JPH038577A - Consumable electrode arc welding equipment - Google Patents

Consumable electrode arc welding equipment

Info

Publication number
JPH038577A
JPH038577A JP14226489A JP14226489A JPH038577A JP H038577 A JPH038577 A JP H038577A JP 14226489 A JP14226489 A JP 14226489A JP 14226489 A JP14226489 A JP 14226489A JP H038577 A JPH038577 A JP H038577A
Authority
JP
Japan
Prior art keywords
short circuit
current
short
arc
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14226489A
Other languages
Japanese (ja)
Other versions
JP2519321B2 (en
Inventor
Masaru Maruo
丸尾 大
Yoshinori Hirata
平田 好則
Katsuyoshi Hori
勝義 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1142264A priority Critical patent/JP2519321B2/en
Publication of JPH038577A publication Critical patent/JPH038577A/en
Application granted granted Critical
Publication of JP2519321B2 publication Critical patent/JP2519321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To perform short circuiting transfer welding without generating spatters in a stable arc state by changing the proper time of the change of the current and voltage while monitoring the welding transfer state during welding and determining automatically an accurate proper output condition. CONSTITUTION:Short-circuiting or arc being generated is detected from the wire voltage Vp and the short circuit accompanied by the sufficient droplet 4 transfer or the short circuit without being accompanied by the droplet 4 transfer during welding is discriminated according to its signal. As a result, the next time interval t3 between the short-circuits is measured repeatedly from the short circuit completion accompanied by the sufficient droplet 4 transfer to obtain an average value t0m of the time interval between the short circuits. In addition, short circuiting transfer welding is attained by maintaining a high arc current Ip for a period shorter by a specified value t4 than the average value t0m obtained by that time with a next moment of completion of the short circuit accompanied by the sufficient droplet 4 transfer as the starting point and controlling the output of a welding power source 9 so as to change it to a low arc current Ib after passing that period and maintaining the low current Ib when the short circuit ia completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアーク溶接装置に係わり、特に消耗電極と母材
との間でアーク発生と短絡とを繰り返しながら溶接する
消耗電極アーク溶接用の溶接電源に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an arc welding device, and in particular to welding for consumable electrode arc welding, in which arc welding is repeated between a consumable electrode and a base metal by generating an arc and short-circuiting. It is related to power supply.

C従来の技術〕 第4図(A)、(B)、(C)は、消耗電極アーク溶接
における溶滴移行の形態とワイヤ電圧波形及びワイヤ電
流波形との関係を説明するものである。消耗電極(以下
、ワイヤと言う)■と母材2との間でアーク3を発生し
て溶滴4をワイヤ1の先端に形成し、その溶滴4が母材
2にある溶融池5と接触(電気的に見ると短絡)して溶
融池5側に移行することを繰り返して溶接が進む。
C. Prior Art] FIGS. 4(A), (B), and (C) illustrate the relationship between the form of droplet transfer and the wire voltage waveform and wire current waveform in consumable electrode arc welding. An arc 3 is generated between the consumable electrode (hereinafter referred to as wire) ■ and the base metal 2, and a droplet 4 is formed at the tip of the wire 1, and the droplet 4 forms a molten pool 5 on the base metal 2. Welding progresses by repeating contact (short circuit from an electrical point of view) and transfer to the molten pool 5 side.

このようなアーク発生と短絡とを繰り返しながら溶接す
る消耗電極アーク溶接には、従来は第5図の等価回路で
示すように、定電圧を出力する電源部6と、出力電流の
急激な変化を適度に抑えるために電源部6と直列にリア
クトル7を接続した構成の溶接電源8が採用されていた
。第4図の(B)及び゛(C)はその様な電源を用いた
ときのワイヤ電圧及びワイヤ電流波形の例を示している
Conventionally, consumable electrode arc welding, in which welding is performed while repeatedly generating an arc and shorting, requires a power supply unit 6 that outputs a constant voltage and a power supply unit 6 that outputs a constant voltage, as shown in the equivalent circuit of Fig. In order to suppress this to an appropriate level, a welding power source 8 having a configuration in which a reactor 7 is connected in series with the power source section 6 has been adopted. FIGS. 4B and 4C show examples of wire voltage and wire current waveforms when such a power source is used.

第4図において溶滴4が溶融池5と接触(すなわち短絡
)すると〔同図(A)の(ニ)〕、第4図(C)に示す
ようにワイヤ電流は次第に高くなる。溶滴4が溶融池5
側への短絡移行を終了するときにはワイヤと溶融池との
間で繋がっている部分がくびれで(へ)、ついには分離
すなわち短絡が破れ(ト)、アークが再生する。このア
ーク再生する瞬間の電流が高いほど、アークプラズマの
膨張や細くなった溶滴の過熱による蒸発が急激に生じて
、ワイヤ先端に残っていた溶滴や溶融池5を構成してい
る溶融金属を飛び散らせる力が大きくなり、スパッタを
多量に発生する。そして、しばしば、ビード外観の均一
性も損なってしまう。
In FIG. 4, when the droplet 4 comes into contact with the molten pool 5 (that is, short-circuits) [(d) in FIG. 4(A)], the wire current gradually increases as shown in FIG. 4(C). Droplet 4 becomes molten pool 5
When the short-circuit transition to the side ends, the connection between the wire and the molten pool becomes constricted (g), and finally the separation, that is, the short circuit is broken (t), and the arc is regenerated. The higher the current at the moment of arc regeneration, the more rapidly evaporation occurs due to expansion of the arc plasma and overheating of the thinned droplets, and the droplets remaining at the tip of the wire and the molten metal forming the molten pool 5 The force that causes the particles to scatter increases, generating a large amount of spatter. Moreover, the uniformity of the bead appearance is often impaired.

引き続いて、アーク3によるワイヤ先端の溶融が進み(
イ)〜(ロ)、ワイヤ先端に大粒の溶滴4を形成してそ
れをアーク3が下から支える形で保持するが(ハ)、こ
のとき瞬間的に溶融池5と接触し、その接触部に高い電
流が流れて過熱したり、電磁力で溶滴4と溶融池5とを
引き離すことにより瞬間的な接触すなわち瞬間短絡を形
成する。
Subsequently, the melting of the wire tip by arc 3 progresses (
A) to (B), a large droplet 4 is formed at the tip of the wire and is supported by the arc 3 from below (c), but at this time it momentarily comes into contact with the molten pool 5, and the contact A high current flows through the molten pool, causing overheating, or electromagnetic force causes the droplet 4 and the molten pool 5 to be separated, resulting in instantaneous contact, that is, an instantaneous short circuit.

この瞬間短絡を多発する時期(ハ)には、アーク3及び
溶滴4の動きが激しく不安定となっており、しばしば溶
滴4が千切れた形で溶融池5の外に落ち、大粒のスパッ
タを発生する。この瞬間短絡を暫く繰り返している内に
、アーク3が溶滴4を支え切れなくなくて溶融池5と接
触(ニ)し、本格的な溶滴移行(ホ)を開始する。
During this period (c) when instantaneous short circuits occur frequently, the movement of the arc 3 and the droplet 4 becomes extremely unstable, and the droplet 4 often falls outside the molten pool 5 in the form of pieces, resulting in large droplets. Generates spatter. While this instantaneous short circuit is repeated for a while, the arc 3 is unable to support the droplet 4 and comes into contact with the molten pool 5 (d), starting full-scale droplet transfer (e).

このように、スパッタの発生は、溶滴4が溶接ワイヤ1
の先端で大きく成長して溶融池5と短絡しようとする段
階(ハ)や、溶滴4が溶接ワイヤ1先端から切断分離し
てアーク再生する瞬間(ト)に多い。このような現象解
明が進み、最近では、スパッタの形成を防止するには、
アーク再生時(ト)の電流を低くすること、また短絡直
前(ハ)のアーク電流を低くして溶滴4が安定するよう
に図って瞬間短絡の発生をなるべく少なくなるようにす
るのが効果的との知見が一般的なものとなった。そして
最近は溶接電源にインバータ回路が採用され、溶接電流
波形の制御がより容易に出来るようになったので、前記
の知見に基づいた各種の電流波形制御がなされるように
なってきた。
In this way, spatter is generated when the droplet 4 is attached to the welding wire 1.
There are many cases at the stage (c) when the droplet 4 grows large at the tip and tries to short-circuit with the molten pool 5, and at the moment when the droplet 4 is cut and separated from the tip of the welding wire 1 and the arc is regenerated (g). As the elucidation of this phenomenon has progressed, recently, in order to prevent the formation of spatter,
The effect is to lower the current during arc regeneration (g) and to lower the arc current just before the short circuit (c) to stabilize the droplet 4 and to reduce the occurrence of instantaneous short circuits as much as possible. This knowledge has become common knowledge. Recently, inverter circuits have been adopted in welding power sources, making it easier to control welding current waveforms, and various current waveform controls have been implemented based on the above knowledge.

第4図(D)は、そのような知見に基づいて工夫を加え
られた特開昭60−108179号公報記載の発明によ
るワイヤ電流制御の例を示すものである。(A)の溶滴
移行の周期と関係づけて説明すると、短絡開始(ニ)し
だ後暫くの間、即ち、接触が十分に形成される期間Ts
s(1〜4 m s )を置いてから電流を上げ、短絡
部分を通電加熱する。短絡終了直前には溶滴にくびれが
生じて(へ)、その部分の抵抗値が増すことをワイヤ電
圧とワイヤ電流の変化などから検知して、電源からの出
力電流を下げる。アーク再生する時(ト)の電流を瞬間
的に低くし、短絡力9冬了(ト)すると一定の高アーク
電流期間TAPを保った後、低アーク電流lAl1とし
短絡の発生を待っている。
FIG. 4(D) shows an example of wire current control according to the invention described in JP-A-60-108179, which has been devised based on such knowledge. To explain this in relation to the period of droplet transfer in (A), it will be explained for a while after the short circuit starts (d), that is, the period Ts during which contact is sufficiently formed.
s (1 to 4 m s), then increase the current and heat the shorted part. Immediately before the end of the short circuit, a constriction occurs in the droplet, and the increase in resistance at that part is detected from changes in wire voltage and wire current, and the output current from the power supply is reduced. When the arc is regenerated (g), the current is momentarily lowered, and when the short-circuit force has expired (g), a constant high arc current period TAP is maintained, and then the arc current is set to a low arc current lAl1, waiting for the occurrence of a short circuit.

ここでは、溶滴4のくびれ(へ)に伴う電圧の上昇を検
知してから瞬間的に電流を下げようとしているが、特開
昭62−212069号公報に記載されているように、
スパッタの発生で問題になる分離の瞬間の電流は十分に
は下がり切ることが出来なかったり、また電圧によるく
びれの検知がうまく機能するには相当な困難がある。こ
のため、短絡終了してアーク再生するときの電流の抑制
の点での配慮については、未だ改善の余地があるものと
なっていた。
Here, an attempt is made to momentarily lower the current after detecting the rise in voltage due to the constriction of the droplet 4, but as described in Japanese Patent Application Laid-Open No. 62-212069,
The current at the moment of separation, which is a problem due to the generation of spatter, cannot be lowered sufficiently, and there are considerable difficulties in detecting constrictions using voltage. For this reason, there is still room for improvement in terms of suppressing the current when the arc is regenerated after the short circuit ends.

また、高アーク電流期間TAPとその時のアーク電流値
rapはワイヤ送給速度に対応して事前に決められた値
に制御され、その後は低アーク電流のままとして短絡の
発生を待っている。ところが短絡に入る直前に高い電流
値のままであれば、大粒のスパッタを発生するし、また
短絡の発生の周期性についてもそれ程期待できない。そ
して事前の条件設定に変数とし勘案されていないワイヤ
の材質、エクステンション、溶接姿勢など、溶滴な移行
現象に大きく関係する因子があるので、結局はそれらの
影響を無視できる程度にまで、短絡前の低いアーク電流
の期間TAllを長くせざるを得なくなっていた。低ア
ーク電流の期間は、結果としては高アーク電流期間TA
Pと同等程度にされている。
Further, the high arc current period TAP and the arc current value rap at that time are controlled to predetermined values corresponding to the wire feeding speed, and after that, the arc current remains low to wait for the occurrence of a short circuit. However, if the current value remains high just before a short circuit occurs, large spatter particles will be generated, and the periodicity of short circuit occurrence cannot be expected to be that great. In addition, there are factors that are significantly related to the droplet transfer phenomenon, such as the wire material, extension, welding posture, etc., which are not considered as variables in the pre-condition setting, so in the end, the influence of these factors can be ignored before short circuiting. The period TAll of low arc current had to be lengthened. The period of low arc current results in the period of high arc current TA
It is on the same level as P.

しかし、この期間は単に短絡待ちの意義しかなく、その
間アークが持続の点でかなり不安定になるので、できる
だけ短いことが好ましい。また、この期間を余り長くす
ると、母材への入熱も不足し、いわゆる渦流れが悪いと
言った現象を生じる。現実には、それらの兼ね合いから
、結局は多少のスパッタを伴う短めの条件で妥協されて
いる。
However, this period is only useful for waiting for a short circuit, during which time the arc becomes quite unstable in terms of duration, so it is preferable that it be as short as possible. Furthermore, if this period is too long, the heat input to the base material will be insufficient, resulting in a phenomenon called poor swirl flow. In reality, due to these considerations, a compromise is ultimately made with shorter conditions that involve some spatter.

前述の例では、ワイヤ送給速度のみに着目して高アーク
電流状態を設定しているが、実際には溶接中にワイヤ・
エクステンションや溶接姿勢が変化し、またワイヤ材質
も変化するので、それらの条件変化によって最適な移行
周期が変化することまでは対応できていない。この為、
溶接作業に最適な状態をもたらすことには必ずしもなっ
ていない。
In the above example, the high arc current condition is set by focusing only on the wire feed speed, but in reality, the wire feed speed
Since the extension and welding posture change, and the wire material also changes, it is not possible to deal with changes in the optimal transition period due to these changes in conditions. For this reason,
This does not necessarily result in optimal conditions for welding work.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術の多くは、ワイヤ送給速度など一部の溶接条件
因子については配慮を加えながらも、限られた条件につ
いて事前に設定した最適短絡移行状態、短絡移行周期な
どを基準にしたワイヤ電流波形制御を行い、スパッタの
形成を減少しようとしていた。あるいは、短絡の予兆や
短絡終了の予兆を検知して、ワイヤ電流を制御してスパ
ッタの発生を減少しようとしていた。しかし実際には予
兆の検知がかなり困難なため、十分な効果をもたらさな
いと言う問題が残されていた。
Most of the conventional technologies are based on the wire current waveform based on the optimum short-circuit transition state, short-circuit transition period, etc. set in advance for limited conditions, while taking into consideration some welding condition factors such as wire feeding speed. Control was sought to reduce spatter formation. Alternatively, an attempt has been made to detect a sign of a short circuit or a sign of the end of a short circuit and control the wire current to reduce the occurrence of spatter. However, in reality, the problem remained that it was not sufficiently effective because it was quite difficult to detect the signs.

このように、従来技術は溶滴が短絡移行する周期の安定
化、短絡前の溶滴挙動の安定化および短絡終了してアー
ク再生するときの電流の抑制などの点での十分な対策が
なされておらず、スパッタは従来より減少したとは言え
、かなりの量が発生しており、現在なお改善が望まれる
状態にある。
As described above, the conventional technology does not take sufficient measures to stabilize the period in which droplets migrate to short circuits, stabilize the behavior of droplets before short circuits, and suppress the current when the short circuit ends and the arc regenerates. Although the amount of spatter has decreased compared to the past, a considerable amount still occurs, and improvements are still desired.

本発明の目的は、ワイヤ送給速度のみならず、ワイヤ・
エクステンション、溶接姿勢ばか諸溶接条件が変化して
も、常に短絡周期を安定化してワイヤ溶滴の短絡移行の
状態を最適状態に保ち、安定したアーク状態でスパッタ
を殆ど発生しない短絡移行溶接を行う手段を提供する事
にある。
The purpose of the present invention is not only the wire feeding speed but also the wire speed.
Even if various welding conditions such as extensions and welding postures change, the short-circuit cycle is always stabilized to keep the short-circuit transition state of the wire droplets in the optimum condition, and short-circuit transition welding is performed in a stable arc condition with almost no spatter. The purpose is to provide the means.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、消耗電極と母材との間でアーク発生と短
絡とを操り返して溶接する消耗電極アーク溶接装置にお
いて、ワイヤ電圧から短絡中かアーク発生中かを検知し
、その信号により溶接中に十分な溶滴の移行を伴う短絡
か溶滴の移行を伴わない短絡かを判別し、十分な溶滴の
移行を伴う短絡の終了からその次の短絡開始までの短絡
間時間間隔を繰り返し測定して短絡間時間間隔の平均値
を求める一方、次の十分な溶滴の移行を伴う短絡の終了
の瞬間を起点としてそれまでに求めた該平均値より所定
の値だけ短い期間中には高アーク電流を保ち、その期間
が過ぎると低アーク電流にするよう溶接電源の出力を制
御すること、および短絡終了時には低電流としておくこ
とによって達成される。換言すれば、溶滴の移行状態を
勘案した短絡量時間間隔測定結果から次の短絡が形成さ
れると推定された時点より少し前に高アーク電流期間を
終了して短絡に入り、また短絡終了時には低電流として
おくことによって達成される。
The purpose of the above is to detect whether a short circuit or arc is occurring from the wire voltage and use the signal to weld in a consumable electrode arc welding device that welds by controlling arc generation and short circuit between the consumable electrode and the base metal. determine whether the short circuit is with sufficient droplet migration or without droplet migration, and repeat the inter-short time interval from the end of a short circuit with sufficient droplet migration to the start of the next short circuit. While measuring to determine the average value of the inter-short circuit time interval, during a period that is a predetermined value shorter than the previously determined average value starting from the moment of termination of the short circuit with the next sufficient droplet transfer. This is achieved by controlling the output of the welding power source to maintain a high arc current and reduce the arc current to a low arc current after that period, and by leaving the current low at the end of the short circuit. In other words, the high arc current period ends, the short circuit enters, and the short circuit ends a little before the time when the next short circuit is estimated to be formed based on the short circuit amount time interval measurement results that take into account the transfer state of the droplet. This is sometimes achieved by keeping the current low.

〔作用〕[Effect]

アーク光体と短絡とを繰り返しながら溶接する消耗電極
アーク溶接では、ワイヤ送給速度のみならず、ワイヤ材
質、エクステンション、溶接姿勢、シールドガス成分ば
か様々な因子が溶滴の移行現象に影響を及ぼす。しかし
結局は、短絡の周期、期間等で移行状態が集約的に表現
できる。この様な溶接中の短絡の発生状況を見ると、溶
滴移行を伴う短絡は周期的に発生しようとする傾向があ
るが、不規則に住しる瞬間短絡がその周期性を乱してい
ることが知られている。
In consumable electrode arc welding, in which welding is performed by repeatedly shorting the arc light body, various factors affect the droplet transfer phenomenon, including not only the wire feed speed but also the wire material, extension, welding posture, shielding gas composition, etc. . However, in the end, the transition state can be collectively expressed by the period, period, etc. of the short circuit. Looking at the occurrence of short circuits during welding, short circuits accompanied by droplet transfer tend to occur periodically, but irregular instantaneous short circuits disrupt this periodicity. It is known.

第6図は、短絡移行溶接中に生じた100回の短絡につ
いての短絡時間とその発生度数を測定した一例である。
FIG. 6 is an example of measuring the short circuit time and the frequency of occurrence of 100 short circuits that occurred during short circuit transition welding.

短絡後はぼ1msのところが谷となった二つの山を持つ
分布を示している。1 m s以下で山を形成している
短絡は従来から瞬間的短絡と言われてきたもので、現象
を調べて見ると溶滴の移行は多くの場合はとんど伴って
いないことが分かった。そして2〜5 m sの所で山
を形成している短絡は、十分な量の溶滴な移行している
短絡であることが分かった。このようにして2種類の短
絡は、短絡時間がl m sより長いか短いかでほぼ判
別できることが分かった。 安定した溶接を行うには、
溶滴移行を伴う短絡が周期的に規則正しく生じ、かつ1
回に短絡移行する溶滴量が少ない事が望ましい。つまり
、同じワイヤ送給速度に対しては、瞬間短絡を除く、す
なわち実質的に十分な量の溶滴を移行する短絡回数が多
いことが最適条件選択の一つの目安になる。この様なと
き、アーク長さも短くとれ、溶接作業もより容易になる
After the short circuit, the distribution shows two peaks with a valley at about 1 ms. A short circuit that forms a peak in less than 1 ms has traditionally been referred to as an instantaneous short circuit, and an investigation of the phenomenon reveals that in most cases, droplet migration does not occur. Ta. It was found that the short circuit forming a peak at 2-5 ms was a short circuit in which a sufficient amount of droplets had migrated. In this way, it was found that the two types of short circuits can be approximately distinguished based on whether the short circuit time is longer or shorter than l m s. To perform stable welding,
Short circuits accompanied by droplet transfer occur periodically and regularly, and 1
It is desirable that the amount of droplets short-circuited and transferred during the process is small. In other words, for the same wire feeding speed, one criterion for selecting optimal conditions is to exclude instantaneous short circuits, that is, to have a large number of short circuits that transfer a substantially sufficient amount of droplets. In such cases, the arc length can be shortened and welding work becomes easier.

この様な状態に導くには、適量のワイヤ溶融が進むと直
ぐ短絡移行が生じるようにするとよい。
In order to lead to such a state, it is preferable to cause a short-circuit transition to occur as soon as a suitable amount of wire melting progresses.

それには高いアーク電流でワイヤ溶融を進め、溶融池と
接触、すなわち短絡できるはど溶滴が大きくなった時に
アーク電流を急に低下させるとよい。
To do this, it is best to melt the wire with a high arc current, and then suddenly reduce the arc current when the droplet becomes large enough to make contact with the molten pool, that is, to short-circuit it.

するとプラズマ柱の収縮と溶滴が球状になろうとする表
面張力との作用により、溶滴と溶融池の溶融金属は互い
に引き寄せられるように動いて接触し、ワイヤ先端で溶
滴を形成していた溶融金属は溶融池側に移行するように
なるからである。
Then, due to the action of the contraction of the plasma column and the surface tension that causes the droplet to become spherical, the droplet and the molten metal in the molten pool were attracted to each other and came into contact, forming a droplet at the tip of the wire. This is because the molten metal begins to migrate to the molten pool side.

ところで、瞬間短絡は溶滴移行するに十分な大きさの溶
滴を形成してしまってから生じるので、溶滴移行を伴っ
た短絡の終了時点から瞬間短絡を含めた次の短絡開始ま
での期間は、溶滴移行をするに適した量のワイヤ溶融が
進む期間と見做せる。
By the way, an instantaneous short circuit occurs after a droplet large enough for droplet transfer has been formed, so the period from the end of a short circuit accompanied by droplet transfer to the start of the next short circuit, including the instantaneous short circuit, is can be regarded as the period during which wire melting progresses to an appropriate amount for droplet transfer.

それに対して、瞬間短絡終了時点から瞬間短絡を含めた
次の短絡開始までの期間は、溶滴移行をするに適した量
のワイヤ溶融が進む期間の検出には関係の無い、言わば
ノイズである。従って、短絡期間がl m s以上の短
絡を溶滴移行を伴う短絡と見做し、先のl m、 s以
上の短絡終了のあと最初に生じた短絡開始までの期間を
正規の短絡間時間間隔として測定する。短絡期間が1m
s以下の短絡は瞬間短絡として判断し、1ms以下の短
絡から次の短絡に入るまでの時間間隔は測定値から除外
する。この様にして測定した値を基に、短絡移行終了し
てから、次の短絡が開始するまでの平均的な時間間隔を
求め、その値を基に次の短絡が開始する直前を推定し、
短絡直前から低電流にする。
On the other hand, the period from the end of the instantaneous short circuit to the start of the next short circuit, including the instantaneous short circuit, is noise that has nothing to do with detecting the period in which wire melting has progressed to an appropriate amount for droplet transfer. . Therefore, a short circuit with a short circuit duration of l m s or more is regarded as a short circuit accompanied by droplet transfer, and the period from the end of the previous short circuit of l m, s or more to the start of the first short circuit is defined as the regular inter-short circuit time. Measured as an interval. Short circuit period is 1m
A short circuit of 1 ms or less is judged as an instantaneous short circuit, and the time interval from a short circuit of 1 ms or less to entering the next short circuit is excluded from the measurement value. Based on the values measured in this way, find the average time interval from the end of the short circuit transition to the start of the next short circuit, and based on that value estimate the time immediately before the next short circuit starts,
Reduce the current to a low level immediately before a short circuit.

若し推定した時点以前に短絡が生じた時には、直ちに低
電流にし、溶滴の移行を伴う短絡移行が終了するまで低
電流に保つ。
If a short circuit occurs before the estimated time, the current is immediately reduced to a low level and the current is maintained at a low level until the short circuit transfer accompanied by droplet transfer is completed.

以上のようにすると、最初はl m 5以下の瞬間短絡
が生じていても、それを含めた短絡信号を基に、短絡間
時間間隔は一番短い短絡移行状態の間隔に、即ち実質的
に溶滴の移行を伴う短絡の回数がその溶接状態で最も多
い状態に、引き込まれていくようになる。
As described above, even if an instantaneous short circuit of l m 5 or less occurs at first, based on the short circuit signal including it, the time interval between short circuits becomes the shortest short circuit transition state interval, that is, substantially The welding state will be drawn into a state where the number of short circuits accompanied by droplet transfer is the greatest in that welding state.

かくして本発明では、事前の設定ではなく、溶接中の短
絡信号からまさにその条件下に於ける移行の周期を基準
にして、高アーク電流期間の適正値を求めながら溶接す
るようになるので、初めは不規則的に生じている短絡も
、言わば同調をとって自励発振するような形となり、極
めて周期的な現象として移行状態が安定化するようにな
る。このようにして、瞬間短絡が発生しなくなり、溶滴
が大きくなった時期に生じ易かった大粒のスパッタは発
生しな(なる。
Thus, in the present invention, welding is performed while determining the appropriate value for the high arc current period based on the period of transition under the conditions from the short circuit signal during welding, rather than using a preset setting. Short circuits that occur irregularly become synchronized and self-oscillate, so that the transition state becomes stable as an extremely periodic phenomenon. In this way, instantaneous short circuits no longer occur, and large spatter, which tends to occur when the droplets become large, no longer occurs.

短絡直前から低電流にするが、引き続いて、溶滴の短絡
移行が進展し終了する時にも電流を低いままにしておく
と、溶滴が括れて分離するときにも括れ部分の過熱も少
なく、アーク再生の時にも低いアーク電流の小さなプラ
ズマ柱を形成するのみなのでプラズマ柱の膨張も緩やか
であり、スパッタが発生することがない。
If you lower the current just before the short circuit, and then continue to keep the current low even when the droplet short circuit transfer progresses and ends, there will be less overheating of the constricted part when the droplet constricts and separates. Even during arc regeneration, only a small plasma column with a low arc current is formed, so the expansion of the plasma column is gradual and no spatter occurs.

本発明では、自ずと最適の短絡移行周期になるよう溶接
中の短絡移行状態を積算的に修正していくので、短絡終
了から短絡開始間での期間はワイヤ送給速度の関数とす
るなどの事前条件設定などは、本質的には不要である。
In the present invention, the short-circuit transition state during welding is cumulatively corrected so that the short-circuit transition period becomes optimal. Condition settings etc. are essentially unnecessary.

〔発明の実施例〕[Embodiments of the invention]

第1図に、本発明の実施例による(A)溶滴の移行状態
と(B)ワイヤ電圧波形及び(C)ワイヤ電流波形とを
示す。
FIG. 1 shows (A) a transfer state of a droplet, (B) a wire voltage waveform, and (C) a wire current waveform according to an embodiment of the present invention.

l m s以上の短絡を終了(Ta)してからむ(例え
ば、0.3 m s )経過後に、電源の制御を定電圧
特性にしてワイヤ電圧がVpになるように切り替えるが
、それに伴いアーク電流は高くなり高電流1p(例えば
200A)の期間に入り、母材とワイヤの溶融を進行す
る一次にl m s以上の短絡を終了(Ta)してから
後述のも2時間経過後に、電源の制御を定電流特性にし
てベース電流Ib(例えば40A)に切り替える。する
と、アーク電流の急減により、アーク力の減少、プラズ
マ柱の収縮、溶滴の表面張力などの作用、及びワイヤ送
給速度一定でかつワイヤ溶融量が減少するのでワイヤ先
端が次第に母材に近づくことにもよって、溶滴の短絡が
誘起される。先のl m s以上の短絡が終了(Ta’
)してから次の短絡が発生(Ts)するまでの時間t3
を測定する。この+3は短絡の度に測定するが、今回の
設定値をt:+1とし、 t :1)% = 0.8  t ym ’  + 0
.2  t ff−−−−−−−(1)から求めたL3
mを次回の設定値とし、そして、低いアーク電流に保つ
口標時間t4を1msに設定して、 tz  =  txIIj 4           
−−−−−−(2)の関係から、次回の高電流から低電
流に切り替える時間t2の設定値を求める。
After the short circuit of 1 m s or more ends (Ta) and a lapse of 0.3 ms (for example, 0.3 ms), the control of the power supply is switched to constant voltage characteristics so that the wire voltage becomes Vp, but as a result, the arc current becomes high and enters a period of high current 1p (for example, 200A), and the melting of the base metal and wire progresses. After 2 hours have elapsed since the short circuit of 1 m s or more is completed (Ta), the power supply is turned off. Control is set to constant current characteristics and switched to base current Ib (for example, 40 A). Then, due to the sudden decrease in arc current, the arc force decreases, the plasma column contracts, the surface tension of the droplet, etc. acts, and the wire feeding speed remains constant and the wire melt amount decreases, so the wire tip gradually approaches the base metal. This also induces short-circuiting of the droplets. The previous short circuit of l m s or more is completed (Ta'
) until the next short circuit occurs (Ts) t3
Measure. This +3 is measured every time there is a short circuit, but this time the set value is t: +1, t:1)% = 0.8 t ym' + 0
.. 2 t ff---L3 obtained from (1)
Set m as the next set value, and set the gauge time t4 to keep the arc current low to 1 ms, tz = txIIj 4
------- From the relationship (2), find the set value for the next time t2 for switching from high current to low current.

最初の溶接ビードのアーク発生開始時の+3□の設定値
は長めにしておけば、どの様な値でも問題ないが、この
値が不適切な期間中はスパッタが発生するので、早く適
正値に収斂していくために、通常100 m sに設定
してスタートする。次回からの溶接ビードのアーク発生
開始時の+31の設定値は、前回のアーク発生中の値を
記憶しておいて使用している。
As long as the set value of +3□ at the start of the arc generation of the first weld bead is set to a long value, there is no problem with any value, but spatter will occur during the period when this value is inappropriate, so it is necessary to quickly set the value to the appropriate value. In order to converge, we usually start with a setting of 100 ms. The set value of +31 at the time of starting arc generation of the weld bead from the next time onwards is used by storing the value during the previous arc generation.

また、(2)式に従って求めた+2に到達する前に、た
またま溶滴の短絡が発生したときには、それが1ms以
下の瞬間的な短絡であっても、そのまま直ちに低電流の
ベース電流rbに切り替える。この様にして、短絡移行
終了時(へ)には常に低電流rbになっている。短絡移
行終了時(へ)の電流は低い程スパッタは少なくなるが
、実用範囲は60A以下である。しかし20A以下にな
るとアーク再生についての安定性が悪くなる。これらの
兼ね合いから、ベース電流rbを40Aに選択した。4
0A付近では、スパッタは発生せず、しかもアーク再生
の安定性についても、実用上問題ない。
In addition, if a droplet short circuit happens to occur before reaching +2 calculated according to equation (2), even if it is an instantaneous short circuit of 1 ms or less, the current is immediately switched to the lower base current rb. . In this way, the current rb is always low at the end of the short circuit transition. The lower the current at the end of the short circuit transition, the less spatter occurs, but the practical range is 60 A or less. However, if the current is less than 20 A, the stability of arc regeneration deteriorates. Considering these considerations, the base current rb was selected to be 40A. 4
At around 0 A, no spatter occurs, and there is no practical problem with the stability of arc regeneration.

アークスタート時や未だ短絡移行周期が安定し切れない
時期、また通常の溶接中にも、稀に短絡が中々破れず、
l Q m s以上の長い短絡現象が生じる事がある。
At arc start, when the short circuit transition period is still not stable, and even during normal welding, there are rare cases where the short circuit does not break easily.
A short circuit phenomenon lasting longer than 1 Q m s may occur.

このような場合には従来技術で採用されているように、
10m5を超すと即座に300Aなどの大電流を流して
短絡部を加熱して溶断を発生させてアーク再生を行うよ
うにしており、これにより長期短絡によるアーク不安定
現象やワイヤが母材に引つついたまま固まってしまう「
スタッピング」を防止している。即ち、短絡時間t。
In such cases, as adopted in the prior art,
When the length exceeds 10 m5, a large current such as 300 A is immediately applied to heat the short circuit and cause a melt to occur, thereby regenerating the arc. It freezes when I poke it.
This prevents "stipping". That is, the short circuit time t.

も測定しておき、これが10ms以上になるとスタッピ
ングの恐れが生じたとして、高電流に切り替え、速やか
に溶断を生じさせてアーク再生させる。この溶断時には
スパッタの発生が伴うが、このような自体はごく稀にし
か起きないので、全体としてみるときスパッタの発生は
非常に少なくなったと言える。このような制御を採用し
ているので、従来の電源と同程度のアークの持続性が保
たれており、アーク切れやスタッピングなどでとりわけ
て不安定になる事もない。
The current is also measured, and if this exceeds 10 ms, it is assumed that there is a risk of tapping, and the current is switched to a high current to quickly cause a blowout and regenerate the arc. Spatter is generated during this melting, but since this occurs only rarely, it can be said that the amount of spatter generated as a whole has been extremely reduced. Since this type of control is adopted, arc sustainability is maintained at the same level as conventional power supplies, and there is no instability due to arc breakage or tapping.

本実施例では、1ms以上の短絡を終了(T a )し
てから1+  (例えば、0.5 m s )経過後に
、電源の制御を定電圧特性にしてワイヤ電圧がVpにな
るように切り替え、それに伴いアーク電流は高くなり高
電流1p(例えば200A)の期間に入るようにしてい
るが、これは短絡終了後に溶融池とワイヤ先端の溶融金
属の表面形影状が安定する時間として設けたものである
。実際には、電源の出カケープルに付随したりアクタン
スで電流の立ち上がりが抑制される問題もあり、実質的
にt。
In this embodiment, after 1+ (for example, 0.5 ms) has elapsed after the short circuit of 1 ms or more ends (T a ), the control of the power supply is switched to constant voltage characteristics so that the wire voltage becomes Vp, As a result, the arc current increases and enters a period of high current 1p (for example, 200A), but this is provided as a time for the surface shape of the molten pool and the molten metal at the tip of the wire to stabilize after the short circuit ends. be. In reality, there is a problem that the rise of the current is suppressed by the actance associated with the output cable of the power supply, so it is actually t.

はQ m sとして、付加しない場合もある。may not be added as Qms.

また、本実施例での高アーク電流となる時の電流Ipは
、電源9(第2図参照)を定電圧出力特性としてワイヤ
送給速度との兼ね合いから従属的に定まる値にしている
が、ワイヤ速度と関数関係、例えば比例などから定めた
定電流にすることもできる。
In addition, the current Ip at the time of high arc current in this embodiment is set to a value that is determined dependently from the balance with the wire feeding speed, with the power supply 9 (see Fig. 2) having constant voltage output characteristics. It is also possible to use a constant current determined from a functional relationship, such as proportionality, to the wire speed.

低いアーク電流に保つ目標時間L4は、ワイヤ先端で大
きくなった溶滴が、母材に安定して接触するために設け
たものである。余り短いと短絡移行の周期が少し乱れた
ときに、高電流期間中に短絡を生じることになって大粒
のスパッタを形成する頻度が増す。これを避けるために
t4を大きくし過ぎると、アーク電流の平均値が低下し
、ワイヤの溶融量、即ち溶着金属形成量に比較して母材
の溶融が少なくなってビード形状が悪くなり、またアー
クの安定性も悪くなる。適正な範囲は0.5〜3ms程
度であり、本実施例では1msに設定した。
The target time L4 for maintaining the arc current at a low level is provided so that the droplet, which has grown large at the tip of the wire, can stably contact the base material. If it is too short, a short circuit will occur during a high current period when the period of short circuit transition is slightly disturbed, increasing the frequency of forming large spatter particles. If t4 is made too large to avoid this, the average value of the arc current will decrease, and the melting of the base metal will be less compared to the amount of wire melting, that is, the amount of deposited metal forming, resulting in poor bead shape. The stability of the arc also deteriorates. The appropriate range is about 0.5 to 3 ms, and in this example, it was set to 1 ms.

第2図は、本発明に係る溶接電源の主要構成を説明する
図である。3相交流電圧を入力とし、インバータ回路か
らなる直流主電力回路10で直流溶接電流を出力する。
FIG. 2 is a diagram illustrating the main configuration of the welding power source according to the present invention. A three-phase AC voltage is input, and a DC main power circuit 10 consisting of an inverter circuit outputs a DC welding current.

その出力特性は、出力電流検出n1)あるいは出力端子
電圧検出器12からの信号v、、v2を出力制御回路1
)にフィードバックして、定電流特性あるいは定電圧特
性に随時切り替えて制御している。また、短絡検出回路
14では出力端子電圧検出器12からの信号■2を受け
て溶滴4が溶融池5 (共に第1図参照)に接触してい
るかどうか、即ち短絡中かどうか判定し、期間計測・短
絡判別回路15に出力V3 bている。期間計測・短絡
検出回路工5では、短絡時間を測定し、短絡が判別基準
時間設定回路16で設定した判別基準時間1 m s以
上継続しているかどうか、10 m s以上継続してい
るかどうかの判定と、l m、 s以上の短絡の短絡終
了から次の短絡の開始までの時間を測定して、結果を制
御信号回路17に出力v4する。制御信号回路17は主
としてマイクロコンピュータから構成されており、入力
信号v4を基にした演算を行い、定電圧出力として高ア
ーク電流とする期間信号■5を出力制御回路1)に送る
。出力制御回路1)では、定電圧出力の高アーク電流期
間、定電流で低い電流を出力する期間などの出力制御信
号v6を形成し、直流主電力回路10に送る。この様に
構成し、第1図で説明した制御を行っている。
Its output characteristics are that the signals v, , v2 from the output current detector n1) or the output terminal voltage detector 12 are output to the control circuit 1.
), and is controlled by switching to constant current characteristics or constant voltage characteristics at any time. In addition, the short circuit detection circuit 14 receives the signal 2 from the output terminal voltage detector 12 and determines whether the droplet 4 is in contact with the molten pool 5 (see FIG. 1), that is, whether a short circuit is occurring. The output V3b is sent to the period measurement/short circuit discrimination circuit 15. The period measurement/short circuit detection circuit 5 measures the short circuit time and determines whether the short circuit has continued for 1 ms or more or 10 ms or more for the determination reference time set by the determination reference time setting circuit 16. The determination is made, and the time from the end of a short circuit of l m,s or more to the start of the next short circuit is measured, and the result is outputted to the control signal circuit 17 v4. The control signal circuit 17 is mainly composed of a microcomputer, performs calculations based on the input signal v4, and sends a period signal 5 for producing a high arc current as a constant voltage output to the output control circuit 1). The output control circuit 1) forms an output control signal v6 for a high arc current period of constant voltage output, a period of constant current low current output, etc., and sends it to the DC main power circuit 10. With this configuration, the control explained in FIG. 1 is performed.

第3図は、本発明の他の実施例に係る(A)ワイヤ電圧
と(B)ワイヤ電流を示すものである。
FIG. 3 shows (A) wire voltage and (B) wire current according to another embodiment of the present invention.

溶接電源の主要構成は、第2図と殆ど同じで、期間計測
・短絡判別回路15の内部構成の一部が異なる程度なの
で図示は省略した。
The main configuration of the welding power source is almost the same as that shown in FIG. 2, and the only difference is a part of the internal configuration of the period measurement/short-circuit discrimination circuit 15, so illustration thereof is omitted.

短絡移行中のワイヤ電流が低い場合には、溶滴をくびれ
させるまでの時間が長くなり、溶接ワイヤの送給速度が
速い時には、その間にワイヤの未溶融部分までが溶融池
に入り込み、溶接ワイヤが母材に溶着してアーク再発生
に至らなくなる「スタッピング」を生じる可能性が強ま
る。これを防止するために、ワイヤ速度が速いときには
、短絡中にも高電流を流すようにしたものである。この
場合も、ワイヤ電流の値の如何にかかわらず、その状態
での短絡時間に注目した制御を行っている。
If the wire current during short-circuit transition is low, it will take a long time to constrict the droplet, and if the welding wire feeding speed is high, the unmelted part of the wire will enter the molten pool during that time, and the welding wire There is a strong possibility that "stapping" will occur, where the metal will be welded to the base metal and the arc will not re-occur. To prevent this, when the wire speed is high, a high current is allowed to flow even during a short circuit. In this case as well, regardless of the value of the wire current, control is performed focusing on the short-circuit time in that state.

第3図の実施例では、第1図で説明した1ms以上の短
絡終了(Ta’)から短絡開始(T s )までの時間
t、を測定して高電流のアーク発生時間を制御する機能
を持たせたまま、その外に短絡移行の期間も検出し、1
ms以上の短絡開始時点(T s )から一定時間tb
  (1ms)経過後に定電流制御の状態で高電流1s
(150A)に戻して、溶滴の短絡移行終了以前1.に
て再び低電流Ib(40A)に戻すようにしている。即
ち、それ以前のl m s以上の短絡移行中の短絡時間
t。
The embodiment shown in FIG. 3 has a function to control the high current arc generation time by measuring the time t from the end of the short circuit (Ta') of 1 ms or more to the start of the short circuit (Ts) as explained in FIG. While holding it, a period of short circuit transition is also detected, and 1
A certain period of time tb from the short circuit start point (T s ) of ms or more
After (1ms) elapsed, high current 1s under constant current control
(150A) before the short-circuit transition of the droplet is completed. The current is then returned to the low current Ib (40A). That is, the short-circuit time t during the short-circuit transition of more than l m s before that.

について毎回測定して求めた短絡時間の平均値をtl、
′とし、新しく測定した短絡時間をt、として、次式か
ら新しい短絡時間の平均値jsmを求める。
The average value of the short circuit time obtained by measuring each time is tl,
′ and the newly measured short circuit time as t, calculate the new average value jsm of the short circuit time from the following equation.

tsm=0.8  j5m’  + 0.2  ts 
  −−−−−−−(31実際には短絡開始から1ms
経過後に高電流Isにし、そして t 7 = j S+++  o、 5 rn 3  
  −・−−−−−(41から求まるも7時間が短絡開
始から経過後に、再び低電流Ibに戻すようにしている
tsm=0.8 j5m' + 0.2 ts
-----------(31Actually, 1ms from the start of the short circuit
After a period of time, the high current Is is applied, and t 7 = j S+++ o, 5 rn 3
------(It is determined from 41, but after 7 hours have passed from the start of the short circuit, the current is returned to the low current Ib again.

本実施例では、短絡開始時間(Ts)から一定時間tb
 (1ms)経過後に定電流制御の状態で高電流Is 
 (150A)にしているa  j&の期間はもはや大
電流を流しても直ぐに焼切れない程度にまで、溶滴が溶
融池と十分に接触を深めるのに必要な期間で、その様な
接触状態を形成するには通常、0.5 m s以上は必
要である。
In this embodiment, a certain period tb from the short circuit start time (Ts)
(1ms), high current Is in constant current control state after lapse of 1ms.
The period of a j & set at (150A) is the period necessary for the droplet to make sufficient contact with the molten pool to the extent that it will not burn out immediately even if a large current is applied, and such a contact state is maintained. Normally, 0.5 ms or more is required for formation.

また、溶滴の短絡移行終了以前t7にて再び低電流1b
(40A)に戻すようにしているが、LSII j?の
値は、短絡終了時(ト)にワイヤ電流がスパッタを発生
しない程度に十分低くするのに必要な時間から定めてい
る。これは、電源の動特性に関係してくるが、出来るだ
け短くすることが好ましく、本実施例では0.5 m 
sとした。 この実施例によれば、短絡終了時の電流は
十分低いので、スパッタを形成することなく、また短絡
移行中の溶滴は高い電流により抵抗加熱されるので短絡
移行がよりスムースになり、移行時間も短くなるので、
短絡終了した後のアークの再生がより安定化する効果が
ある。
In addition, at t7 before the end of the short-circuit transition of the droplet, the low current 1b is again applied.
(40A), but LSII j? The value of is determined from the time required for the wire current to be sufficiently low to prevent spatter at the end of the short circuit (g). Although this is related to the dynamic characteristics of the power supply, it is preferable to make it as short as possible, and in this example it is 0.5 m.
It was set as s. According to this embodiment, the current at the end of the short circuit is sufficiently low so that no spatter is formed, and the droplets during short circuit transition are resistively heated by the high current, so that the short circuit transition is smoother, and the transition time is is also shorter, so
This has the effect of making arc regeneration more stable after the short circuit ends.

ここに掲げた実施例では、短絡終了から短絡開始までの
平均時間L3mあるいは短絡の平均時間jsmの算出に
は、経済性も考慮し、簡易なマイクロコンピュータで容
易に演算できることから、前記(1)式及び(3)式を
用いたが、これらの式に限られるものではなく、ファジ
ィ理論あるいは知識処理理論に基づいて推定した重み付
きの平均時間などを用いることもできる。また、これら
の時間の計測並びに制御は、マイクロコンピュータに依
らないで、アナログ回路的に構成して実施することもで
きる。
In the embodiments listed here, the calculation of the average time L3m from the end of the short circuit to the start of the short circuit or the average short circuit time jsm takes economic efficiency into consideration, and because it can be easily calculated with a simple microcomputer, the above (1) is used. Although Equation and Equation (3) are used, the present invention is not limited to these equations, and a weighted average time estimated based on fuzzy theory or knowledge processing theory may also be used. Furthermore, the measurement and control of these times can be implemented using an analog circuit instead of relying on a microcomputer.

〔発明の効果〕〔Effect of the invention〕

従来のスパッタ発生対策は、全てプリセット的に電流や
電圧変化の周期や時間を決めていた。それに対して本発
明では、溶接中にその移行状態をモニタしながら電流や
電圧の変化の適正時間を変えるようにして、的確な適正
出力条件が自動的に決められるようにしているので、溶
滴の移行状態がより周期的にそして規則正しくなり、ア
ーク安定性に優れかつスパッタの発生が非常に少ない溶
接が、幅広い溶接条件範囲に対して適用できるようにな
った。
All conventional spatter prevention measures have been based on preset cycles and times of current and voltage changes. In contrast, in the present invention, the transition state is monitored during welding and the appropriate time for changes in current and voltage is changed to automatically determine the appropriate output conditions. The transition state has become more periodic and regular, and welding with excellent arc stability and very little spatter can now be applied to a wide range of welding conditions.

従来の短絡移行する消耗電極アーク溶接では、程度の差
はあれスパッタの発生が避けられないものとなっていた
が、本発明によればスパッタを殆ど発生すること無く短
絡移行アーク溶接が実施できるようになったので、スパ
ッタの発生を嫌う個所の溶接に短絡移行アーク溶接を適
用でき、また通常の用途においても溶接後のスパッタ除
去の操作が不要となる効果がある。また、短絡移行の周
期が安定化するので、溶接ビード表面もより美麗になる
In conventional consumable electrode arc welding with short-circuit transition, the generation of spatter was unavoidable to varying degrees, but according to the present invention, short-circuit transition arc welding can be performed with almost no spatter. As a result, short-circuit transitional arc welding can be applied to welding in locations where spatter generation is averse, and also has the effect of eliminating the need for spatter removal operations after welding even in normal applications. Furthermore, since the cycle of short-circuit transition is stabilized, the weld bead surface becomes more beautiful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶接装置により溶接中の溶滴の移行現
象、アーク電圧波形及びアーク電流波形の説明図、第2
図は本発明の溶接装置の構成図、第3図は本発明の他の
実施例の説明図、第4図は従来技術の説明図、第5図は
従来の溶接電源の説明図、第6図は短絡時間分布を示す
特性図である。 ■・・・ワイヤ、2・・・母材、3・・・アーク、4・
・・溶滴、5・・・溶融池、9・・・溶接電源、10・
・・主電力回路、1)・・・電流検出器、12・・・電
圧検出器、1)・・・出力制御回路、14・・・短絡検
出回路、15・・・期間計測・短絡判別回路、16・・
・判別基準時間設定回路、17・・・制御信号回路。 D¥ン叶則 い′Vや一概 いX−計一田り旨女財 い¥ン糟屓 粥絡醐間 (ms) シールドがス Ar80%−〇0220%
Fig. 1 is an explanatory diagram of droplet transfer phenomenon, arc voltage waveform and arc current waveform during welding by the welding apparatus of the present invention, and Fig. 2
3 is an explanatory diagram of another embodiment of the present invention; FIG. 4 is an explanatory diagram of the prior art; FIG. 5 is an explanatory diagram of a conventional welding power source; The figure is a characteristic diagram showing short circuit time distribution. ■...wire, 2...base material, 3...arc, 4...
...Global droplet, 5... Molten pool, 9... Welding power source, 10.
...Main power circuit, 1)...Current detector, 12...Voltage detector, 1)...Output control circuit, 14...Short circuit detection circuit, 15...Period measurement/short circuit discrimination circuit , 16...
-Discrimination reference time setting circuit, 17...control signal circuit. D¥¥n Kanano Nori'V and general

Claims (5)

【特許請求の範囲】[Claims] (1)アーク電源、ワイヤ送給装置、アークトーチ、シ
ールドガス供給装置とを備え、シールドガス中で消耗電
極と母材との間でアーク発生と短絡とを繰り返して溶接
する消耗電極アーク溶接装置において、 出力電流あるいは出力電圧を制御する出力制御手段と、 ワイヤ電圧から消耗電極と母材との短絡移行中か否かを
検出する短絡検出手段と、 基準時間を設定する基準時間設定手段と、 短絡時間および短絡間隔を計測する計時手段と、前記基
準時間以上の時間の短絡と、基準時間より短い時間の短
絡とを判別する判別手段と、前記短絡間隔を繰り返して
測定した結果に基づいて、基準時間以上の時間の短絡終
了時点から次の短絡の開始までの間に高アーク電流を出
力する期間を定め、その期間中に前記出力制御手段に制
御信号を出力する制御信号出力手段とを備えたことを特
徴とする消耗電極アーク溶接装置。
(1) A consumable electrode arc welding device that is equipped with an arc power source, a wire feeding device, an arc torch, and a shielding gas supply device, and performs welding by repeatedly generating an arc and short-circuiting between the consumable electrode and the base metal in a shielding gas. Output control means for controlling the output current or output voltage; Short-circuit detection means for detecting whether or not a short-circuit transition between the consumable electrode and the base material is occurring from the wire voltage; Reference time setting means for setting a reference time; a timer for measuring the short circuit time and the short circuit interval; a discriminator for determining a short circuit for a time longer than the reference time; and a discriminator for determining a short circuit for a time shorter than the reference time; and based on the results of repeatedly measuring the short circuit interval, A control signal output means for determining a period for outputting a high arc current between the end of a short circuit for a time longer than a reference time and the start of the next short circuit, and outputting a control signal to the output control means during the period. A consumable electrode arc welding device characterized by:
(2)請求項(1)記載において、前記基準時間が1ミ
リ秒であることを特徴とする消耗電極アーク溶接装置。
(2) The consumable electrode arc welding apparatus according to claim (1), wherein the reference time is 1 millisecond.
(3)請求項(1)または請求項(2)記載において、
前記制御信号出力手段が、基準時間以上の時間の短絡が
終了してから1ミリ秒以内に100A以上の高アーク電
流期間に入り、短絡間隔の測定に基づいて次の短絡が生
じると推定される時点より以前の0.5〜3ミリ秒の期
間中に60A以下の定電流に制御する期間に入るように
制御信号を出力する構成になつていることを特徴とする
消耗電極アーク溶接装置。
(3) In claim (1) or claim (2),
The control signal output means enters a high arc current period of 100 A or more within 1 millisecond after a short circuit lasting longer than a reference time ends, and it is estimated that the next short circuit will occur based on the measurement of the short circuit interval. A consumable electrode arc welding device characterized in that it is configured to output a control signal so as to enter a period in which the current is controlled to a constant current of 60 A or less during a period of 0.5 to 3 milliseconds before the point in time.
(4)請求項(1)から請求項(3)記載において、設
定した高アーク電流期間中に短絡が発生したときは、直
ちに60A以下の定電流に制御する期間に入るように制
御信号を出力する構成になつていることを特徴とする消
耗電極アーク溶接装置。
(4) In claims (1) to (3), when a short circuit occurs during the set high arc current period, a control signal is output so as to immediately enter a period in which the current is controlled to a constant current of 60 A or less. A consumable electrode arc welding device characterized by being configured to:
(5)請求項(1)から請求項(4)記載において、前
記基準時間以上の短絡についてその短絡時間を測定する
手段と、 その短絡時間を繰り返し測定した結果に基づき、次の基
準時間以上の時間の短絡中に100A以上の定電流に出
力を制御する期間を定めて、出力制御回路に制御信号を
出力する手段と、 短絡を開始してから1ミリ秒以上経過後に100A以上
の電流に出力制御する期間に入り、基準時間以上の時間
の短絡についての短絡時間測定結果から今回の短絡が終
了すると推定された時点より0.5ミリ秒以前に、60
A以下の電流に出力電流を保つ手段とを備えたことを特
徴とする消耗電極アーク溶接装置。
(5) In claims (1) to (4), there is provided a means for measuring the short circuit time for a short circuit longer than the reference time; A means for determining a period for controlling the output to a constant current of 100 A or more during a short circuit and outputting a control signal to the output control circuit; 60 milliseconds before the time point when the current short circuit is estimated to end from the short circuit time measurement results of the short circuit that has entered the control period and the time longer than the reference time.
A consumable electrode arc welding device characterized by comprising means for maintaining an output current at a current below A.
JP1142264A 1989-06-06 1989-06-06 Consumable electrode arc welding equipment Expired - Fee Related JP2519321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142264A JP2519321B2 (en) 1989-06-06 1989-06-06 Consumable electrode arc welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142264A JP2519321B2 (en) 1989-06-06 1989-06-06 Consumable electrode arc welding equipment

Publications (2)

Publication Number Publication Date
JPH038577A true JPH038577A (en) 1991-01-16
JP2519321B2 JP2519321B2 (en) 1996-07-31

Family

ID=15311300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142264A Expired - Fee Related JP2519321B2 (en) 1989-06-06 1989-06-06 Consumable electrode arc welding equipment

Country Status (1)

Country Link
JP (1) JP2519321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281219A (en) * 2005-03-31 2006-10-19 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
CN103418888A (en) * 2012-05-21 2013-12-04 株式会社大亨 Method for controlling ac pulse electric arc welding
JP2015030033A (en) * 2013-08-07 2015-02-16 株式会社ダイヘン Welding-current control method for welding equipment
JP2015036146A (en) * 2013-08-10 2015-02-23 株式会社ダイヘン Welding current control method during short circuit period

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281219A (en) * 2005-03-31 2006-10-19 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
CN103418888A (en) * 2012-05-21 2013-12-04 株式会社大亨 Method for controlling ac pulse electric arc welding
JP2015030033A (en) * 2013-08-07 2015-02-16 株式会社ダイヘン Welding-current control method for welding equipment
JP2015036146A (en) * 2013-08-10 2015-02-23 株式会社ダイヘン Welding current control method during short circuit period

Also Published As

Publication number Publication date
JP2519321B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US6933466B2 (en) Method and apparatus for arc welding with wire heat control
US9421631B2 (en) Squeezing detection control method for consumable electrode arc welding
KR100493125B1 (en) Short circuit arc welder and method of controlling same
EP0133448B1 (en) Output control of short circuit welding power source
US6653595B2 (en) Method and apparatus for welding with output stabilizer
JP4291257B2 (en) Short-circuit arc welder and control method thereof
JP6778855B2 (en) Pulse arc welding control method and pulse arc welding equipment
US4994646A (en) Pulse arc discharge welding apparatus
KR20140144730A (en) Improved process for surface tension transfer short circuit welding
WO2017029783A1 (en) Arc welding control method
JP6524412B2 (en) Arc welding control method
JPH038577A (en) Consumable electrode arc welding equipment
SE511463C2 (en) Method of arc welding with melting electrode
JPH0127825B2 (en)
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JP2969069B2 (en) Output control device of consumable electrode type pulse arc welding machine
JPH01299769A (en) Output control method for gas shielded arc welding power source
JPH03281063A (en) Method for controlling output of welding power source
JPH0557071B2 (en)
JPS58224070A (en) Arc welding
CN114682885B (en) Welding method, device, welding equipment and medium for consumable electrode gas shielded welding
JPH09136162A (en) Carbon dioxide shielded pulse arc welding method
JP2024030684A (en) Pulsed arc welding control method
RU2035277C1 (en) Method of dip transfer arc welding
JPS59202173A (en) Controlling method of current for welding accompanying short circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees