JPH01273673A - Capacitor type stud welding method - Google Patents

Capacitor type stud welding method

Info

Publication number
JPH01273673A
JPH01273673A JP10299388A JP10299388A JPH01273673A JP H01273673 A JPH01273673 A JP H01273673A JP 10299388 A JP10299388 A JP 10299388A JP 10299388 A JP10299388 A JP 10299388A JP H01273673 A JPH01273673 A JP H01273673A
Authority
JP
Japan
Prior art keywords
current
welding
capacitor
weld
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10299388A
Other languages
Japanese (ja)
Inventor
Taizo Nakamura
泰三 中村
Toru Saito
斉藤 亨
Tadayuki Otani
忠幸 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10299388A priority Critical patent/JPH01273673A/en
Publication of JPH01273673A publication Critical patent/JPH01273673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To decrease weld heat input and to improve welding quality by providing plural power supply units and discarding the residual current energy successively when the supply current and weld time of respective capacitors attain respective set values. CONSTITUTION:The plural power supplies A, B are provided and charging voltage regulators 1, 7 and the capacitors 2, 8 are respective disposed thereto. The energy charged in the capacitor 2 is supplied by a switch element 3 to a weld zone 4 and the energy of the capacitor 2 is discarded as the heat generation of a resistor 6 by a switch element 5 when the current value and weld time thereof attain the set value I1, T1. The similar operation is then repeated in the power supply unit B of the 2nd stage to control the welding current I and the weld time T to a required min. limit. The weld heat input is thereby decreased and the thermal strain and damage of the weld zone are minimized. The welding quality is, therefore, improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、棒状の金属を相手材金属に溶接するコンデン
サー式スタッド溶接に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to capacitor stud welding for welding a bar-shaped metal to a mating metal.

(従来の技術) 小径の棒状金属を全屈部材に溶接する方法として簡便、
短時間で溶接熱影響が比較的少ないコンデンサー式スタ
ッド溶接法が多用されている。これらの溶接法は一定容
量のコンデンサーに蓄えたエネルギーを電気的な回路定
数に従って放出して溶接を行なうものであり、その電流
波形の代表例は第2図、第3a図、第3b図および第4
図に示すものである。
(Prior technology) A simple and convenient method for welding a small-diameter rod-shaped metal to a fully bent member.
The condenser stud welding method is widely used because it takes a short time and has relatively little effect on welding heat. These welding methods perform welding by discharging energy stored in a capacitor with a constant capacity according to electrical circuit constants. Typical examples of the current waveforms are shown in Figures 2, 3a, 3b, and 3. 4
This is shown in the figure.

第2図は、通常の自然放電によるものであり、第3a図
、第3b図は、特開昭50−30764号、特公昭48
−36819号公報等で提案されているタイミングをず
らせた2〜3の電流波形を合成したもの、第4図は特公
昭48−36820号公報による1〜ランス巻数比を変
えた電源からの電流波形を合成したものである。
Figure 2 shows the result of normal spontaneous discharge, and Figures 3a and 3b show the results of JP-A No. 50-30764 and JP-B No. 48.
Figure 4 is a composite of two to three current waveforms with shifted timings as proposed in Publication No. 36819, etc., and Figure 4 is a current waveform from a power supply with different lance turns ratios according to Japanese Patent Publication No. 48-36820. It is a composite of

これらは、強固な溶接継手を形成する上で一応目的に見
合った溶接電流が得られるものであるが溶接入熱を必要
最小限に制御する機能が乏しいため溶接熱影響を低減さ
せることが難しい。また溶接点を含む通電回路の回路定
数が変わると電流波形が変化して良好な溶接結果が得ら
れない事が起リがちであった。回路定数が変動する原因
は溶接ケーブルの配置のしかた、溶接部材への給電点と
溶接点間の距離等であり日常の溶接作業で変化が避は難
い場合が多い。このため−射的には上記変動で電流が低
下する危険性が想定されるときは予め電流を高めに設定
して溶接部材強度の低下を防ぐようにする。しかしこの
場合は高電流条件になりやすく溶接熱影響部が広がるの
で美観を重視する薄鋼板へのスタッド溶接には適さない
結果になる。一方、溶接部の外aを重視するあまり電流
の設定を低めにすると溶接部の強度が目標値に達しない
ことがある。
These methods can provide a welding current that is suitable for the purpose of forming a strong welded joint, but it is difficult to reduce the effects of welding heat because they lack the ability to control the welding heat input to the necessary minimum. Furthermore, if the circuit constants of the current-carrying circuit including the welding point change, the current waveform changes, which tends to make it difficult to obtain good welding results. The causes of variations in circuit constants include the way the welding cable is arranged, the distance between the power supply point to the welding member and the welding point, etc., and variations are often unavoidable during daily welding work. For this reason, when there is a risk that the current will drop due to the above fluctuations, the current is set to be higher in advance to prevent a drop in the strength of the welding member. However, in this case, high current conditions tend to occur and the weld heat-affected zone widens, resulting in a result that is not suitable for stud welding to thin steel plates where aesthetics are important. On the other hand, if too much emphasis is placed on the outside a of the weld and the current is set too low, the strength of the weld may not reach the target value.

(発明が解決しようとする問題点) スタッド溶接では溶接する棒状金属の太さに応じて定ま
る必要最小電流があり、また、該電流を継続させる必要
最小時間がある。第5図に従来のコンデンサーからの放
電電流と理想的な溶接電流の関係を模式的に示す。図中
16は、従来の′電流波形であり、17は理想的な電流
波形である9波形16で波形17の最大値IOとその期
間Toを満足するためにはInをはるかに越える大電流
IPとToを大幅に上回る長時間の電流が流れる。
(Problems to be Solved by the Invention) In stud welding, there is a required minimum current that is determined depending on the thickness of the rod-shaped metal to be welded, and there is also a necessary minimum time for continuing the current. FIG. 5 schematically shows the relationship between the discharge current from a conventional capacitor and the ideal welding current. In the figure, 16 is a conventional current waveform, and 17 is an ideal current waveform. In order to satisfy the maximum value IO of waveform 17 and its period To, a large current IP that far exceeds In is required. A current that significantly exceeds To flows for a long time.

継手強度を得る上で必要とされる値を越えた電流は、そ
の電磁力で溶融金属を飛散させたり、溶接部近傍に多大
な熱影響を及ぼす。
If the current exceeds the value required to obtain joint strength, the electromagnetic force will cause the molten metal to scatter, or it will have a significant thermal effect on the vicinity of the weld.

本発明の目的は、継手強度を得る上で必要最小限の電流
を溶接部に供給する事で、十分な継手強度と熱影響の最
小化を実現し、外観の優れた溶接部を得るものであり、
溶接電流の最大値と該電流の持続時間を第5図の理想的
な波形17に極力近づけるように電流波形を制御するス
タッド溶接方法を提供することである。
The purpose of the present invention is to supply the minimum necessary current to the welded part to obtain joint strength, thereby achieving sufficient joint strength and minimizing thermal effects, and obtaining a welded part with an excellent appearance. can be,
It is an object of the present invention to provide a stud welding method in which the current waveform is controlled so that the maximum value of the welding current and the duration of the current are as close as possible to the ideal waveform 17 shown in FIG.

(問題を解決するための手段) 本発明の要旨は、初段のコンデンサーユニットから溶接
電流を供給し、供給電流および通電時間がそれぞれ予め
設定した一定値に達すると初段のコンデンサーに残存す
るエネルギーを廃棄するとともに、次段のコンデンサー
から溶接電流の供給を開始し、供給電流および通電時間
が別に設定した一定値に達すると次段のコンデンサーに
残存するエネルギーを廃棄する動作を連続して個々のコ
ンデンサーユニットに順次行なわせることを特徴とする
コンデンサー式スタッド溶接方法にある。
(Means for solving the problem) The gist of the present invention is to supply welding current from the first-stage capacitor unit, and discard the energy remaining in the first-stage capacitor when the supplied current and energization time reach preset constant values. At the same time, the supply of welding current is started from the next stage capacitor, and when the supply current and energization time reach a separately set fixed value, the energy remaining in the next stage capacitor is discarded. The present invention is directed to a capacitor type stud welding method, which is characterized in that the steps are sequentially performed.

(作用) 以下第1図によって本発明の特徴とする制御方法を説明
する。
(Function) The control method which is a feature of the present invention will be explained below with reference to FIG.

溶接部にエネルギーを供給する電源ユニットを少なくと
も2組以上用意し、必要に応じてこの数を増す。電源ユ
ニットが2組の場合について説明する。
Prepare at least two or more sets of power supply units that supply energy to the welding area, and increase this number as necessary. A case where there are two sets of power supply units will be explained.

第一の電源Aは充電電圧調整器1を経てコンデンサー2
に充電されたエネルギーを溶接開始時にスイッチ素子3
を介して溶接部4に供給する。その後節−の制御信号に
従ってスイッチ索子5で抵抗6を介して、この時点でコ
ンデンサー2に残存するエネルギーを抵抗6の発熱とし
て消費する機能を有する。−力筒2の電源Bは充電電圧
調整器7を経てコンデンサー8に充電されたエネルギー
を第一の制御信号に従ってスイッチ素子9を介して溶接
部4に供給する。その後この時点でコンデンサー8に残
存するエネルギーを第二の制御信号に従ってスイッチ素
子10で抵抗11を介して放出し抵抗11の発熱として
消費する機能を有する。
The first power supply A is connected to a capacitor 2 via a charging voltage regulator 1.
The energy charged in the switch element 3 at the start of welding
It is supplied to the welding part 4 via. It has the function of consuming the energy remaining in the capacitor 2 at this point as heat generated by the resistor 6 via the resistor 6 in the switch cable 5 in accordance with the control signal from the subsequent node. - The power source B of the power tube 2 supplies the energy charged in the capacitor 8 via the charging voltage regulator 7 to the welding part 4 via the switch element 9 in accordance with a first control signal. Thereafter, the energy remaining in the capacitor 8 at this point is released by the switch element 10 via the resistor 11 in accordance with the second control signal, and is consumed as heat generated by the resistor 11.

第一、第二の制御信号について第1図の回路及び第6図
の溶接電流波形で説明する。
The first and second control signals will be explained using the circuit shown in FIG. 1 and the welding current waveform shown in FIG. 6.

第一の電源Aは電流検出器18を有し、溶接電流の信号
を第一の制御信号発生器19に送り、第一の制御信号発
生器は溶接電流および通′市時間が予め設定した一定値
に達すると第一の制御信号20を発生する動作を行う。
The first power source A has a current detector 18 and sends a signal of welding current to a first control signal generator 19, which outputs a welding current and a constant constant of the market time. When the value is reached, the first control signal 20 is generated.

即ち、溶接開始と共にスイッチ素子3がONされコンデ
ンサー2のエネルギーが溶接部4に供給され始め、電流
12が流れだす。電流12が一定値11まで達する事と
溶接開始から一定時間T1が経過した事の2条件を満す
0点で第一の制御信号が発せられる。この信号はスイッ
チ素子5とスイッチ素子9をONする。この結果コンデ
ンサー2から溶接部に供給されていた電流が絶たれ、従
来溶接部に流れていた電流13は抵抗6の発熱として廃
棄されて、コンデンサー8から溶接電流の供給が始まる
。また第二の電源Bは電流検出器21を有し、溶接電流
の信号を第二の制御信号発生器22に送り、第二の制御
信号発生器は溶接電流および通電時間が予め別に設定し
た一定値に達すると第二の制御イ目号23を発生する動
作を行う。
That is, at the start of welding, the switch element 3 is turned on, the energy of the capacitor 2 begins to be supplied to the welding part 4, and the current 12 begins to flow. The first control signal is issued at the 0 point, which satisfies two conditions: the current 12 reaches a constant value 11 and the constant time T1 has elapsed since the start of welding. This signal turns on switch element 5 and switch element 9. As a result, the current supplied to the welding part from the capacitor 2 is cut off, the current 13 that had conventionally flowed to the welding part is discarded as heat generated by the resistor 6, and the supply of welding current from the capacitor 8 begins. Further, the second power source B has a current detector 21, and sends a welding current signal to a second control signal generator 22. When the value is reached, the second control number 23 is generated.

即ち、コンデンサー8から溶接部4へ供給される電流が
一定値■2まで達する事と一定時間T2が経過した事の
2条件が満たされるD点で第二の制御信号が発せられる
。この結果コンデンサー8から溶接部へ供給されていた
電流が遮断され、従来溶接部へ流れていた電流14は抵
抗11の発熱として廃棄される。この様な過程を経て第
5図に点線で示す理想的な電流波形17に近い合成電流
15が作られる。
That is, the second control signal is issued at point D, where two conditions are satisfied: the current supplied from the capacitor 8 to the welding part 4 reaches a constant value (2) and the constant time T2 has elapsed. As a result, the current supplied from the capacitor 8 to the welding section is cut off, and the current 14 that conventionally flowed to the welding section is discarded as heat generated by the resistor 11. Through such a process, a composite current 15 having a shape close to the ideal current waveform 17 shown by the dotted line in FIG. 5 is created.

この方法によればコンデンサー2及びコンデンサー8に
蓄積したエネルギー内スタッド溶接上必、要最小限だけ
を合成して溶接部に供給し、溶接上不用なエネルギーは
溶接部に供給しないで廃棄する制御が可能になる。
According to this method, only the minimum amount of energy accumulated in the capacitors 2 and 8 necessary for stud welding is combined and supplied to the welding part, and energy unnecessary for welding is discarded without being supplied to the welding part. It becomes possible.

スタッド溶接を行う棒状金属が鋼材の場合は棒状の金属
の電流密度が110〜250 A / tm ”になる
11+I2とT、、T2の通電時間が0.1−5 m5
ec。
If the rod-shaped metal to be stud-welded is steel, the current density of the rod-shaped metal will be 110 to 250 A/tm''.
ec.

の範囲に適正な設定値がある。この範囲を下回ると溶接
が不完全になり、また、この範囲を超えると溶接熱影響
が著しくなって溶接部の熱損傷が増大したり、溶融金属
の飛散が激しくなり溶接部の強度も低下するようになる
There is an appropriate setting value within the range of . If it falls below this range, the weld will be incomplete, and if it exceeds this range, the effect of welding heat will become significant, increasing thermal damage to the weld, or the molten metal will scatter violently, reducing the strength of the weld. It becomes like this.

第一の制御信号及び第二の制御信号を発生する電流値と
その通電時間の設定はスタッド溶接を行う棒状金属の断
面積や材質によって適正な値をj双択する必要がある。
It is necessary to select appropriate values for the current value and the current application time for generating the first control signal and the second control signal depending on the cross-sectional area and material of the metal rod to be stud-welded.

(実施例) 厚さ1.6圃の鋼板裏面に直径5 nnφの鋼製ボルト
を以下の設定でスタッド溶接した。
(Example) A steel bolt with a diameter of 5 nnφ was stud-welded to the back surface of a 1.6-thick steel plate with the following settings.

11 =3KA、T1 =3msec、1:2  =3
KA、丁2  =0.2m5ec溶接後捻り試験で継手
強度を確五クシたところ、鋼製ボルトから捻切られるだ
けの強度が得られた。
11 = 3KA, T1 = 3msec, 1:2 = 3
KA, 2 = 0.2m5ec After welding, the strength of the joint was determined by a torsion test, and it was found to be strong enough to be twisted from a steel bolt.

また、溶接部の鋼板表面の最高温度は150℃であり、
この最高温度が1i11i′Igされた期間は50 m
5ec、であった。
In addition, the maximum temperature of the steel plate surface at the welded part is 150°C,
The period during which this maximum temperature was 1i11i'Ig was 50 m.
It was 5ec.

この結果を従来法と比較すると、最高温度が従来法の約
172であり最高温度が150°C以下になるまでの時
間は約177であった。
Comparing this result with the conventional method, the maximum temperature was about 172 in the conventional method, and the time until the maximum temperature became 150° C. or less was about 177.

(発明の効果) 本発明は従来の自然放電による通電と異なり、電流値と
その通電時間を溶接上必要最小限の値に制御する方法で
あるため、従来法より溶接入熱を大幅に低減することが
可能であるのみならず極めて信頼性の高いスタッド溶接
ができる。
(Effects of the invention) Unlike the conventional energization method using natural discharge, the present invention is a method of controlling the current value and the energization time to the minimum value necessary for welding, so the welding heat input is significantly reduced compared to the conventional method. Not only is it possible to perform stud welding, it is also possible to perform extremely reliable stud welding.

従って薄鋼板に溶接を行っても熱歪が極めて少なく、ま
た塗装鋼板への溶接で塗装面の熱による損傷を最小限に
抑制することができる。
Therefore, even when welding to a thin steel plate, thermal distortion is extremely small, and when welding to a painted steel plate, damage to the painted surface due to heat can be suppressed to a minimum.

以上では、溶接しようとする棒状金属の極性が(+)と
なる接続方法で本発明の説明を行ったが、この極性を逆
にしても同様な効果が得られることは言うまでもない。
Although the present invention has been described above using a connection method in which the polarity of the rod-shaped metal to be welded is (+), it goes without saying that the same effect can be obtained even if the polarity is reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する電流制御回路の回路図、第2
図、第3a図、第3b図及び第4図は従来から提案され
ているコンデンサー電源からの放t’lYs流波形図、
第5図は従来のコンデンサーからの放電電流と理想的な
溶接電流とを示す波形図、第6図はコンデンサーから溶
接部へ供給される電流を示す波形図である。 A:第一の電源    B:第二の電源1.2:充電電
圧調整器 2,8:コンデンサー3.9:溶接電流を供
給するスイッチ素子4:スタッド溶接部 S、tO:溶接上不用なコンデンサーのエネルギーを廃
棄するスイッチ素子 6.11 :コンデンサーエネルギーを消費する抵抗1
2:溶接電流 13.14 :従来溶接部に流れていた電d色15:合
成された溶接″電流 I+、I2:設定電流値 TI、T2:設定通電時間C
:第一の制御信号発生時点 D:第二の制御信号発生時点 16:従来の電流波形  17:理想的な電流波形18
.21 Cffi流検比検 出器:第一の制御信号発生器 20:第一の制御信号 22:第二の制御信号発生器 23:第二の制御信号 工p:従来の電流波形の最大値 ■。:理想的な電流波形の電流値 特許出願人 新日本製鐵株弐會社
Figure 1 is a circuit diagram of a current control circuit implementing the present invention, Figure 2 is a circuit diagram of a current control circuit implementing the present invention;
3a, 3b, and 4 are waveform diagrams of t'lYs currents emitted from capacitor power supplies that have been proposed in the past,
FIG. 5 is a waveform chart showing the discharge current from a conventional capacitor and an ideal welding current, and FIG. 6 is a waveform chart showing the current supplied from the capacitor to the welding part. A: First power supply B: Second power supply 1.2: Charging voltage regulator 2, 8: Capacitor 3.9: Switch element for supplying welding current 4: Stud welding part S, tO: Capacitor unnecessary for welding Switch element 6.11: Resistor 1 that consumes capacitor energy
2: Welding current 13.14: Electricity d color that conventionally flows in the welded part 15: Combined welding current I+, I2: Set current value TI, T2: Set energization time C
: First control signal generation point D: Second control signal generation point 16: Conventional current waveform 17: Ideal current waveform 18
.. 21 Cffi current ratio detector: First control signal generator 20: First control signal 22: Second control signal generator 23: Second control signal p: Maximum value of conventional current waveform ■. : Current value of ideal current waveform Patent applicant Nippon Steel Corporation Nikaisha

Claims (1)

【特許請求の範囲】[Claims] 初段のコンデンサーユニットから溶接電流を供給し、供
給電流および通電時間がそれぞれ予め設定した一定値に
達すると初段のコンデンサーに残存するエネルギーを廃
棄するとともに、次段のコンデンサーから溶接電流の供
給を開始し、供給電流および通電時間が別に設定した一
定値に達すると次段のコンデンサーに残存するエネルギ
ーを廃棄する動作を連続して個々のコンデンサーユニッ
トに順次行なわせることを特徴とするコンデンサー式ス
タッド溶接方法。
Welding current is supplied from the first-stage capacitor unit, and when the supply current and energization time reach preset values, the energy remaining in the first-stage capacitor is discarded, and the welding current begins to be supplied from the next-stage capacitor. A capacitor type stud welding method characterized in that each capacitor unit is made to sequentially perform an operation of discarding the energy remaining in the next stage capacitor when the supplied current and energization time reach a predetermined value set separately.
JP10299388A 1988-04-26 1988-04-26 Capacitor type stud welding method Pending JPH01273673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10299388A JPH01273673A (en) 1988-04-26 1988-04-26 Capacitor type stud welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10299388A JPH01273673A (en) 1988-04-26 1988-04-26 Capacitor type stud welding method

Publications (1)

Publication Number Publication Date
JPH01273673A true JPH01273673A (en) 1989-11-01

Family

ID=14342220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10299388A Pending JPH01273673A (en) 1988-04-26 1988-04-26 Capacitor type stud welding method

Country Status (1)

Country Link
JP (1) JPH01273673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172467A (en) * 2000-12-05 2002-06-18 Asia Giken:Kk Capacitor discharge type stud welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172467A (en) * 2000-12-05 2002-06-18 Asia Giken:Kk Capacitor discharge type stud welding method
JP4642215B2 (en) * 2000-12-05 2011-03-02 アジア技研株式会社 Capacitor discharge type stud welding method

Similar Documents

Publication Publication Date Title
CA1175496A (en) Pulse arc welding machine
US4994646A (en) Pulse arc discharge welding apparatus
JP2005238329A (en) Short circuit arc welder and method of controlling the same
CN105307808A (en) System and methods for anomalous cathode event control with control of welding current according to the state detected voltage
JPH07284956A (en) Method and device for controlling current for resistance welding
US6037554A (en) Consumable electrode type pulsed arc welder and controlling method for the same
JPS62296966A (en) Arc welding control circuit for constituent part
US5990443A (en) Plasma torch pilot arc circuit
JPH02268971A (en) Pulse arc welding machine
US11491570B2 (en) Arc welding method
JPH01273673A (en) Capacitor type stud welding method
US11370051B2 (en) Time-based short circuit response
SE511463C2 (en) Method of arc welding with melting electrode
JPS5829575A (en) Electric power source device for welding
US11524353B2 (en) Method of arc welding
EP3685949B1 (en) Arc welding control method
EP3646978A1 (en) Two-stage pulse ramp
JPH09267171A (en) Pulse arc welding ending method, and welding equipment
JP3147046B2 (en) Output control device of consumable electrode type pulse arc welding machine
EP3991900B1 (en) Pulse arc welding power supply
CN114682885B (en) Welding method, device, welding equipment and medium for consumable electrode gas shielded welding
WO2024034363A1 (en) Arc welding method
SU1283912A1 (en) Control device for thyristor converter
JPH038577A (en) Consumable electrode arc welding equipment
JPH0333069B2 (en)