を複数個、平面状あるいは曲面状に配列し。FIG. 6 is a diagram showing a configuration example of a changeover switch (8) controlled by light, (12a) to (12h), (13a
) to (+3h) are photodiodes that are in a conductive state when exposed to light and are in a blocked state when not exposed to light, (14) are photodiodes (12a) to (12h), (13
a) An optical fiber that sends a control optical signal to (13h),
(15) is earth. Photodiode (12a)
~(12h) anode and photodiode (13a)
~(+3h) cathode and feeder line (5a) ~(5h)
are connected to each other, and photodiodes (+3a) to
The anode of (+3h) is connected to the connection line (9), and the cathode of photodiodes (12a) to (12h) is connected to the ground (15).
)It is connected to the. In the changeover switch (8) of FIG. 6, the control signal is sent in the form of light through the optical fiber (14) instead of the control line (10) in the above embodiment, and the control signal is sent in the form of light to the photodiodes (12a) to (12h), (13a)~
By controlling the on/off state of (13h) with this control signal, the changeover switch (8) operates as a single-pole, multi-throw switch. Furthermore, in the above embodiment, the radiation patch (3)
The case where the radiation patch (3
) are arranged in a flat or curved shape.
アレーアンテナとして用いてもよい。It may also be used as an array antenna.
以上のように、この発明によれば切替スイッチにより放
射パッチの給電点を切り替えることにより放射パッチか
ら空間に放射される直線偏波の方向を可変でき、任意の
直線偏波の電波を送受信できるので、このパッチアンテ
ナをレーダ、通信に用いることによりその効果は著しく
大きい。As described above, according to the present invention, the direction of linearly polarized waves radiated into space from the radiation patch can be varied by switching the feeding point of the radiation patch using the changeover switch, and radio waves of arbitrary linear polarization can be transmitted and received. By using this patch antenna for radar and communications, the effect is significantly greater.
第1図はこの発明の一実施例によるパッチアンテナの構
成図、第2図はこの発明の一実施例における切替スイッ
チ接続図、第3図は偏波ベクトルの方向を示す図、第4
図は円周の全周に給電点を配置した場合のパッチアンテ
ナの構成図、第5図はマイクロストリップ線路で給電線
を構成した場合のパッチアンテナの構成図、第6図は光
により制御する切替スイッチの構成例を示す図、第7図
は従来のパッチアンテナの構成図である。(1)は誘電
体基板、(2)は金属地板、(3)は放射パッチ(4)
(4a)〜(4h)は給電点、 (5)、 (5a)〜
(5h)は給電線(6)は送信源、 (7)、 (7a
)〜(7h)は偏波ベクトル、(8)は切替スイッチ、
(9)は接続線、 (10)は制御線、 (11)は制
御回路、 (12a)〜(+2h)、(13a)〜(1
3h)はフォトダイオード、 (+4)は光ファイバ、
(15)はアースである。
なお図中、同一符号は同一、または相当部分を示す。
龜FIG. 1 is a configuration diagram of a patch antenna according to an embodiment of the present invention, FIG. 2 is a connection diagram of a changeover switch in an embodiment of the present invention, FIG. 3 is a diagram showing the direction of polarization vector, and FIG.
The figure shows a configuration diagram of a patch antenna when feeding points are placed all around the circumference, Figure 5 is a configuration diagram of a patch antenna when the feeding line is configured with microstrip lines, and Figure 6 shows a patch antenna that is controlled by light. FIG. 7, which is a diagram showing an example of the configuration of a changeover switch, is a configuration diagram of a conventional patch antenna. (1) is a dielectric substrate, (2) is a metal base plate, (3) is a radiation patch (4)
(4a) to (4h) are power feeding points, (5), (5a) to
(5h) is the feeder line (6) is the transmission source, (7), (7a
) to (7h) are polarization vectors, (8) is a changeover switch,
(9) is a connection line, (10) is a control line, (11) is a control circuit, (12a) to (+2h), (13a) to (1
3h) is a photodiode, (+4) is an optical fiber,
(15) is earth. In the drawings, the same reference numerals indicate the same or corresponding parts. barrel
Claims (1)
、上記誘電体基板の表面に形成した円形の放射パッチ、
およびこの放射パッチを給電する給電線より構成され直
線偏波の電波を送信あるいは受信するパッチアンテナに
おいて、上記放射パッチ上で放射パッチと同心の円周上
に複数個の給電点を設け、各給電点に接続された給電線
を切替スイッチによりひとつずつ切り替えるようにした
ことを特徴とするパッチアンテナ。a dielectric substrate, a metal base plate formed on the back surface of the dielectric substrate, a circular radiation patch formed on the surface of the dielectric substrate,
In a patch antenna that transmits or receives linearly polarized radio waves and is composed of a feed line that feeds this radiation patch, a plurality of feeding points are provided on the circumference concentric with the radiation patch on the radiation patch, and each feeding point is A patch antenna characterized in that the feeder lines connected to the points are switched one by one using a changeover switch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10477188A JPH01274505A (en) | 1988-04-27 | 1988-04-27 | Patch antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10477188A JPH01274505A (en) | 1988-04-27 | 1988-04-27 | Patch antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01274505A true JPH01274505A (en) | 1989-11-02 |
Family
ID=14389740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10477188A Pending JPH01274505A (en) | 1988-04-27 | 1988-04-27 | Patch antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01274505A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000025386A1 (en) * | 1998-10-28 | 2000-05-04 | Raytheon Company | Microstrip phase shifting reflect array antenna |
US6642889B1 (en) | 2002-05-03 | 2003-11-04 | Raytheon Company | Asymmetric-element reflect array antenna |
US7053853B2 (en) | 2003-06-26 | 2006-05-30 | Skypilot Network, Inc. | Planar antenna for a wireless mesh network |
GB2449736A (en) * | 2007-05-26 | 2008-12-03 | Uws Ventures Ltd | Multiple feed port beam steering antenna |
KR100968973B1 (en) * | 2008-08-11 | 2010-07-14 | 삼성전기주식회사 | Patch antenna |
KR101409917B1 (en) * | 2011-11-04 | 2014-06-19 | 브로드콤 코포레이션 | Reconfigurable polarization antenna |
-
1988
- 1988-04-27 JP JP10477188A patent/JPH01274505A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000025386A1 (en) * | 1998-10-28 | 2000-05-04 | Raytheon Company | Microstrip phase shifting reflect array antenna |
US6642889B1 (en) | 2002-05-03 | 2003-11-04 | Raytheon Company | Asymmetric-element reflect array antenna |
US7053853B2 (en) | 2003-06-26 | 2006-05-30 | Skypilot Network, Inc. | Planar antenna for a wireless mesh network |
GB2449736A (en) * | 2007-05-26 | 2008-12-03 | Uws Ventures Ltd | Multiple feed port beam steering antenna |
KR100968973B1 (en) * | 2008-08-11 | 2010-07-14 | 삼성전기주식회사 | Patch antenna |
KR101409917B1 (en) * | 2011-11-04 | 2014-06-19 | 브로드콤 코포레이션 | Reconfigurable polarization antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4021813A (en) | Geometrically derived beam circular antenna array | |
US7460077B2 (en) | Polarization control system and method for an antenna array | |
JP6384550B2 (en) | Wireless communication module | |
US4063243A (en) | Conformal radar antenna | |
US6504510B2 (en) | Antenna system for use in a wireless communication system | |
US4434425A (en) | Multiple ring dipole array | |
US4772890A (en) | Multi-band planar antenna array | |
EP0735608A1 (en) | Array antenna apparatus | |
KR20060064626A (en) | Antenna and receiver apparatus using the same | |
JPH01274505A (en) | Patch antenna | |
JPS5944103A (en) | Antenna device | |
JPH03254207A (en) | Antenna system | |
JPS61150504A (en) | Antenna system | |
JP3288174B2 (en) | Array antenna capable of controlling linear polarization plane and satellite communication earth station having the same | |
JP2003066133A (en) | Radar | |
US3541565A (en) | Electronic-scanning antennas | |
JP2611883B2 (en) | Mobile station antenna for satellite communication | |
JPH04129403A (en) | Beam scanning mirror surface antenna | |
JP2653166B2 (en) | Array antenna | |
JPH06125216A (en) | Array antenna | |
JPH06237114A (en) | Phased array antenna | |
CN118352790A (en) | Reconfigurable reflection unit and antenna device | |
JPH04238403A (en) | Electronic scan antenna | |
JPS5951770B2 (en) | array antenna | |
JP2642540B2 (en) | Phased array antenna |