JPH01274040A - Material surface inspecting device - Google Patents

Material surface inspecting device

Info

Publication number
JPH01274040A
JPH01274040A JP10253888A JP10253888A JPH01274040A JP H01274040 A JPH01274040 A JP H01274040A JP 10253888 A JP10253888 A JP 10253888A JP 10253888 A JP10253888 A JP 10253888A JP H01274040 A JPH01274040 A JP H01274040A
Authority
JP
Japan
Prior art keywords
light
excitation light
optical axis
sample
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10253888A
Other languages
Japanese (ja)
Inventor
Haruo Fujimori
治男 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10253888A priority Critical patent/JPH01274040A/en
Publication of JPH01274040A publication Critical patent/JPH01274040A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Abstract

PURPOSE:To achieve a higher measuring accuracy and a higher detection sensitivity about light absorption of the surface of a sample, by correcting dependence of a vertical deflection level of laser light on an inter-optical axis distance accompanying a change in refractive index using a measured value of a horizontal deflection level. CONSTITUTION:An excitation light 11 from a laser 1 for excitation is modulated in intensity with an excitation light modulator 2 and then, reflected with an excitation light scan mirror 3 to irradiate the surface of a sample 12 at a desired position on a sample base 5. A laser light 13 from a laser 4 for inspection is reflected with an optical path moving mirror 10 passes right on an irradiation point of the excitation light with an optical axis controlled so that it crosses the excitation light 11 and reflected again with the moving mirror 10 to be incident into a position detector 6. Then, a vertical deflection component and a horizontal deflection component of a cyclic deflection of the laser light are detected synchronously using a lock-in amplifier 7. Moreover, when measuring a light absorption level, the optical axis of the laser light 13 is adjusted so that a horizontal deflection component as obtained through the detector 6 and the amplifier 7 is down to zero to make the excitation light 11 cross the optical axis of the laser light 13 and then, a data processor is used to determine the light absorption from the vertical deflection component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は材料表面検査装置に係り、特に、非接触、かつ
、遠隔で材料表面の微弱な光吸収量変化の分布を定量的
に検出するのに好適な材料表面検査装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a material surface inspection device, and in particular, to quantitatively detect the distribution of slight changes in light absorption on the surface of a material in a non-contact and remote manner. This invention relates to a material surface inspection device suitable for.

〔従来の技術〕[Conventional technology]

半導体等の検査において、表面の微弱な光吸収量を検出
する必要が生じる。特に、半導体の高集積化に伴い従来
問題とならなかった微弱な汚れや酸化皮膜の不均一性が
素子不良の要因となってくる。このための計測手段とし
て通常のレーザ光散乱法などでは感度不足のため、高感
度検出法として光?!響分光法などの各種熱波計測法の
開発が進められている。しかし、マイクロフォン法光音
響分光、及び、圧電素子性光音響分光はそれぞれ試料室
への試料装着、及び、試料への圧電素子接着が必要とな
り、工程管理用の検査手段は不適当である。一方、励起
光照射による材料表面の熱変形をレーザ光の偏向として
検出する手法(特開昭59−34138号公報)や励起
光照射点からの赤外線を検出する手法(特開昭60−1
54224号公報)は非接触・遠隔で計llI!Iでき
るが、それぞれ光軸調整が困難、及び、雑音に弱く比較
的低感度という実用化上の問題があった。また、励起光
照射点近傍の雰囲気の屈折率変化を計測する手法(エル
 シーアーモット 他、ジャーナル オブ アプライl
ヘフイジクス、54巻、p581  (1983)(L
、C,Aamodt ct al、 : Journa
l of AppliedPhysics、 VoQ、
54 、581  (l E’J 83) )も提案さ
れているが、これも信号が光軸調整の影響を受は易い、
特に、屈折率変化検出に用いるレーザ光光軸と励起光光
軸と距離により検出信号が大きく依存して変化するとい
う問題があった。
In the inspection of semiconductors, etc., it becomes necessary to detect the weak amount of light absorption on the surface. In particular, as semiconductors become more highly integrated, slight contamination and non-uniformity of the oxide film, which did not pose problems in the past, become causes of device failure. As a measurement method for this purpose, the usual laser light scattering method lacks sensitivity, so light is a highly sensitive detection method. ! Various heat wave measurement methods such as acoustic spectroscopy are being developed. However, microphone photoacoustic spectroscopy and piezoelectric element photoacoustic spectroscopy each require mounting a sample in a sample chamber and adhering a piezoelectric element to the sample, making inspection means for process control inappropriate. On the other hand, there are methods for detecting thermal deformation of the material surface due to excitation light irradiation as deflection of laser light (Japanese Patent Application Laid-Open No. 59-34138) and methods for detecting infrared rays from the point of excitation light irradiation (Japanese Patent Laid-Open No. 60-198).
No. 54224) is contactless and remote! However, there were problems in practical use, such as difficulty in adjusting the optical axis, and susceptibility to noise and relatively low sensitivity. In addition, a method of measuring the refractive index change of the atmosphere near the excitation light irradiation point (El Shearmot et al., Journal of Application
Hephisics, vol. 54, p581 (1983) (L
, C, Aamodt ct al, : Journa.
l of Applied Physics, VoQ,
54, 581 (lE'J 83)) have also been proposed, but the signal is also easily affected by optical axis adjustment.
In particular, there has been a problem in that the detection signal varies greatly depending on the distance between the optical axis of the laser beam used for detecting the change in refractive index and the optical axis of the excitation beam.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の屈折率の変化を検出する手法では、レーザ光光軸
と励起光光軸との距離を一定に保持する手段がないため
、測定毎の、又は、III定中の光軸間距離変動に起因
する測定誤差を取り除くことができなかった。
In conventional methods for detecting changes in refractive index, there is no means to maintain a constant distance between the laser beam optical axis and the excitation beam optical axis, so there is no possibility of changing the distance between the optical axes for each measurement or during measurement. The resulting measurement error could not be removed.

本発明の[I的は、屈折率変化に伴うレーザ光の垂直偏
向量の光軸間距離依存性を、水=(Z偏向量の測定値を
用いて補正し、微弱な光吸収量を非接触・遠隔計測可能
な材料表面検査装置を提供することにある。
The main purpose of the present invention is to correct the dependence of the vertical deflection of the laser beam on the distance between the optical axes due to the change in the refractive index using the measured value of the Z deflection of water, thereby minimizing the weak light absorption. The object of the present invention is to provide a material surface inspection device capable of contact/remote measurement.

〔課題を解決するための手段〕[Means to solve the problem]

」二記目的は、レーザ光偏向の水平偏向成分はレーザ光
−励起光の光軸間距離がゼロの場合にゼロになることを
利用し、水平偏向成分がゼロになるように光軸調整した
状態で垂直偏向成分を検出することにより達成される。
The second purpose is to adjust the optical axis so that the horizontal deflection component becomes zero, taking advantage of the fact that the horizontal deflection component of the laser beam deflection becomes zero when the distance between the optical axes of the laser beam and the excitation light is zero. This is achieved by detecting the vertical deflection component in the state.

〔作用〕[Effect]

強度変調励起光を試料に照射した場合に生じる周期的温
度変化(熱波)は、試料表面から離れるほど、励起光光
軸から離れるほど小さくなり、励起光光軸に関して対称
である。従って、試料表面に平行、かつ、励起光光軸に
垂直にレーザ光光軸がある場合、レーザ光の周期的偏向
には垂直偏向成分と水平偏向成分が含まれる。垂直偏向
成分及び水平偏向成分共に試料表面の光吸収量に比例す
るが、垂直偏向成分がレーザ光と励起光の光軸が交差す
る点を境いに偏向強度が対称に減少するのに対し、水平
偏向成分はレーザ光光軸と励起光光軸とが交差する点を
境いに偏向方向が逆転し、光軸が交差する場合にゼロと
なる。従って、水平偏向成分がゼロとなるように、光軸
調整すると、垂直偏向成分の光軸ずれによる測定誤差が
なくなり、その強度が最大となり、統計精度も向上する
Periodic temperature changes (thermal waves) that occur when a sample is irradiated with intensity-modulated excitation light become smaller as they move away from the sample surface and from the excitation light optical axis, and are symmetrical with respect to the excitation light optical axis. Therefore, when the laser beam optical axis is parallel to the sample surface and perpendicular to the excitation light optical axis, the periodic deflection of the laser beam includes a vertical deflection component and a horizontal deflection component. Both the vertical and horizontal deflection components are proportional to the amount of light absorbed by the sample surface, but while the vertical deflection component's deflection intensity decreases symmetrically at the point where the optical axes of the laser beam and excitation light intersect, The horizontal deflection component reverses its deflection direction at the point where the laser beam optical axis and the excitation light optical axis intersect, and becomes zero when the optical axes intersect. Therefore, when the optical axis is adjusted so that the horizontal deflection component becomes zero, the measurement error due to the optical axis shift of the vertical deflection component is eliminated, its intensity is maximized, and statistical accuracy is also improved.

〔実施例〕〔Example〕

本発明の一実施例を第1図により説明する。本実施例は
、励起用レーザ1.励起光変調器2.励起光走査鏡3.
検出用レーザ4.試料台51位置検出器6.ロックイン
アンプ7、データ処理装置8、コントローラ9、及び、
検出用レーザ光光路移動鏡10から構成される。
An embodiment of the present invention will be explained with reference to FIG. In this embodiment, the excitation laser 1. Excitation light modulator 2. Excitation light scanning mirror 3.
Detection laser 4. Sample stage 51 position detector 6. lock-in amplifier 7, data processing device 8, controller 9, and
It is composed of a detection laser beam optical path moving mirror 10.

励起用レーザ1からの励起光11は励起光変調器2によ
り所定の周波数で強度変調された後、励起光走査鏡3で
反射して、試料台S上の試料12の表面の所望の位置を
照射する。照射位置は励起光走査鏡の反射面の角度制御
により調整する。検出用レーザ4がらのレーザ光13は
検出用レーザ光光路移動鏡1oで反射して励起光と光軸
が交差するように光軸を制御して試料表面上の励起光照
射点直上を通過し、再び光路移動fi 1.0で反射し
て位置検出器6に入射する。レーザ光の周期的偏向の垂
直偏向成分及び水平偏向成分は、ロックインアンプ7を
用いて同期検出する。励起光走査鏡3、及び、光路移動
鏡10の制御はコントローラ9を介して行う。光吸収量
の測定は、励起光11と検出用レーザ光13の光軸が交
差するように。
The excitation light 11 from the excitation laser 1 is intensity-modulated at a predetermined frequency by the excitation light modulator 2, and then reflected by the excitation light scanning mirror 3 to locate a desired position on the surface of the sample 12 on the sample stage S. irradiate. The irradiation position is adjusted by controlling the angle of the reflecting surface of the excitation light scanning mirror. The laser beam 13 from the detection laser 4 is reflected by the detection laser beam optical path moving mirror 1o, the optical axis is controlled so that the optical axis intersects with the excitation light, and the laser beam 13 passes directly above the excitation light irradiation point on the sample surface. , it is reflected again by the optical path movement fi 1.0 and enters the position detector 6. The vertical and horizontal deflection components of the periodic deflection of the laser beam are synchronously detected using a lock-in amplifier 7. The excitation light scanning mirror 3 and the optical path moving mirror 10 are controlled via a controller 9. The amount of light absorption is measured so that the optical axes of the excitation light 11 and the detection laser light 13 intersect.

位置検出器6とロックインアンプ7を通して得られる水
平偏向成分がゼロになるように、光軸調整8した状態で
の垂直偏向成分から、データ処理装置を使って行う。
The data processing device is used to start with the vertical deflection component when the optical axis is adjusted 8 so that the horizontal deflection component obtained through the position detector 6 and lock-in amplifier 7 becomes zero.

光軸調整は、第2図に示すように、光路移動鏡10を水
平方向に移動して行う。励起光11が試料12の表面上
を検出用レーザ光光軸方向(第2図で左右方向)に走査
される場合は、最初に、水平偏向成分がゼロになるよう
に光路移動鏡1oを移動させるだけで良い。励起光のレ
ーザ光光軸方向走査が一段分完了し、これと垂直方向(
第2図で上下方向)に−ステップ移動後、再び、レーザ
光光軸方向走査を行う際も、最初の段階で光軸調整する
だけでよい。光軸調整は、水平偏向成分がゼロ点を境い
に一度逆転するまでずらした後、戻す手順をとる。
Optical axis adjustment is performed by moving the optical path moving mirror 10 in the horizontal direction, as shown in FIG. When the excitation light 11 is scanned over the surface of the sample 12 in the optical axis direction of the detection laser beam (in the left-right direction in FIG. 2), first move the optical path moving mirror 1o so that the horizontal deflection component becomes zero. Just let it happen. One step of scanning in the direction of the laser beam optical axis of the excitation light is completed, and in the direction perpendicular to this (
Even when the laser beam is scanned in the optical axis direction again after a step movement in the vertical direction (in FIG. 2), it is only necessary to adjust the optical axis at the first stage. The optical axis adjustment is performed by shifting the horizontal deflection component once from the zero point until it reverses, and then returning it.

検出用レーザ光11の光軸高さの影響については、垂直
偏向成分の位相から、光軸高さを求め、データ処理装置
8内で補正する。
Regarding the influence of the optical axis height of the detection laser beam 11, the optical axis height is determined from the phase of the vertical deflection component and corrected within the data processing device 8.

試料表面の光吸収量は、以上の手順で、検出用レーザ光
光軸と励起光光軸の光軸間距離、並びに検出用レーザ光
光軸高さの影響を取り除き、検出用レーザ光の垂直偏向
成分の絶対値から求められる。試料表面の光吸収量の二
次元分布は、励起光照射位置の走査により達成できる。
The amount of light absorbed by the sample surface can be determined by removing the influence of the distance between the optical axis of the detection laser beam and the optical axis of the excitation beam, as well as the height of the optical axis of the detection laser beam, using the above procedure. It is determined from the absolute value of the deflection component. A two-dimensional distribution of light absorption on the sample surface can be achieved by scanning the excitation light irradiation position.

また、光吸収スペクトルは、励起光源に色素レーザを用
いるかあるいは他の発光光源を単色化する手法で励起光
波長を変えることにより1l11定することができる。
Further, the optical absorption spectrum can be determined by changing the wavelength of the excitation light by using a dye laser as the excitation light source or by making another light emission source monochromatic.

本実施例によれば、レーザ光光路移a鏡の制御により、
検出用レーザ光と励起光の光軸を交差させ、垂直偏向成
分の絶対値の測定精度を向上し、試料表面の光吸収量の
検出感度、及び、精度を向上することができる。
According to this embodiment, by controlling the laser beam path shifting mirror a,
By intersecting the optical axes of the detection laser beam and the excitation light, it is possible to improve the measurement accuracy of the absolute value of the vertical polarization component, and to improve the detection sensitivity and accuracy of the amount of light absorption on the sample surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レーザ光と励起光の光軸間距離の変動
によるレーザ光の垂直偏向成分の測定誤差を低減できる
ので、試料表面の光吸収量の測定精度、及び、検出感度
を向上することができる。
According to the present invention, it is possible to reduce measurement errors in the vertical polarization component of the laser beam due to variations in the distance between the optical axes of the laser beam and the excitation light, thereby improving the measurement accuracy and detection sensitivity of the amount of light absorption on the sample surface. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図、第2図は第1図の
平面図である。 1・・・励起用レーザ、2・・・励起光変調器、3・・
・励起光走査鏡。
FIG. 1 is a side view of one embodiment of the present invention, and FIG. 2 is a plan view of FIG. 1. 1... Laser for excitation, 2... Excitation light modulator, 3...
・Excitation light scanning mirror.

Claims (1)

【特許請求の範囲】 1、固体表面の光吸収量、又は、光吸収スペクトルを測
定する材料表面検査装置において、 強度変調した励起光を試料に照射し、前記試料の周期的
発熱に伴う前記試料の表面近傍の雰囲気の周期的屈折率
変化に起因するレーザ光の光路偏向の垂直偏向成分と水
平偏向成分とを交互に、又は、同時に計測し、前記水平
偏向成分がゼロになるように、光軸調整した状態で前記
垂直偏向成分を測定して試料表面の光吸収量を検出する
ことを特徴とする材料表面検査装置。
[Scope of Claims] 1. In a material surface inspection device that measures the amount of light absorption on a solid surface or the light absorption spectrum, the sample is irradiated with intensity-modulated excitation light, and the sample is heated as the sample periodically generates heat. The vertical deflection component and the horizontal deflection component of the optical path deflection of the laser beam caused by the periodic refractive index change of the atmosphere near the surface of the laser beam are measured alternately or simultaneously, and the light is A material surface inspection apparatus characterized in that the vertical deflection component is measured with the axis adjusted to detect the amount of light absorption on the sample surface.
JP10253888A 1988-04-27 1988-04-27 Material surface inspecting device Pending JPH01274040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253888A JPH01274040A (en) 1988-04-27 1988-04-27 Material surface inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253888A JPH01274040A (en) 1988-04-27 1988-04-27 Material surface inspecting device

Publications (1)

Publication Number Publication Date
JPH01274040A true JPH01274040A (en) 1989-11-01

Family

ID=14330047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253888A Pending JPH01274040A (en) 1988-04-27 1988-04-27 Material surface inspecting device

Country Status (1)

Country Link
JP (1) JPH01274040A (en)

Similar Documents

Publication Publication Date Title
EP0165711B1 (en) Method and apparatus for detecting thermal waves
US5074669A (en) Method and apparatus for evaluating ion implant dosage levels in semiconductors
KR100571863B1 (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
US4999014A (en) Method and apparatus for measuring thickness of thin films
US5228776A (en) Apparatus for evaluating thermal and electrical characteristics in a sample
US6987832B2 (en) Calibration and alignment of X-ray reflectometric systems
US6191846B1 (en) Apparatus for evaluating metalized layers on semiconductors
KR100245064B1 (en) Optical differential profile measurement apparatus and process
JPH03267745A (en) Surface property detecting method
JP3343086B2 (en) Surface plasmon sensor
US5532488A (en) Apparatus and method for evaluating orientation film
CN115791982A (en) Laser ultrasonic residual stress detection system and method based on orthogonal thermal grating
JPH01274040A (en) Material surface inspecting device
JPH02126106A (en) Polarization analyzer
JPS63200038A (en) Method for inspecting surface of material
JPS6363945A (en) Stabilization of optical property measurement
JP3441180B2 (en) Alignment film evaluation system
JPH08285725A (en) Method and equipment for measuring refractive index of wafercomprising glass substance
JP2984072B2 (en) Laser interferometer
JP2709946B2 (en) Foreign matter inspection method and foreign matter inspection device
JPH06308059A (en) Fluorescent x-ray analyzer and setting method for x-ray irradiation angle
JPH08327562A (en) Method and device for inspecting metallic plate for surface flaw
JPH06102026A (en) Three dimensional image input system
JPS6383634A (en) Contaminant film measuring method and its device
JPH0720094A (en) Ultrasonic oscillation measuring apparatus