JPH06102026A - Three dimensional image input system - Google Patents

Three dimensional image input system

Info

Publication number
JPH06102026A
JPH06102026A JP4250337A JP25033792A JPH06102026A JP H06102026 A JPH06102026 A JP H06102026A JP 4250337 A JP4250337 A JP 4250337A JP 25033792 A JP25033792 A JP 25033792A JP H06102026 A JPH06102026 A JP H06102026A
Authority
JP
Japan
Prior art keywords
scattered light
light flux
output
dimensional image
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4250337A
Other languages
Japanese (ja)
Inventor
Hideji Sonoda
秀二 園田
Masahiro Kiyokawa
昌宏 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4250337A priority Critical patent/JPH06102026A/en
Publication of JPH06102026A publication Critical patent/JPH06102026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To allow accurate measurement of distance between a reference surface and the surface of an object to be measured by regulating the transmissivity of a filter means disposed on an optical path based on a detected data. CONSTITUTION:A liquid crystal filter 12 is disposed on the optical path A of the bundle of scattered rays, i.e., it is interposed between an object 2 to be measured and a fixed mirror 10'. When the peak value of detection data from a signal processing section 5, i.e., pixel data from a one-dimensional image sensor CCD, is larger than a preset first threshold value, an output regulating means 13 makes a decision that the detection data is affected by the shape or the surface conditions of the object or the incident angle of the bundle of measuring rays and lowers the transmissivity (applying voltage) of the filter 12 such that the data representative of the peak value is not saturated. When the peak value is lower than a second threshold value (lower than the first threshold value), incident quantity of scattered light to means 9, 11 for detecting the bundle of scattered light is low, and thereby the transmissivity of the filter 12 is increased thus increasing the output of the detecting means 9, 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光源と、その光源から
の測定光線束を参照面上の測定対象物に向けて照射する
照射手段と、前記測定対象物表面からの散乱光線束を検
出する散乱光線束検出手段と、その散乱光線束検出手段
の検出データに基づいて前記参照面から前記測定対象物
表面までの距離を演算導出する信号処理部とを備えて構
成してある三次元画像入力装置に関し、例えば、成形用
型やデザインされた各種製品の模型から外観形状を入力
して最終設計図面に仕上げるCAD用データの入力装置
や、教育用や販売用に用いられる三次元映像資料の入力
装置、医療用診断装置、或いはロボットの視覚センサと
して用いられる三次元画像入力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source, an irradiation means for irradiating a measuring light beam from the light source toward a measuring object on a reference surface, and a scattered light beam from the surface of the measuring object. A three-dimensional image comprising a scattered light flux detecting means and a signal processing unit for calculating and deriving the distance from the reference surface to the surface of the measuring object based on the detection data of the scattered light flux detecting means. Regarding the input device, for example, a CAD data input device for inputting an external shape from a molding die or a model of various designed products to finish a final design drawing, and a three-dimensional image material used for education or sales. The present invention relates to a three-dimensional image input device used as an input device, a medical diagnostic device, or a visual sensor of a robot.

【0002】[0002]

【従来の技術】従来、この種の三次元画像入力装置は、
測定対象物からの散乱光線束のうち散乱光線束検出手段
に入射する微小な光線束を検出するものであるために、
所定の出力を得るように前記測定光線束の強度を確保
し、或いは前記光検出素子の出力を一定の増幅率で増幅
することで検出精度を確保していた。ここで、前記散乱
光線束検出手段における光検出素子としては、一次元イ
メージセンサや、非分割型の集光位置検出素子等を用い
ていた(特願平3‐168628号)。
2. Description of the Related Art Conventionally, this type of three-dimensional image input device is
In order to detect a minute light flux incident on the scattered light flux detection means of the scattered light flux from the measurement object,
The detection accuracy is ensured by securing the intensity of the measurement light flux so as to obtain a predetermined output, or by amplifying the output of the photodetection element with a constant amplification factor. Here, a one-dimensional image sensor, a non-divided condensing position detecting element, or the like has been used as the light detecting element in the scattered light flux detecting means (Japanese Patent Application No. 3-168628).

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した従来
技術によれば、測定対象物の形状や表面状態、或いは測
定光線束の入射角度等によっては、散乱光線束検出手段
に入射する光線束の強度が想定された値よりも大となる
場合が考えられ、そのような場合には散乱光線束検出手
段による検出出力が飽和するために、前記参照面から前
記測定対象物表面までの正確な距離が計測できなくなる
というおそれがあった。例えば、光検出素子として一次
元イメージセンサを用いた場合には、隣接する複数画素
のいずれもが飽和してそのピーク位置を正確に検出でき
ないことになる。さらに、光源としてRGBの三原色を
出力するレーザを用いて、測定対象物の三次元形状とと
もに各波長の成分比率から測定対象物の表面色をも検出
するように構成されたものにおいては、上述の状態が生
じると対象物の色をも正確に検出することが困難とな
る。本発明の目的は上述した従来欠点を解消する点にあ
る。
However, according to the above-mentioned prior art, the light flux incident on the scattered light flux detection means may be changed depending on the shape and surface condition of the object to be measured, the incident angle of the measurement light flux, and the like. It is possible that the intensity becomes larger than the expected value, and in such a case, the detection output by the scattered light flux detecting means is saturated, so that the accurate distance from the reference surface to the surface of the measurement target object. Could not be measured. For example, when a one-dimensional image sensor is used as the light detecting element, all of the adjacent pixels are saturated and the peak position cannot be detected accurately. Further, in the one configured to detect the surface color of the measurement object from the three-dimensional shape of the measurement object as well as the component ratio of each wavelength using a laser that outputs the three primary colors of RGB as the light source, When the state occurs, it is difficult to detect the color of the object accurately. An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による三次元画像入力装置の第一の特徴構成
は、透過率が調節自在なフィルタ手段を前記測定光線束
或いは散乱光線束の光路に設けて、前記検出データに基
づいて前記フィルタ手段の透過率を調節することにより
前記散乱光線束検出手段の出力を調整する出力調整手段
を設けてある点にある。そして、第二の特徴構成は、前
記検出データに基づいて前記光源から出力される前記測
定光線束の強度を調節することにより前記散乱光線束検
出手段の出力を調整する出力調整手段を設けてある点に
ある。さらに第三の特徴構成は、前記検出データに基づ
いて前記散乱光線束検出手段の出力を調節する出力調整
手段を設けてある点にある。
In order to achieve this object, the first characteristic configuration of the three-dimensional image input apparatus according to the present invention is such that a filter means having an adjustable transmittance is provided for the measurement light beam bundle or the scattered light beam bundle. An output adjusting means is provided in the optical path for adjusting the output of the scattered light flux detecting means by adjusting the transmittance of the filter means based on the detection data. And the second characteristic configuration is provided with output adjusting means for adjusting the output of the scattered light flux detecting means by adjusting the intensity of the measuring light flux output from the light source based on the detection data. In point. A third characteristic configuration is that an output adjusting means for adjusting the output of the scattered light flux detecting means based on the detection data is provided.

【0005】[0005]

【作用】本発明による三次元画像入力装置においては、
散乱光線束検出手段の出力データ、或いは散乱光線束検
出手段の出力データから逆算した散乱光線束検出手段へ
の散乱光線束の入射光量等から、間接的に測定対象物の
形状や表面状態、或いは測定光線束の入射角度の影響を
検知して、その出力が飽和することのないように調整す
るのである。つまり、第一の特徴構成によれば、散乱光
線束検出手段への入射光量が小であればフィルタ手段の
透過率を上げて散乱光線束検出手段の出力を高め、散乱
光線束検出手段への入射光量が大であればフィルタ手段
の透過率を上げて散乱光線束検出手段の出力を飽和しな
いレベルに下げるのである。第二の特徴構成によれば、
散乱光線束検出手段への入射光量が小であれば光源から
出力される前記測定光線束の強度を上げて散乱光線束検
出手段の出力を高め、散乱光線束検出手段への入射光量
が大であれば光源から出力される前記測定光線束の強度
を下げて散乱光線束検出手段の出力を下げるのである。
第三の特徴構成によれば、散乱光線束検出手段への入射
光量が小であれば出力調整手段により前記散乱光線束検
出手段の出力を上げ、散乱光線束検出手段への入射光量
が大であれば出力調整手段により前記散乱光線束検出手
段の出力を下げるのである。ここで、出力調整手段とし
て、例えば、光検出素子にCCDイメージセンサを用い
た場合には、電荷蓄積時間を調節するものが考えられ
る。
In the three-dimensional image input device according to the present invention,
Output data of the scattered light flux detection means, or from the incident light amount of the scattered light flux to the scattered light flux detection means back calculated from the output data of the scattered light flux detection means, indirectly, the shape or surface state of the measurement object, or The influence of the incident angle of the measurement light bundle is detected and the output is adjusted so as not to saturate. That is, according to the first characteristic configuration, if the amount of light incident on the scattered light flux detection means is small, the transmittance of the filter means is increased to increase the output of the scattered light flux detection means, and If the amount of incident light is large, the transmittance of the filter means is increased to reduce the output of the scattered light flux detection means to a level at which it is not saturated. According to the second characteristic configuration,
If the amount of incident light to the scattered light flux detecting means is small, the intensity of the measuring light flux output from the light source is increased to increase the output of the scattered light flux detecting means, and the amount of incident light to the scattered light flux detecting means is large. If so, the intensity of the measurement light flux output from the light source is reduced to reduce the output of the scattered light flux detection means.
According to the third characteristic configuration, if the amount of incident light to the scattered light flux detecting means is small, the output of the scattered light flux detecting means is increased by the output adjusting means, and the amount of incident light to the scattered light flux detecting means is large. If so, the output adjusting means lowers the output of the scattered light flux detecting means. Here, as the output adjusting means, for example, when a CCD image sensor is used as the light detecting element, a means for adjusting the charge accumulation time can be considered.

【0006】[0006]

【発明の効果】従って、本発明によれば、測定対象物の
形状や表面状態、或いは測定光線束の入射角度等によっ
て、散乱光線束検出手段に入射する光強度が大きく変動
した場合であっても、参照面から前記測定対象物表面ま
での距離を正確に計測でき、光源としてRGBの三原色
を出力するレーザを用いて、測定対象物の三次元形状と
ともに各波長の成分比率から測定対象物の表面色をも検
出するように構成されたものにおいても、対象物の色を
正確に検出できる三次元画像入力装置を提供できるよう
になった。
Therefore, according to the present invention, the intensity of the light incident on the scattered light flux detecting means varies greatly depending on the shape and surface condition of the object to be measured, the incident angle of the measurement light flux, and the like. Also, it is possible to accurately measure the distance from the reference surface to the surface of the measurement object, using a laser that outputs the three primary colors of RGB as the light source, the three-dimensional shape of the measurement object together with the component ratio of each wavelength from the measurement object A three-dimensional image input device capable of accurately detecting the color of an object can be provided even if the surface color is also detected.

【0007】[0007]

【実施例】以下実施例を説明する。図1に示すように、
三次元画像入力装置は、X−Y平面上の参照平面1と、
その上方に配置され前記参照平面1上に載置された測定
対象物2へ測定光線束を照射してその測定対象物2の表
面からの散乱光線束を検出する計測部3と、前記計測部
3の計測動作を制御する計測制御部4と、前記計測部3
による計測データに基づき前記参照平面1から前記測定
対象物2表面までのZ方向の距離を演算導出する信号処
理部5と、前記信号処理部5により導出された三次元デ
ータから測定対象物2を再構築するモデル生成部6とか
ら構成してある。
EXAMPLES Examples will be described below. As shown in Figure 1,
The three-dimensional image input device includes a reference plane 1 on an XY plane,
A measuring unit 3 for irradiating the measuring light beam 2 placed above it on the reference plane 1 with the measuring light beam and detecting a scattered light beam from the surface of the measuring object 2, and the measuring unit. The measurement control unit 4 for controlling the measurement operation of the measurement unit 3;
The signal processing unit 5 for calculating and deriving the distance in the Z direction from the reference plane 1 to the surface of the measurement target 2 based on the measurement data according to, and the measurement target 2 from the three-dimensional data derived by the signal processing unit 5. It is composed of a model generation unit 6 for reconstruction.

【0008】前記計測部3は、レーザでなる光源8とX
軸方向に沿って配置した一次元イメージセンサCCDで
なる受光素子9とを走査用ミラー7を挟んで対向配置し
て、前記光源8からの測定光線束を前記走査用ミラー7
及び固定ミラー10を介して測定対象物2に照射すると
ともに、測定対象物2表面からの散乱光線束を固定ミラ
ー10’及び前記走査用ミラー7を介して前記受光素子
9に導く光学ヘッドと、その光学ヘッドをY軸方向へ移
動させることによりY軸方向への走査を行う走査機構
(図示せず)とで構成してある。
The measuring unit 3 includes a light source 8 composed of a laser and an X light source.
A light receiving element 9 composed of a one-dimensional image sensor CCD arranged along the axial direction is arranged so as to be opposed to each other with a scanning mirror 7 interposed therebetween, and a measuring light flux from the light source 8 is transmitted to the scanning mirror 7.
And an optical head which irradiates the measuring object 2 via the fixed mirror 10 and guides the scattered light flux from the surface of the measuring object 2 to the light receiving element 9 via the fixed mirror 10 'and the scanning mirror 7. It is composed of a scanning mechanism (not shown) that performs scanning in the Y-axis direction by moving the optical head in the Y-axis direction.

【0009】前記計測制御部4は、前記走査用ミラー7
をY軸に平行な軸芯周りに回動させて、前記光源8から
の測定光線束を前記対象物2が含まれる前記参照平面1
に対してX軸方向に走査して照射するとともに、その散
乱光線束を前記固定ミラー10’、前記走査用ミラー7
及び集光レンズ11を介して前記受光素子9に導きなが
ら、前記走査機構が前記光学ヘッドをY軸方向に走査す
る。即ち、前記計測部3と計測制御部4とで、光源8か
らの測定光線束を参照面1上の測定対象物2に向けて照
射する照射手段を構成し、光源8からの測定光線束を参
照平面1上の対象物2に向けて設定走査密度で走査する
走査手段を構成してあり、前記集光レンズ11と受光素
子9とで、前記測定対象物2表面からの散乱光線束を検
出する散乱光線束検出手段を構成してある。
The measurement control unit 4 includes the scanning mirror 7
Is rotated about an axis parallel to the Y-axis, and the measurement light beam from the light source 8 is passed through the reference plane 1 including the object 2.
And irradiate the same with the scattered ray bundle, and the fixed mirror 10 'and the scanning mirror 7
The scanning mechanism scans the optical head in the Y-axis direction while guiding the light to the light receiving element 9 via the condenser lens 11. That is, the measurement unit 3 and the measurement control unit 4 constitute an irradiation unit that irradiates the measurement light beam from the light source 8 toward the measurement object 2 on the reference surface 1, and the measurement light beam from the light source 8 is emitted. A scanning means for scanning the object 2 on the reference plane 1 at a set scanning density is configured, and the condenser lens 11 and the light receiving element 9 detect a scattered light flux from the surface of the object 2 to be measured. The scattered light flux detecting means is configured.

【0010】前記信号処理部5は、前記受光素子9が前
記参照平面1からの散乱光線束に対して検出する位置と
現在の散乱光線束に対して検出する位置との偏差及び前
記走査用ミラー7の回動角度とから、前記参照平面1か
らの測定対象物2の表面位置を演算導出する。即ち、図
2に示すように、CCDで検出される距離X01が、Δ
0に比例すること、及び、参照平面1からの測定対象
物2の表面位置Z0が、Z0×θ=ΔX 0なる関係を有す
ることからZ0を求める。前記モデル生成部6は、X方
向への走査及びY方向への走査により得られた各測定ポ
イント(走査密度で決定される)に対するZ方向の値で
特定されるXYZ座標データを三次元画像データとし
て、それらから測定対象物2の形状をコンピュータ上に
再現する。
The signal processing unit 5 is provided with the light receiving element 9 in front.
The position to detect the scattered light flux from the reference plane 1 and
The deviation from the detected position for the current scattered ray bundle and the previous
From the rotation angle of the scanning mirror 7, whether the reference plane 1
The surface position of the measurement object 2 is calculated and derived. That is, the figure
As shown in 2, the distance X detected by the CCD0X1But Δ
X0And that the object to be measured from the reference plane 1 is
Surface position of object 2 Z0But Z0× θ = ΔX 0Have a relationship
Because of that, Z0Ask for. The model generation unit 6 has an X direction.
Measurement points obtained by scanning in the Y direction and scanning in the Y direction.
The value in the Z direction for the into (determined by the scanning density)
The specified XYZ coordinate data is used as three-dimensional image data.
Then, from them, the shape of the measuring object 2 is displayed on the computer.
Reproduce.

【0011】前記散乱光線束の光路A、即ち、前記測定
対象物2と固定ミラー10’との間に液晶フィルタ12
を設けてあり、前記散乱光線束検出手段による検出デー
タに基づいて前記液晶フィルタ12の透過率を調節する
ことにより前記散乱光線束検出手段9,11の出力を調
整する出力調整手段13を設けてある。詳述すると、前
記出力調整手段13は、前記信号処理部5から得られた
前記検出データ、即ち前記一次元イメージセンサCCD
の画素データのうちピーク値を示すデータが、予め設定
された第一の閾値より大であるか否か、或いは、第一の
閾値より小なる第二の閾値より小であるか否かを比較器
を用いて検知して、ピーク値を示すデータが第一の閾値
より大であれば、測定対象物の形状や表面状態、或いは
測定光線束の入射角度の影響有りと判断して、そのピー
ク値を示すデータが飽和することのないように調整す
る。つまり、ピーク値が第二の閾値より小であれば散乱
光線束検出手段への入射光量が小となっているので液晶
フィルタ12の透過率を上げて(印加電圧を上昇して)
散乱光線束検出手段の出力を高める一方、ピーク値が第
一の閾値より大であれば散乱光線束検出手段への入射光
量が大となっているので液晶フィルタ12の透過率を下
げて(印加電圧を下げて)散乱光線束検出手段の出力を
飽和しないレベルに下げることにより、走査方向に沿っ
て前記散乱光線束検出手段による検出データの大きな変
動を回避する。即ち、前記液晶フィルタ12が、透過率
が調節自在なフィルタ手段となる。
A liquid crystal filter 12 is provided between the optical path A of the scattered light flux, that is, the object to be measured 2 and the fixed mirror 10 '.
And an output adjusting means 13 for adjusting the outputs of the scattered light flux detecting means 9 and 11 by adjusting the transmittance of the liquid crystal filter 12 based on the detection data by the scattered light flux detecting means. is there. More specifically, the output adjusting unit 13 is configured to detect the detection data obtained from the signal processing unit 5, that is, the one-dimensional image sensor CCD.
Compare whether the data showing the peak value of the pixel data of is larger than the preset first threshold value or smaller than the second threshold value smaller than the first threshold value. If the data indicating the peak value is larger than the first threshold value, it is determined that there is an influence of the shape or surface condition of the measurement object or the incident angle of the measurement light beam, and the peak is detected. Adjust so that the data showing the values are not saturated. That is, if the peak value is smaller than the second threshold value, the amount of light incident on the scattered light flux detection means is small, so the transmittance of the liquid crystal filter 12 is increased (the applied voltage is increased).
While increasing the output of the scattered light flux detecting means, if the peak value is larger than the first threshold value, the amount of light incident on the scattered light flux detecting means is large, so the transmittance of the liquid crystal filter 12 is lowered (applied). By lowering the voltage (by lowering the voltage) to a level that does not saturate the output of the scattered light flux detection means, large fluctuations in the detection data by the scattered light flux detection means are avoided along the scanning direction. That is, the liquid crystal filter 12 serves as a filter unit whose transmittance can be adjusted.

【0012】以下、本発明の別実施例を説明する。先の
実施例では、液晶フィルタ12を、測定対象物2と固定
ミラー10’との間に設けたものを説明したが、液晶フ
ィルタ12の配置箇所はこれに限定するものではなく光
源8から受光素子9の間であれば任意である。
Another embodiment of the present invention will be described below. Although the liquid crystal filter 12 is provided between the measurement object 2 and the fixed mirror 10 'in the above embodiment, the location of the liquid crystal filter 12 is not limited to this, and the light source 8 receives light. It is optional as long as it is between the elements 9.

【0013】先の実施例では、液晶フィルタ12を、透
過率が調節自在なフィルタ手段として用いたものを説明
したが、これに限定するものではない。たとえば、走査
速度の遅いものでは、機械的な絞り機構やシャッター機
構を採用することも考えられる。
In the above embodiment, the liquid crystal filter 12 is used as the filter means with adjustable transmittance, but the invention is not limited to this. For example, if the scanning speed is slow, it may be possible to employ a mechanical diaphragm mechanism or a shutter mechanism.

【0014】先の実施例では、光源として、単色のレー
ザ光を用いたものを説明したが、これに限定するもので
はなく光の三原色RGBに対応して三波長のレーザを組
み合わせた光源を用いてカラー対応したものであっても
よい。
In the above embodiment, the light source using a monochromatic laser beam has been described. However, the light source is not limited to this, and a light source combining three wavelength lasers corresponding to the three primary colors RGB of light is used. It may be color compatible.

【0015】先の実施例では、透過率が調節自在なフィ
ルタ手段を前記測定光線束或いは散乱光線束の光路に設
けて、前記検出データに基づいて前記フィルタ手段の透
過率を調節することにより前記散乱光線束検出手段の出
力を調整する出力調整手段を設けたものを説明したが、
これ以外に、検出データに基づいて前記光源から出力さ
れる前記測定光線束の強度を調節することにより前記散
乱光線束検出手段9,11の出力を調整する出力調整手
段13を設けたものや、検出データに基づいて前記散乱
光線束検出手段9,11の出力を調節する出力調整手段
13を設けた構成であってもよい。前者は、光源8自体
の出力を可変に調節するものであり、ピーク値が第二の
閾値より小であれば散乱光線束検出手段への入射光量が
小となっているので光源8の出力を上げて散乱光線束検
出手段の出力を高める一方、ピーク値が第一の閾値より
大であれば散乱光線束検出手段への入射光量が大となっ
ているので光源8の出力を下げて散乱光線束検出手段の
出力を飽和しないレベルに下げるのである。後者は、例
えば、受光素子9としてCCDイメージセンサを用いた
ものに対して、その電荷蓄積時間を可変に調節すること
や、受光素子9の増幅器の増幅率を可変に調節すること
が考えられる。即ち、ピーク値が第二の閾値より小であ
れば散乱光線束検出手段への入射光量が小となっている
ので電荷蓄積時間を長くしたり増幅率を大きくして散乱
光線束検出手段の出力を高める一方、ピーク値が第一の
閾値より大であれば散乱光線束検出手段への入射光量が
大となっているので電荷蓄積時間を短くしたり増幅率を
下げて散乱光線束検出手段の出力を飽和しないレベルに
下げるのである。
In the above embodiment, the filter means having adjustable transmittance is provided in the optical path of the measurement light beam or scattered light beam, and the transmittance of the filter device is adjusted based on the detection data. Although the one having the output adjusting means for adjusting the output of the scattered light flux detecting means has been described,
In addition to the above, an output adjusting means 13 for adjusting the outputs of the scattered light flux detecting means 9 and 11 by adjusting the intensity of the measurement light flux output from the light source based on the detection data, An output adjusting means 13 for adjusting the outputs of the scattered light flux detecting means 9 and 11 based on the detection data may be provided. The former variably adjusts the output of the light source 8 itself. If the peak value is smaller than the second threshold value, the amount of light incident on the scattered light flux detecting means is small, so the output of the light source 8 is reduced. When the peak value is higher than the first threshold value, the amount of light incident on the scattered light flux detection means is large, so the output of the light source 8 is decreased to lower the scattered light flux. The output of the bundle detecting means is lowered to a level at which it is not saturated. For the latter, for example, for a device using a CCD image sensor as the light receiving element 9, it is possible to variably adjust the charge storage time or variably adjust the amplification factor of the amplifier of the light receiving element 9. That is, if the peak value is smaller than the second threshold value, the amount of light incident on the scattered light flux detection means is small, so the charge accumulation time is increased or the amplification factor is increased to output the scattered light flux detection means. On the other hand, if the peak value is larger than the first threshold value, the amount of light incident on the scattered light flux detection means is large, so that the charge accumulation time is shortened or the amplification factor is lowered to reduce the scattered light flux detection means. The output is lowered to a level that does not saturate.

【0016】前記計測部3の構成は特に限定するもので
はなく適宜構成することができ、例えば図3に示すよう
に、光学ヘッドを、測定光線束のみ走査する走査機構と
散乱光線束を受光素子9に導く固定の光学系で構成して
もよいし、光学ヘッドをY軸方向へ移動させることによ
りY軸方向への走査を行う走査機構(これは、モータと
プーリを用いて容易に構成できる)の代わりに、図4に
示すように、測定光線束と反射光線束で形成される平面
をY軸方向に走査するべく、X軸に平行な軸栓周りに回
動自在の反射ミラーを設けて構成してもよい。
The configuration of the measuring unit 3 is not particularly limited and may be appropriately configured. For example, as shown in FIG. 3, the optical head scans the scanning light flux only and the scattered light flux is a light receiving element. It may be configured by a fixed optical system that leads to the optical axis 9, or a scanning mechanism that performs scanning in the Y-axis direction by moving the optical head in the Y-axis direction (this can be easily configured by using a motor and a pulley). 4), a rotatable reflection mirror is provided around a shaft plug parallel to the X-axis in order to scan the plane formed by the measurement light beam bundle and the reflected light beam bundle in the Y-axis direction, as shown in FIG. You may comprise.

【0017】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】三次元画像入力装置の全体構成図FIG. 1 is an overall configuration diagram of a three-dimensional image input device.

【図2】原理を示す説明図FIG. 2 is an explanatory diagram showing the principle.

【図3】別実施例を示す要部の構成図FIG. 3 is a configuration diagram of a main part showing another embodiment.

【図4】別実施例を示す要部の構成図FIG. 4 is a configuration diagram of a main part showing another embodiment.

【符号の説明】[Explanation of symbols]

1 参照面 2 測定対象物 3,4 照射手段 5 信号処理部 8 光源 9,11 散乱光線束検出手段 12 フィルタ手段 13 出力調整手段 DESCRIPTION OF SYMBOLS 1 reference surface 2 measurement object 3,4 irradiation means 5 signal processing section 8 light source 9,11 scattered light flux detection means 12 filter means 13 output adjustment means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源(8)と、その光源(8)からの測
定光線束を参照面(1)上の測定対象物(2)に向けて
照射する照射手段(3),(4)と、前記測定対象物
(2)表面からの散乱光線束を検出する散乱光線束検出
手段(9),(11)と、その散乱光線束検出手段(9),
(11)の検出データに基づいて前記参照面(1)から
前記測定対象物(2)表面までの距離を演算導出する信
号処理部(5)とを備えて構成してある三次元画像入力
装置であって、 透過率が調節自在なフィルタ手段(12)を前記測定光
線束或いは散乱光線束の光路に設けて、前記検出データ
に基づいて前記フィルタ手段(12)の透過率を調節す
ることにより前記散乱光線束検出手段(9),(11)の
出力を調整する出力調整手段(13)を設けてある三次
元画像入力装置。
1. A light source (8), and irradiation means (3), (4) for irradiating a measurement light flux from the light source (8) toward a measurement object (2) on a reference surface (1). , Scattered light flux detecting means (9), (11) for detecting the scattered light flux from the surface of the measurement object (2), and the scattered light flux detecting means (9),
A three-dimensional image input device configured to include a signal processing unit (5) for calculating and deriving a distance from the reference surface (1) to the surface of the measurement object (2) based on the detection data of (11). By providing a filter means (12) with adjustable transmittance in the optical path of the measurement light beam or scattered light beam, and adjusting the transmittance of the filter means (12) based on the detection data. A three-dimensional image input device provided with output adjusting means (13) for adjusting the outputs of the scattered light flux detecting means (9), (11).
【請求項2】 光源(8)と、その光源(8)からの測
定光線束を参照面(1)上の測定対象物(2)に向けて
照射する照射手段(3),(4)と、前記測定対象物
(2)表面からの散乱光線束を検出する散乱光線束検出
手段(9),(11)と、その散乱光線束検出手段(9),
(11)の検出データに基づいて前記参照面(1)から
前記測定対象物(2)表面までの距離を演算導出する信
号処理部(5)とを備えて構成してある三次元画像入力
装置であって、 前記検出データに基づいて前記光源(8)から出力され
る前記測定光線束の強度を調節することにより前記散乱
光線束検出手段(9),(11)の出力を調整する出力調
整手段(13)を設けてある三次元画像入力装置。
2. A light source (8), and irradiation means (3), (4) for irradiating a measuring ray bundle from the light source (8) toward an object to be measured (2) on the reference surface (1). , Scattered light flux detecting means (9), (11) for detecting the scattered light flux from the surface of the measurement object (2), and the scattered light flux detecting means (9),
A three-dimensional image input device configured to include a signal processing unit (5) for calculating and deriving a distance from the reference surface (1) to the surface of the measurement object (2) based on the detection data of (11). Output adjustment for adjusting the output of the scattered light flux detection means (9), (11) by adjusting the intensity of the measurement light flux output from the light source (8) based on the detection data. A three-dimensional image input device provided with means (13).
【請求項3】 光源(8)と、その光源(8)からの測
定光線束を参照面(1)上の測定対象物(2)に向けて
照射する照射手段(3),(4)と、前記測定対象物
(2)表面からの散乱光線束を検出する散乱光線束検出
手段(9),(11)と、その散乱光線束検出手段(9),
(11)の検出データに基づいて前記参照面(1)から
前記測定対象物(2)表面までの距離を演算導出する信
号処理部(5)とを備えて構成してある三次元画像入力
装置であって、 前記検出データに基づいて前記散乱光線束検出手段
(9),(11)の出力を調節する出力調整手段(13)
を設けてある三次元画像入力装置。
3. A light source (8), and irradiation means (3), (4) for irradiating a measuring ray bundle from the light source (8) toward an object to be measured (2) on the reference surface (1). , Scattered light flux detecting means (9), (11) for detecting the scattered light flux from the surface of the measurement object (2), and the scattered light flux detecting means (9),
A three-dimensional image input device configured to include a signal processing unit (5) for calculating and deriving a distance from the reference surface (1) to the surface of the measurement object (2) based on the detection data of (11). And output adjusting means (13) for adjusting the output of the scattered light flux detecting means (9), (11) based on the detection data.
A three-dimensional image input device provided with.
JP4250337A 1992-09-21 1992-09-21 Three dimensional image input system Pending JPH06102026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4250337A JPH06102026A (en) 1992-09-21 1992-09-21 Three dimensional image input system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4250337A JPH06102026A (en) 1992-09-21 1992-09-21 Three dimensional image input system

Publications (1)

Publication Number Publication Date
JPH06102026A true JPH06102026A (en) 1994-04-12

Family

ID=17206422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4250337A Pending JPH06102026A (en) 1992-09-21 1992-09-21 Three dimensional image input system

Country Status (1)

Country Link
JP (1) JPH06102026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9986170B2 (en) 2013-04-30 2018-05-29 Samsung Electronics Co., Ltd. Method and apparatus for sensing spatial information based on vision sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412216A (en) * 1987-07-06 1989-01-17 Nissan Motor Detection of position
JPS6478107A (en) * 1987-09-19 1989-03-23 Nissan Motor Axial end detecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412216A (en) * 1987-07-06 1989-01-17 Nissan Motor Detection of position
JPS6478107A (en) * 1987-09-19 1989-03-23 Nissan Motor Axial end detecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9986170B2 (en) 2013-04-30 2018-05-29 Samsung Electronics Co., Ltd. Method and apparatus for sensing spatial information based on vision sensor

Similar Documents

Publication Publication Date Title
US6509973B2 (en) Apparatus for measuring three-dimensional shape
US6529280B1 (en) Three-dimensional measuring device and three-dimensional measuring method
US5353073A (en) Three-dimensional shape measurement system
US5196716A (en) Method and apparatus for measuring internal defects for position and depth
JP2000002518A (en) Three dimensional input device
US6614537B1 (en) Measuring apparatus and measuring method
JPH06102026A (en) Three dimensional image input system
JPH0429477B2 (en)
JP2987540B2 (en) 3D scanner
JPS60117102A (en) Welding-seam profile-detecting apparatus
CN101320218B (en) Three scanning type silicon slice focusing and leveling measurement apparatus, system and method
JP2733170B2 (en) 3D shape measuring device
JPH06300539A (en) Three-dimensional shape measurement device
JP3286010B2 (en) X-ray fluorescence analyzer and X-ray irradiation angle setting method
JPH0829134A (en) Three-dimensional shape measuring apparatus
JP3290784B2 (en) Crystal defect detection method using confocal optical system
JPH04138325A (en) Sensitivity correcting device for array detector
JPH0280942A (en) Surface inspection apparatus
JPS63138204A (en) Shape measuring method
JPH0526634A (en) Cross section shape measuring method
JP2946381B2 (en) Surface roughness measuring method and device
JP2725200B2 (en) Surface detector
JP2893971B2 (en) Surface profile measuring device
JPS62215815A (en) Method and apparatus for measuring distance
JPH06102021A (en) Three-dimensional shape measuring apparatus