JPH01272973A - Method and apparatus for laser magnetic immunoassay - Google Patents

Method and apparatus for laser magnetic immunoassay

Info

Publication number
JPH01272973A
JPH01272973A JP10291888A JP10291888A JPH01272973A JP H01272973 A JPH01272973 A JP H01272973A JP 10291888 A JP10291888 A JP 10291888A JP 10291888 A JP10291888 A JP 10291888A JP H01272973 A JPH01272973 A JP H01272973A
Authority
JP
Japan
Prior art keywords
magnetic field
image
laser
magnetic
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10291888A
Other languages
Japanese (ja)
Other versions
JPH07111433B2 (en
Inventor
Koichi Fujiwara
幸一 藤原
Hiromichi Mizutani
水谷 裕迪
Hiroko Mizutani
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10291888A priority Critical patent/JPH07111433B2/en
Publication of JPH01272973A publication Critical patent/JPH01272973A/en
Publication of JPH07111433B2 publication Critical patent/JPH07111433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve measurement accuracy by subjecting both of an inclined magnetic field generator and the water surface of an inspection vessel to irradiation of laser light and detecting the position of the image of the inclined magnetic field generator formed of the light reflected from the water surface. CONSTITUTION:A magnetic material-labeled specimen complex after the antigen- antibody reaction effected with the specimen and a labeling body of magnetic material is housed in the inspection vessel 1. A magnetic circuit in which the magnetic fluxes emitted from an electromagnet 10a penetrate through the vessel 1 and return again to the electromagnet 10a through a magnetic pole piece 10b, a height adjuster 10c, and yokes 10d-10f is formed. Since the front end of the magnetic pole piece 10b is formed to a sharp pointed shape, the magnetic field on the surface of the vessel 1 right under the front end part of the magnetic pole piece 10b is highest. The magnetic material-labeled specimen complex is, therefore, condensed to this position. The laser beam emitted from a laser light source 50 is made into an incident luminous flux 52 by a laser expander 51. The specimen housing part 1a and the front end of the magnetic pole piece 10b are simultaneously irradiated by this luminous flux. The luminous flux is reflected from the water surface and is formed as an image on a screen 54.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、抗原抗体反応を利用した免疫測定方法及び装
置に関するものである。更に詳述するならば、本発明は
極めて微量の検体から特定の抗体または抗原を定b1的
に検出可能なレーザ磁気免疫測定方法及び装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an immunoassay method and apparatus that utilize antigen-antibody reactions. More specifically, the present invention relates to a laser magnetic immunoassay method and apparatus that can consistently detect a specific antibody or antigen from an extremely small amount of specimen.

〔従来の技術〕[Conventional technology]

後天性免疫不全症候群、成人工細胞白血病等のようイ1
新型つィルス刊疾病、あるいは各種ガンの早期検査法ど
して、抗原抗体反応を利用した免疫測定法の開発が、現
イ1、世界的規模で推進されている。
Acquired immunodeficiency syndrome, adult engineered cell leukemia, etc.1
The development of immunoassay methods that utilize antigen-antibody reactions is currently being promoted on a global scale as an early detection method for new viral diseases and various cancers.

従来から知られる一次反応を利用した微W免疫測定方法
としては、ラジオイムノアッセイ(以下、RIA法と記
す)、酸素イムノアラレイ(ElΔ)、蛍光イムノアラ
レイ法等が既に実用化されている。これらの方法は、そ
れぞれアイソト−プ、酵素、蛍光物質を標識として付加
した抗原または抗体を用い、これと特異的に反応りる抗
体または抗原の有無を検出する万−法である。1 RIA仏は、標識化されたアイソ1〜−ブの放射線各1
を測定することにJ、り抗原抗体反応に奇〜した検体量
を定量Jるものであり、ピ]グラム程瓜の超微H1測定
が可能2r現在川1−のlj法である。しかしながら、
この方法は放射性物質を利用覆るので、特殊設備を必要
どし、また、」′減期等による標識効果の減衰等を考慮
しなければならないので、実施には大きな制約がある。
As conventionally known microW immunoassay methods using primary reactions, radioimmunoassay (hereinafter referred to as RIA method), oxygen immunoarray (ElΔ), fluorescence immunoarray method, etc. have already been put into practical use. These methods are universal methods that use antigens or antibodies labeled with isotopes, enzymes, or fluorescent substances, respectively, and detect the presence or absence of antibodies or antigens that specifically react with the antigens or antibodies. 1 RIA France has 1 labeled iso-1 to 1 radioisotope each.
This method is used to quantify the amount of a sample that exhibits an antigen-antibody reaction, and is capable of measuring ultrafine H1 in melons. however,
Since this method uses radioactive substances, it requires special equipment, and it is also necessary to take into account the attenuation of the labeling effect due to shelf life, etc., so there are major restrictions on its implementation.

更に、放射性廃棄物処理が社会問題となっている現状を
8處すると、その実施は自ずと制限される。
Furthermore, given the current situation in which radioactive waste disposal has become a social issue, its implementation will naturally be limited.

一方、酵素、蛍光体をe!識として用いる方法は、抗原
抗体反応に寄与した検体量を、発色や発光を観測するこ
とにより検出する方法であり、RIA法の如き実施上の
制約はない。しかしながら、発色あるいは発光を精密に
定量することは困難であり、検出限界はナノグラム程度
である。
On the other hand, enzymes and fluorophores are e! The method used for detection is a method of detecting the amount of a specimen that has contributed to an antigen-antibody reaction by observing color development or luminescence, and there are no practical restrictions like the RIA method. However, it is difficult to accurately quantify color development or luminescence, and the detection limit is on the order of nanograms.

また、レーデ光を利用して抗原抗体反応の有無を検出す
る方法として、主に肝臓癌の検出を目的として開発され
たAFP (アルファ・フエ1〜プロティン)を利用し
た方法がある。
Furthermore, as a method for detecting the presence or absence of an antigen-antibody reaction using Rede light, there is a method using AFP (alpha-fue-1-protein), which was developed mainly for the purpose of detecting liver cancer.

この方法は、AFPに対する抗体をプラスチ・ンク微粒
子に付加し、抗原抗体反応によってプラスナック粒子が
凝集して生じる質量変化から調べる方法であり、10 
  gの検出感度を達成している。これは、従来のレー
ザ−光を用いた方法の自信以上の感度であるが、l’<
 I A法に比較すると百分の一以下に過ぎない3.更
に、この方法が水溶液中における抗原抗体複合物のブラ
ウン運動の変化を利用しているために、抗体を含む水溶
液の湿度、福江の影響あるいは水溶液に混在する不純物
粒子の影響を極めて受【ノ易く、これ以上に検出感度を
高めることは原理的に望外のものである。
In this method, antibodies against AFP are added to plasticine particles, and the mass change caused by the aggregation of plasticine particles due to the antigen-antibody reaction is investigated.
A detection sensitivity of 1.5 g has been achieved. This is more sensitive than the conventional method using laser light, but l'<
Compared to the IA method, it is less than one hundredth.3. Furthermore, because this method utilizes changes in the Brownian motion of antigen-antibody complexes in aqueous solutions, it is extremely susceptible to the effects of the humidity of the aqueous solution containing antibodies, the influence of Fukue, or impurity particles mixed in the aqueous solution. , it is fundamentally undesirable to increase the detection sensitivity beyond this.

上述のにうに、従来の免疫測定手段においては、高い検
出感度を有するRIA法は、放射性物質を使用するため
に、その実施については多くの制約があり、一方、実施
の容易な酵素イムノアラレイ法、蛍光イムノアッセイ法
等は感度が低く、精密な定量的測定ができなかった。
As mentioned above, in conventional immunoassay methods, the RIA method, which has a high detection sensitivity, has many restrictions on its implementation due to the use of radioactive substances.On the other hand, the easy-to-implement enzyme immunoarray method, Fluorescent immunoassay methods have low sensitivity and cannot perform precise quantitative measurements.

そこで、本発明者らは、本発明に先立って、R■△に匹
敵する検出感度並びに精痕を有しながら、実施上の制限
のない新規な免疫測定り法及び装「ノを提供した。すな
わち、本発明者らは、従来の方法とは原理を異にする免
疫測定方法の研究を行ない、先に、特願昭61−224
567号、特願昭61−252427号、特願昭61 
= 254.164号、特願昭62−22062号、特
願昭62−一  6 − 22063号、特願昭62−152791号、特願昭6
2−152792号、特願昭62−18/′1902号
、特願昭62−264319号、特願昭C52−267
/I 81号どじてレーザ磁気免疫測定方法及び測定装
置についての発明を特許出願している8、これらの新し
い免疫測定方法は標識材料として磁性体微粒子を用いる
点に特徴があり、アイソ1〜−ブを用いないでピコグラ
ムの超微量検出が可fil: ′cある。本発明者らは
上述の特許に基づぎ、磁性微粒子を抗原あるいは抗体に
標識し、初めてウィルスの検出等を行なった。この新し
いレーザ磁気免疫測定力法は、従来最も検出感度が高い
どされているR1へ法よりも検出感度が高いことが確認
されつつある。例えば、本発明者らが日本ウィルス学会
第35回総会(昭和62年11月 岡演番号4011r
新しく開発した免疫測定装置を用いたウィルスの検出実
験」)で発表しtCように、不活性化したインノルユー
ン1アウイルスA、B型をウィルスの−[デルとして用
いて、ウィルス検出実験を<−i 1.ヱつだところ、
1−中に1程度度のウィルスが存在する場合でも検出で
きた3、レーザ光を濃縮された検体に照射して検体から
の反射光を検出する方法は、このにうに検出感度が高い
方法である。
Therefore, prior to the present invention, the present inventors provided a novel immunoassay method and device that has a detection sensitivity and seminal fluid comparable to R■△, but has no practical limitations. That is, the present inventors conducted research on an immunoassay method that differs in principle from conventional methods, and previously filed a patent application No. 61-224.
No. 567, Patent Application No. 1983-252427, Patent Application No. 1983
= No. 254.164, Japanese Patent Application No. 62-22062, Japanese Patent Application No. 1983-16-22063, Japanese Patent Application No. 152791-1983, Japanese Patent Application No. 1983
No. 2-152792, Japanese Patent Application No. 62-18/'1902, Japanese Patent Application No. 62-264319, Japanese Patent Application No. C52-267
/I No. 81 has filed a patent application for the invention of a laser magnetic immunoassay method and a measuring device.8 These new immunoassay methods are characterized by the use of magnetic particles as labeling materials, and are It is possible to detect ultra-trace amounts of picograms without using a probe. Based on the above-mentioned patent, the present inventors labeled magnetic fine particles with antigens or antibodies and detected viruses for the first time. It is being confirmed that this new laser magnetic immunoassay method has higher detection sensitivity than the R1 method, which has traditionally been considered to have the highest detection sensitivity. For example, the present inventors published the 35th general meeting of the Japanese Society of Virology (November 1988, No. 4011r).
Virus detection experiments using a newly developed immunoassay device (tC) reported that virus detection experiments were carried out using inactivated Innoluune 1A virus types A and B as virus -[dels]. i1. Etsuda place,
1- It was possible to detect even if there was a virus of about 1 degree in the sample. 3. The method of irradiating a concentrated sample with a laser beam and detecting the reflected light from the sample is a method with high detection sensitivity. be.

〔発明が解決しJ:うとする課題〕[Problems that the invention attempts to solve]

本発明は、前記の新しい原理のレーザ磁気免疫測定方法
において、定量性の向上と装置の調整を容易にすること
をねらったものである。即ち、本発明に特有の解決サベ
き課題は、抗原あるいは抗体を磁性体微粒子にJ:り標
識した磁性体標識体と検体とを抗原抗体反応させてなる
磁性体標識体複合体の溶液中における濃縮位置での磁界
が前記複合体からの反射光の強度に直接間わる特徴に基
因するものである。そのため、磁界を再現よく一定に保
持Jることが必要になる。前記濃縮位置での磁界は傾斜
磁界発生装置と検体容器の距離に依存する。特に、前記
傾斜磁界発生装置が上方に聞ト1を右する検体容器を挟
むようにして設置された2つの磁界と磁界発生器とから
構成されている場合は、該検体容器の水面の真上に配置
された一方の!18iと水面との距離を一定にしなくて
はならない。
The present invention aims to improve quantitative performance and facilitate adjustment of the apparatus in the laser magnetic immunoassay method based on the new principle described above. That is, the problem to be solved unique to the present invention is to solve the problem in a solution of a magnetically labeled complex formed by subjecting a sample to an antigen-antibody reaction with a magnetically labeled body in which an antigen or an antibody is labeled with magnetic fine particles. This is due to the fact that the magnetic field at the concentration location is directly related to the intensity of the reflected light from the composite. Therefore, it is necessary to maintain the magnetic field constant with good reproducibility. The magnetic field at the concentration position depends on the distance between the gradient magnetic field generator and the sample container. In particular, when the gradient magnetic field generator is composed of two magnetic fields and a magnetic field generator installed so as to sandwich a sample container with the sample container above, the gradient magnetic field generator is placed directly above the water surface of the sample container. On the other hand! The distance between 18i and the water surface must be kept constant.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記課題を解決するためになされたもので、
まず、次のような構成を有するレーデ磁気免役よ11定
り法(・ある9、η゛なわら、所定の抗原あるいは抗体
に磁性体微粒子を標識としく付加した磁性体42識体と
、検体たる抗体あるい【よ抗原とを抗原抗体反応さける
第1王程と、前記第1丁程後の磁性体標識体と検体との
複合体である磁性体標識検体複合体を含む溶液に磁界を
作用ざぜてレーザ光照射領域に前記磁性体標識検体複合
体を誘導・濃縮させる第2工程と、を少なくども含むレ
ーザ磁気免疫測定方法において、レーザ光を傾斜磁界発
生装置と検体容器の水面の双方に照射し、イの時のそれ
ぞれの前記水面からの反射光により形成される前記傾斜
磁界発生装置の像の位置を検出することによって、前記
磁性体標識検体複合体の濃縮位置における磁界を調節す
ることを特徴とするレーザ磁気免疫測定方法である、。
The present invention has been made to solve the above problems,
First, a magnetic substance 42 labeled with magnetic particles added to a predetermined antigen or antibody as a label, and a sample A magnetic field is applied to a solution containing a magnetically labeled specimen complex, which is a complex of a magnetically labeled substance and a specimen after the first stage, to avoid an antigen-antibody reaction with the antibody or antigen. A laser magnetic immunoassay method that includes at least a second step of inducing and concentrating the magnetically labeled specimen complex in the laser beam irradiation region by directing the laser beam to both the gradient magnetic field generator and the water surface of the specimen container. and detecting the position of the image of the gradient magnetic field generator formed by the reflected light from the water surface at each time of A, thereby adjusting the magnetic field at the concentration position of the magnetically labeled specimen complex. A laser magnetic immunoassay method characterized by:

前記構成において、本発明では、前記傾斜磁界発生装置
の像として、傾斜磁界発生装置に直接照射された後のレ
ーザ光が前記水面から反射して形成される実体陰影像と
、前記水面に映った前記傾斜磁界発生装置の投影像上に
照射されたレーリ゛光が該水面から反射して形成される
投影反射像との2つの像を利用て・きる。
In the above structure, the present invention provides, as an image of the gradient magnetic field generator, a solid shadow image formed by the laser beam directly irradiated to the gradient magnetic field generator being reflected from the water surface, and a solid shadow image formed by reflecting the laser beam from the water surface. Two images can be used: a projected reflected image formed by the reflection of the Rayleigh light irradiated onto the projected image of the gradient magnetic field generator from the water surface.

ざらに、前記構成にJ3いて、本発明では、前記水面か
らの反射光中の前記傾斜14i5’J発件装置αの実体
陰影像と投影反射像とを対称位置とJる中心位置に受光
器を設置することを特徴とする。
Roughly speaking, in the above configuration, in the present invention, a light receiver is provided at a central position that is symmetrical with the solid shadow image and projected reflected image of the tilted 14i5'J projecting device α in the reflected light from the water surface. It is characterized by the installation of

また、本発明によれば、前記測定方法を好適に実施でき
る測定装置が提供される。すなわち、磁性体微粒子によ
って標識された磁性体標識検体複合体を含む溶液を収容
する検査容器と、レーザ光を前記検査容器の表面へ導く
入射光学系と、前記検査容器の表面のレーザ光照射領域
の一点に前記磁性体標識検体複合体を誘導・濃縮する傾
斜磁界発生装置と、前記磁性体標識検体複合体からのレ
ーザ光の反射光を受りる受光系と、を少なくとも含むレ
ーデ磁気免疫測定装置であって、前記レーず光を前記傾
斜磁界発生装置と検体容器の水面との双方に同時もしく
は時系列に照射した時の反射光を受光器に受【ツー(前
記傾斜磁界発生装置の像を検出する検出部と、この検出
部による像の位「?検出に基いて前記傾斜磁界発生装置
により前記磁性体標識検体複合体の濃縮位置における磁
界を調節する磁界調整機構部と、が設置)られているこ
とを特徴とJるレーザ磁気免疫測定装置である。
Further, according to the present invention, there is provided a measuring device that can suitably carry out the above measuring method. That is, a test container containing a solution containing a magnetically labeled specimen complex labeled with magnetic fine particles, an incident optical system that guides a laser beam to the surface of the test container, and a laser beam irradiation area on the surface of the test container. A Rede magnetic immunoassay comprising at least a gradient magnetic field generating device that guides and concentrates the magnetically labeled specimen complex at one point, and a light receiving system that receives reflected laser light from the magnetically labeled specimen complex. The apparatus comprises a light receiver that receives reflected light when the laser light is applied to both the gradient magnetic field generator and the water surface of the sample container simultaneously or in chronological order (an image of the gradient magnetic field generator). and a magnetic field adjustment mechanism section that adjusts the magnetic field at the concentration position of the magnetically labeled sample complex by the gradient magnetic field generator based on the detection of the image position by the detection section. This is a laser magnetic immunoassay device characterized by:

前記構成において、本発明では、前記検出部の受光器と
して、例えば、スクリーン、受光素子、撮像管を利用で
きる。
In the above configuration, in the present invention, for example, a screen, a light receiving element, or an image pickup tube can be used as the light receiver of the detection section.

(作用) 周知のごとく、極微少量物体を検出する極限計測技術に
おいては常に検出@度と共に、測定の定量性、再現性を
どう確保するかが重要課題である。
(Function) As is well known, in extreme measurement technology for detecting extremely small amounts of objects, the important issue is how to ensure not only detection but also quantitative performance and reproducibility of measurement.

本発明に従うレーザ磁気免疫測定方法は、測定の定量性
、再現性の向上に寄与するものであって、検体容器と傾
斜磁界発生装置との距離を簡単な方法でモニターするこ
とによって、磁界を再現にり一定に保つことが出来る。
The laser magnetic immunoassay method according to the present invention contributes to improving the quantitativeness and reproducibility of measurements, and reproduces the magnetic field by monitoring the distance between the sample container and the gradient magnetic field generator using a simple method. It is possible to keep the temperature constant.

特に、前記傾斜磁界発生装置が上方に開口を右する検体
容器を挟むようにして設置された2つの磁界と磁界発生
器とから構成されている場合は、該検体容器の水面の真
上に配置された一方の磁極と水面との距離を一定にしな
くてはならない。その解決策としては、検体容器の水位
を測定する方法が一般的であるが、検体容器中に設けら
れた検体収容部の直径【よ通常10ttm稈度で小さい
lcめ、水位計としては特殊なものが必要になる。本発
明は水位計を用いないで、レーザ光を磁極と検体容器の
水面の双方に照射し、その時の反射光を受光して得られ
る該磁極の実体陰影像と投影反射像との距離を測定すれ
ば、この距離は磁極と検体容器の水面どの距離と比例関
係にあるから磁極と検体容器の水面との距離を知ること
が出来る。通常、前記距離の絶対値を求める必要はなく
、前記実体陰影像と投影反射像とのv[+離をあらかじ
め定めておぎ、検体毎にこの距離を維持するJ:うに検
体容器の位置を調節覆ればJ、い。
In particular, when the gradient magnetic field generator is composed of two magnetic fields and a magnetic field generator installed to sandwich a sample container with an upward opening, the gradient magnetic field generator is arranged directly above the water surface of the sample container. The distance between one magnetic pole and the water surface must be constant. A common solution to this problem is to measure the water level in the sample container. You will need something. The present invention does not use a water level gauge, but instead measures the distance between the solid shadow image of the magnetic pole and the projected reflected image obtained by irradiating a laser beam onto both the magnetic pole and the water surface of the sample container, and then receiving the reflected light. Then, since this distance is proportional to the distance between the magnetic pole and the water surface of the sample container, the distance between the magnetic pole and the water surface of the sample container can be known. Normally, it is not necessary to find the absolute value of the distance, and the distance v[+] between the solid shadow image and the projected reflection image is determined in advance, and this distance is maintained for each sample.J: Adjust the position of the sea urchin sample container. If you cover it, J, yes.

一例どして、一定距離に離してKMした2つの受光素子
を前記距離の検出に用いることができる。
For example, two light-receiving elements KM separated by a certain distance can be used to detect the distance.

かくして、前記濃縮位置の磁界は測定の都度一定の値に
保たれることになるから、測定値の定量性、再現性を確
保することが出来る。
In this way, the magnetic field at the concentration position is maintained at a constant value each time the measurement is performed, so that quantitative properties and reproducibility of the measured values can be ensured.

また、本発明の特徴の一つとして、前記実体陰影像と投
影反射像の中心対称点が磁極の真下の水面であり、この
水面は即ち前記濃縮位置に他ならない。従って、この濃
縮位置に濃縮された磁性体標識検体複合体からの反射光
は前記中心対称点を中心として出射されているから、こ
の中心対称点に受光器を設置すれば再現性よく、前記磁
性体標識検体複合体の信号を検出することが出来る。こ
の特徴を利用して、受光器の位置の調整を効果的に実m
iることが出来る。受光器としては、前記したように、
スクリーンもしくは受光素子もしくは撮像管が選択でき
る。特に、本発明者らが先に発明した干渉法にに、り検
体を定量する場合は、前記中心対称点がスクリーン上に
写った干渉縞の中心となることから、本発明の場合、干
渉縞中心が常に同じ位置に現れ、干渉縞の81測の際に
非常に役に立つ。
Further, as one of the features of the present invention, the central symmetrical point of the solid shadow image and the projected reflection image is the water surface directly below the magnetic pole, and this water surface is nothing but the concentration position. Therefore, since the reflected light from the magnetically labeled specimen complex concentrated at this concentration position is emitted with the central symmetry point as the center, if the light receiver is installed at this central symmetry point, the magnetic The signal of the body-labeled analyte complex can be detected. Utilizing this feature, you can effectively adjust the position of the receiver.
I can do it. As mentioned above, as a light receiver,
A screen, light receiving element, or image pickup tube can be selected. In particular, when quantifying a sample using the interferometry method previously invented by the present inventors, the center symmetry point becomes the center of the interference fringes reflected on the screen. The center always appears in the same position, which is very useful when measuring interference fringes.

以下に図面を参照して本発明をより具体的に詳述するが
、以下に示すものは本発明の一実施例に過ぎず、本発明
の技術的範囲を何等制限するものではない。
The present invention will be described in more detail below with reference to the drawings, but what is shown below is only one embodiment of the present invention and does not limit the technical scope of the present invention in any way.

〔実施例〕〔Example〕

第1図は、本発明の第1の実施例を説明するレーザ磁気
免疫測定装置の概略図であって、図中符号1はアクリル
樹脂製の検体容器、1aはこの検体容器中の検体収容部
、2は非磁性体からなる検体容器1を搭載する上下移動
台、3は移動ネジ、4は移動ガイド、5は左右移動台、
6は移動用モータ、7は案内面、8は架台、10は傾斜
磁界発生装置、50はHe −’N eレーザ光源、5
1はビームエクスパンダ、52は入射光束、53は反射
光束、54はスクリーン(受光器)である。
FIG. 1 is a schematic diagram of a laser magnetic immunoassay device illustrating a first embodiment of the present invention, in which reference numeral 1 denotes a sample container made of acrylic resin, and 1a denotes a sample storage part in this sample container. , 2 is a vertically moving table on which the sample container 1 made of non-magnetic material is mounted, 3 is a moving screw, 4 is a moving guide, 5 is a left and right moving table,
6 is a moving motor, 7 is a guide surface, 8 is a pedestal, 10 is a gradient magnetic field generator, 50 is a He-'Ne laser light source, 5
1 is a beam expander, 52 is an incident light beam, 53 is a reflected light beam, and 54 is a screen (light receiver).

前記検体容器1には、検体と磁性体標識体との間で抗原
抗体反応を行なった後の磁性体標識検体複合体が収容さ
れている。検体の調整方法は、先に本発明者らが発明し
た特願昭61−2245678、特111 If(61
−25’1164 号ニMe載の方V、が適用できる。
The sample container 1 contains a magnetically labeled sample complex after an antigen-antibody reaction between the sample and the magnetically labeled body. The method for preparing the sample is described in Japanese Patent Application No. 111-2245678, Patent Application No. 111 If (61
-25'1164 No. V, published in Me, can be applied.

前記1ば1斜磁界発生装買10は、電磁石10aど!1
極片10b、!:該vAJ4J−ilo EN7)Qg
−調節器10C1及び継n10d、10e、10fとか
ら構成され、電磁石10aから出た磁束は前記検体容器
1を貢通した後、磁極片10b、磁極片10bの高さ調
節器10c、及び継鉄10d、10e、10fを経由し
た後、再び電磁石10aに戻るように磁気回路が形成さ
れている9、前記電磁石10aは、非磁性のステンレス
鋼からなる前記ん右移動台5の上に固定された純鉄製の
継鉄10fの上に取り付【ノられている。前記磁極片1
0bは検体容器1側の先端が鋭利な形状になっているか
ら磁極片10bの先端部の真下の検体容器1表面の磁界
が最も高い。そのlζめに、磁性体標識検体複合体はこ
の位置に濃縮される。前記検体容器1の高さは、前記移
動台2が、前記左右移動台5に取っ付()られた前記七
−夕6を低速回転し、前記移動ネジ3及び移動ガイド4
にJ、って、上下に移動することにJ、って任意に調整
で・さる。また、前記左右移動台5は案内面7上を左右
に移動できるから、検体容器1中の任意の検体収容部1
E1を前記磁極片10bの真下に設定覆ることが出来る
。前記磁極片10bは、前記高さ調節器10cによって
、その高さが任意に調整可能である。このような構成に
なっているから、前記濃縮位置の磁界は、該検体容器1
及び該磁極片10bの上下移動によって任意に調整でき
る。勿論、前記濃縮位置の磁界は電磁石の励磁電流を変
化さけることで−b調整可能である1゜ 波長63.28nmのHe −N eレーリー光澱50
から出たレーザ光線はシー1アエー1−スパンダ51に
よってビーム径が拡張された入射光束52となって、検
体収容部1aと前記磁極片10bの先端を同時に照射す
る。前記スクリーン5/Iは図には示していないが、反
射光束53をその中央の位置に受光するように架台8に
固定されている。
The 1B1 oblique magnetic field generating device 10 is an electromagnet 10a, etc.! 1
Pole piece 10b,! :The vAJ4J-ilo EN7)Qg
- Consisting of a regulator 10C1 and joints n10d, 10e, 10f, the magnetic flux emitted from the electromagnet 10a passes through the sample container 1, and then passes through the magnetic pole piece 10b, the height adjuster 10c of the magnetic pole piece 10b, and the yoke. 10d, 10e, and 10f, a magnetic circuit is formed so as to return to the electromagnet 10a again. 9. The electromagnet 10a is fixed on the right moving table 5 made of non-magnetic stainless steel. It is attached on top of the pure iron yoke 10f. The magnetic pole piece 1
0b has a sharp tip on the side of the sample container 1, so the magnetic field on the surface of the sample container 1 directly below the tip of the magnetic pole piece 10b is highest. At this point, the magnetically labeled analyte complex is concentrated at this position. The height of the sample container 1 is determined by the moving table 2 rotating the Tanabata 6 attached to the left and right moving table 5 at a low speed, the moving screw 3 and the moving guide 4.
"J" means "J" for moving up and down, and "J" means "J" for moving up and down. In addition, since the left-right movable table 5 can move left and right on the guide surface 7, it can be moved from side to side on the guide surface 7.
E1 can be set and covered just below the magnetic pole piece 10b. The height of the magnetic pole piece 10b can be arbitrarily adjusted by the height adjuster 10c. With this configuration, the magnetic field at the concentration position is applied to the sample container 1.
And it can be arbitrarily adjusted by moving the magnetic pole piece 10b up and down. Of course, the magnetic field at the concentration position can be adjusted by changing the excitation current of the electromagnet.
The laser beam emitted from the C1A1-spander 51 becomes an incident light beam 52 whose beam diameter is expanded, and simultaneously irradiates the specimen accommodating section 1a and the tip of the magnetic pole piece 10b. Although the screen 5/I is not shown in the figure, it is fixed to the pedestal 8 so as to receive the reflected light beam 53 at its central position.

第2図(a)(b)は第1図のスクリーン5/1の拡大
図であって、(E〕)図は、前記スクリーン54上の干
渉縞56並びに前記磁極片10bの実体陰影像10b−
1、及び投影反射像10b−2を模式的に描いたもので
ある。前記実体陰影像10b−1は、前記磁極片10b
に直接照射された後のレーザ光が前記水面から反射して
スクリーン54土に形成された像であり、前記投影反射
像10b−2は、前記水面に映った磁極片10bの投影
像上に照射されたレー量ア光が水面から反射してスクリ
ーン54上に形成された像である。これらの像10 b
 −1,10b−2は、反射光のシルエラ1〜として観
察される。スクリーン54には直径0.5#のピンボー
ル55as 55bが80allllすれた位置に2つ
設りられている。第2図(b)は前記スクリーンの裏側
の該略図であって、前記ピンホール55 a、5 E5
 bの位置にSLフAトダイオードの受光素子(受光器
)57a、57bが固定して取り(=j’ Gプられて
いる。
2(a) and 2(b) are enlarged views of the screen 5/1 in FIG. 1, and FIG. 2(E) is an enlarged view of the screen 5/1 in FIG. −
1 and a projected reflection image 10b-2 are schematically drawn. The solid shadow image 10b-1 is the magnetic pole piece 10b.
The projected reflected image 10b-2 is an image formed on the soil of the screen 54 by the laser beam directly irradiated on the water surface, and the projected reflected image 10b-2 is the image irradiated onto the projected image of the magnetic pole piece 10b reflected on the water surface. This is an image formed on the screen 54 by the reflected light from the water surface. These images 10b
-1 and 10b-2 are observed as Silera 1 to reflected light. Two pinballs 55as and 55b each having a diameter of 0.5# are provided on the screen 54 at positions 80all apart from each other. FIG. 2(b) is a schematic diagram of the back side of the screen, with the pinholes 55a, 5E5
Light receiving elements (light receivers) 57a and 57b of the SL photodiode are fixedly placed at the position b (=j'G).

前記スクリーン5/lはこのような構造になっているか
ら、反射光束553がスクリーン54を照らJ際に、前
記ピンホール55a、55bを通して反射光の一部が受
光素子57 a、57bで検出される。前記検体容器1
と前記磁極片10bの間隔を広げれば、磁極片10bの
実体陰影像101) −1と投影反射像10 b −2
の間隔はそれに対応して広がり、接近させれば、像も接
近する。第2図(a)はシルエラ1へ状の前記実体陰影
像10b−1と投影反射像10 b = 2とが丁度前
記ピンホール55a、55bにかかった状態を示してい
る。
Since the screen 5/l has such a structure, when the reflected light beam 553 illuminates the screen 54, a part of the reflected light is detected by the light receiving elements 57a, 57b through the pinholes 55a, 55b. Ru. The sample container 1
If the distance between the magnetic pole piece 10b and the magnetic pole piece 10b is widened, the solid shadow image 101) -1 and the projected reflection image 10 b -2 of the magnetic pole piece 10b are obtained.
The distance between them will correspondingly widen, and if you move them closer together, the images will also get closer together. FIG. 2(a) shows a state in which the solid shadow image 10b-1 and the projected reflection image 10b=2 in the shape of the silera 1 just fit into the pinholes 55a and 55b.

前記受光素子57 El、57bでこの位置が精度J、
く検出できるから、前記検体容器1ど前記磁極ハ10b
の間隔を常に一定にすることが出来る。従って、本発明
の方法を連用すれば、再現J、く磁界を一定にすること
が容易に実施でさる3゜なお、前記磁極片10bと前記
検体容器1のうら、一方のみの高さが可変の場合、−度
前記スクリーン54の位置を調節し終えれば、スクリー
ン54上のビンボール(よ1つあれば上記の磁界調節は
出来るが、双方の高さが独立して調整できる本実施例の
場合、該ピンホールは2つある方が好よしい。なぜなら
ば、双方の高さを独立して調整した場合、前記干渉縞は
通常、前記スクリーン54の中心位置からはずれること
がしばしばである。
This position of the light receiving elements 57 El and 57b has an accuracy of J,
Since the sample container 1 and the magnetic pole 10b can be easily detected,
You can always keep the interval constant. Therefore, by repeatedly using the method of the present invention, it is easy to reproduce the magnetic field and keep it constant. Note that the height of only one of the magnetic pole piece 10b and the back of the sample container 1 is variable. In this case, once the position of the screen 54 has been adjusted, the magnetic field can be adjusted as described above with just one bottle ball on the screen 54, but in this embodiment, the height of both can be adjusted independently. In this case, it is preferable to have two pinholes, because if the heights of both pinholes are adjusted independently, the interference fringes are often deviated from the center position of the screen 54.

この場合、ピンホールが2つあると、前記磁極片10b
の像が何れの方向に外れたかを検出できるので、調整が
容易になる利点がある。
In this case, if there are two pinholes, the magnetic pole piece 10b
Since it is possible to detect in which direction the image has deviated, there is an advantage that adjustment can be made easily.

本実施例の適用にJ、って、濃縮位置の磁界が常に一定
の値に保つことが出来るので、測定法に起因するデータ
の変動は皆無になり、定量性が大幅に改善された。
In the application of this example, the magnetic field at the concentration position can always be kept at a constant value, so there is no variation in data due to the measurement method, and quantitative performance is greatly improved.

なお、本実施例の変形例として、前記スクリーン上の干
渉縞をITVカメラ(扼像管)で撮影して、画像処理に
よって干渉縞の直径、本数、輝度等を測定した。この方
法の場合、検体からの干渉縞画像をV T Rに記録J
−れば、条苗のデータの保存に右利である。120検体
の記録がV T Rチー11巻に収容でき/C0 第3図は本実施例の別の変形例であって、第1図の測定
装置のスクリーンの位置に遮光板54−1を設置した。
As a modification of this example, the interference fringes on the screen were photographed with an ITV camera (image tube), and the diameter, number, brightness, etc. of the interference fringes were measured by image processing. In this method, the interference fringe image from the specimen is recorded on the VTR.
-, it is useful for saving data on row seedlings. The records of 120 samples can be stored in 11 volumes of VTR/C0. Figure 3 shows another modification of this embodiment, in which a light shielding plate 54-1 is installed at the position of the screen of the measuring device shown in Figure 1. did.

中央部に開口をもつ該遮光板5/l−1は、上記実施例
と同様4r2つのピンホール55a、55bを右し、そ
の裏面には受光素子57a、57b及び干渉縞を受光す
るための1次元イメージセンサ型の受光素子(受光器)
58が固定されている。上述したように、本発明の方法
を実IMずれば磁界が一定に調節されるのみならず、干
渉縞の中心位置が前記受光素子58上の特定位置に再現
よく現われるから、干渉縞の計数がit=常に簡単にな
る。なぜならば、干渉縞の中心位置が変動覆る場合、干
渉縞の直径あるいは本数を計数するためには、まず、中
心位置をなんらかの方法、例えば、ITVカメラで干渉
縞を撮影し、画像処理による方法、で決定する前処理が
必要になる。
The light-shielding plate 5/l-1 having an opening in the center has two pinholes 55a and 55b on the right as in the above embodiment, and has light-receiving elements 57a and 57b on the back side and one for receiving interference fringes. Dimensional image sensor type light receiving element (light receiver)
58 is fixed. As mentioned above, by applying the method of the present invention to the actual IM, not only the magnetic field is adjusted to a constant value, but also the center position of the interference fringes appears at a specific position on the light receiving element 58 with good reproducibility, so that the number of interference fringes can be reduced. it = always easier. This is because when the center position of interference fringes fluctuates, in order to count the diameter or number of interference fringes, the center position must first be determined using some method, such as photographing the interference fringes with an ITV camera and using image processing. Pre-processing is required.

この前処理は一般には複雑なアルゴリズムになり、処理
コス!〜がかざむ欠点がある。
This preprocessing generally requires a complex algorithm, which reduces the processing cost! There is a drawback caused by ~.

別の変形例として、前記ビームエクスパンダ51の代わ
りに、偏向素子を用いて、レーザ入射ビームを上下に操
作させて時系列的に検体容器1と磁極片10bを照射す
ることににって、検体容器1と磁極片10bの間隔を調
節した。この変形例は、本発明省らが先に発明した特願
昭62−264319号に技術開示している入射ビーム
を走引して、濃縮位置と非濃縮位置からの散乱光の差分
を検出する方法と併用Jれば効果が大ぎい。散乱光を検
出りる方法の場合、レーデビーム径はできるだ【プ細い
方がS/N比の高い測定が出来るので、ビームエキスパ
ンダを用いるJ:りも有利である。
As another modification, a deflection element is used instead of the beam expander 51 to manipulate the incident laser beam up and down to irradiate the sample container 1 and the magnetic pole piece 10b in a time-series manner. The distance between the sample container 1 and the magnetic pole piece 10b was adjusted. This modification detects the difference between the scattered light from the concentrated position and the non-concentrated position by scanning the incident beam, which is disclosed in Japanese Patent Application No. 62-264319, which was previously invented by the Ministry of the Invention and others. The effect is great if used in conjunction with the method. In the case of a method that detects scattered light, it is also advantageous to use a beam expander, since measurements with a high S/N ratio can be made with a narrower beam diameter.

勿論、磁界の調整の時のみにビームエキスパンダを用い
て、検体の測定時に、ビームエキスパンダを入射光学系
から退避さぼる変形例も可能である。
Of course, a modification is also possible in which the beam expander is used only when adjusting the magnetic field, and the beam expander is retracted from the input optical system when measuring the specimen.

なお、前記構成において、スクリーン54、ピンホール
55a、55b、受光素子57a、57bあるいは遮光
板54−1、ピンボール55a。
In addition, in the said structure, the screen 54, pinhole 55a, 55b, the light receiving element 57a, 57b, the light shielding plate 54-1, and the pinball 55a.

55b1受光素子57a、57b、58は、検出部(受
光系)60を構成している。また、シー1F光源50、
ビームエキスパンダ51は、入射光学系61を構成して
いる。
The 55b1 light receiving elements 57a, 57b, and 58 constitute a detection section (light receiving system) 60. In addition, the sea 1F light source 50,
The beam expander 51 constitutes an input optical system 61.

また、図示しないが、前記検出部60と前記傾斜磁界発
生装置10との間には、磁界調整機構部が設けられてお
り、この磁界調整機構部によって、前記検出部60によ
る像の位置検出に基づいて前記傾斜磁界発生装置10に
より前記磁性体標識検体複合体の濃縮位置における磁界
を調節するにうになっている。
Although not shown, a magnetic field adjustment mechanism is provided between the detection unit 60 and the gradient magnetic field generation device 10, and this magnetic field adjustment mechanism allows the detection unit 60 to detect the position of the image. Based on this, the gradient magnetic field generator 10 adjusts the magnetic field at the concentration position of the magnetically labeled specimen complex.

〔発明の効果〕〔Effect of the invention〕

以上詳述のように、本発明に従うレーIJ″磁気免疫測
定方法及び測定装置は、標識物質として磁性微粒子を用
いる新しい原理のレーザ磁気免疫測定方法の定量性の向
上、測定値の再現性、装置の調整を容易にするのみなら
ず、干渉法で測定する場合、干渉縞中心が常に同じ位置
に現われることから、干渉縞の計測が非常に容易になり
、計測精度が向上する効果がある。
As described in detail above, the laser magnetic immunoassay method and measuring device according to the present invention improve the quantitative performance of the laser magnetic immunoassay method based on a new principle using magnetic fine particles as a labeling substance, improve the reproducibility of measured values, and improve the device. In addition to making adjustment easier, when measuring by interferometry, the center of interference fringes always appears at the same position, making it very easy to measure interference fringes and improving measurement accuracy.

この発明に従うレーデ磁気免疫測定方法及び測定装置は
、抗原抗体反応のみに止まらず、従来RIA法が適用さ
れていたペプヂドホルモン等の種々のホル土ンあるいは
種々の酵素、ビタミン、薬剤などの測定にも応用するこ
とが可能である。従って、従来は限定された施設でRI
A法によらなければ実施できなかった精密な測定を、一
般的な環境で広〈実施することが可能となる。集団検診
等のJζうな一般的な状況(・、各種のウィルス、癌等
のスクリーニング検査等の精密な測定が広〈実施できれ
ば、癌あるいはウィルス性疾患等の早期診断が可能とな
り、有効な早期治療を的確に実施することが可能となる
。このように、本発明が医学・医療の分野で果たづ効果
は計り知れない。
The Rede magnetic immunoassay method and measuring device according to the present invention are applicable not only to antigen-antibody reactions, but also to the measurement of various hordes such as peptide hormones, various enzymes, vitamins, drugs, etc., to which the RIA method has traditionally been applied. It is possible to apply it. Therefore, in the past, RI was performed at limited facilities.
Precise measurements that could not be carried out without Method A can now be widely carried out in a general environment. In general situations such as mass medical examinations, accurate measurements such as screening tests for various viruses, cancer, etc. can be carried out widely.If implemented, early diagnosis of cancer or viral diseases etc. will be possible, and effective early treatment will be possible. Thus, the effects of the present invention in the medical and medical fields are immeasurable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を説明り−るレーザ磁気
免疫測定装置の概略図、12図は第1図のスクリーン5
4の拡大図であって、第2図(a)は前記スクリーン士
−の干渉縞56並びに前記VItlKi1’7の実体陰
影像10b−L及び投影反射像10b−2を模式的に描
いたもの、第2図(b>は前記スクリーンの裏側の概略
図、第3図は第1図の測定装flf’/のスクリーンの
位置に遮光板54−1を設訂した本実施例の別の変形例
である。 1・・・検体容器、1a・・・検体容器中の検体収容部
、2・・・十F移動台、3・・・移動ネジ、4・・・移
動ガイド、5・・・左右移動台、6・・・移動用モータ
、7・・・案内面、8・・・架台、10・・・傾斜磁界
発/I装置、50・・・レーク“光源、51・・・ビー
ムエクスパンダ、52・・・入射光束、53・・・反射
光束、54・・・スクリーン(受光器>、55a、55
b・・・ピン小−ル、56・・・干渉縞、57a、57
b−・・受光素子(受光器)、58・・・受光素子(受
光器)、60・・・検出部(受光系)、61・・・入射
光学系。
FIG. 1 is a schematic diagram of a laser magnetic immunoassay device explaining the first embodiment of the present invention, and FIG. 12 is a screen 5 of FIG. 1.
4, FIG. 2(a) schematically depicts the interference fringes 56 of the screen operator, the solid shadow image 10b-L and the projected reflection image 10b-2 of the VItlKi1'7, FIG. 2 (b> is a schematic diagram of the back side of the screen, and FIG. 3 is another modification of the present embodiment in which a light shielding plate 54-1 is installed at the screen position of the measuring device flf'/ of FIG. 1. 1... Sample container, 1a... Sample storage part in the sample container, 2... 10F moving table, 3... Moving screw, 4... Moving guide, 5... Left and right Moving table, 6... Moving motor, 7... Guide surface, 8... Frame, 10... Gradient magnetic field generator/I device, 50... Rake light source, 51... Beam expander , 52... Incident light flux, 53... Reflected light flux, 54... Screen (receiver>, 55a, 55
b... Pin small, 56... Interference fringes, 57a, 57
b-... Light receiving element (light receiver), 58... Light receiving element (light receiver), 60... Detecting section (light receiving system), 61... Incoming optical system.

Claims (7)

【特許請求の範囲】[Claims] (1)所定の抗原あるいは抗体に磁性体微粒子を標識と
して付加した磁性体標識体と、検体たる抗体あるいは抗
原とを抗原抗体反応させる第1工程と、 前記第1工程後の磁性体標識体と検体との複合体である
磁性体標識検体複合体を含む溶液に磁界を作用させてレ
ーザ光照射領域に前記磁性体標識検体複合体を誘導・濃
縮させる第2工程と、を少なくとも含むレーザ磁気免疫
測定方法において、レーザ光を傾斜磁界発生装置と検体
容器の水面の双方に照射し、その時のそれぞれの前記水
面からの反射光により形成される前記傾斜磁界発生装置
の像の位置を検出することによって、前記磁性体標識検
体複合体の濃縮位置における磁界を調節することを特徴
とするレーザ磁気免疫測定方法。
(1) A first step of causing an antigen-antibody reaction between a predetermined antigen or antibody labeled with magnetic fine particles as a label and an antibody or antigen as a specimen; and a magnetic label after the first step. A second step of applying a magnetic field to a solution containing a magnetically labeled specimen complex that is a complex with a specimen to induce and concentrate the magnetically labeled specimen complex in a laser beam irradiation area. In the measurement method, a laser beam is irradiated onto both the gradient magnetic field generator and the water surface of the sample container, and the position of the image of the gradient magnetic field generator formed by the reflected light from each of the water surfaces at that time is detected. . A laser magnetic immunoassay method, characterized in that the magnetic field at the concentration position of the magnetically labeled specimen complex is adjusted.
(2)前記傾斜磁界発生装置の像が、傾斜磁界発生装置
に直接照射された後のレーザ光が前記水面から反射して
形成される実体陰影像と、前記水面に映った前記傾斜磁
界発生装置の投影像上に照射されたレーザ光が該水面か
ら反射して形成される投影反射像との2つの像であるこ
とを特徴とする請求項1記載のレーザ磁気免疫測定方法
(2) An image of the gradient magnetic field generator is a solid shadow image formed by reflection of a laser beam from the water surface after direct irradiation of the gradient magnetic field generator, and a solid shadow image of the gradient magnetic field generator reflected on the water surface. 2. The laser magnetism immunoassay method according to claim 1, wherein the projected image is a projected reflected image formed by the laser beam irradiated on the water surface and the projected reflected image is formed.
(3)前記水面からの反射光中の前記傾斜磁界発生装置
の実体陰影像と投影反射像とを対称位置とする中心位置
に受光器を設置することを特徴とする請求項1記載のレ
ーザ磁気免疫測定方法。
(3) The laser magnetism according to claim 1, characterized in that a light receiver is installed at a central position where a solid shadow image and a projected reflected image of the gradient magnetic field generating device in the light reflected from the water surface are symmetrical. Immunoassay method.
(4)磁性体微粒子によつて標識された磁性体標識検体
複合体を含む溶液を収容する検査容器と、レーザ光を前
記検査容器の表面へ導く入射光学系と、前記検査容器の
表面のレーザ光照射領域の一点に前記磁性体標識検体複
合体を誘導・濃縮する傾斜磁界発生装置と、前記磁性体
標識検体複合体からのレーザ光の反射光を受ける受光系
と、を少なくとも含むレーザ磁気免疫測定装置であって
、前記レーザ光を前記傾斜磁界発生装置と検体容器の水
面との双方に同時もしくは時系列に照射した時の反射光
を受光器に受けて前記傾斜磁界発生装置の像を検出する
検出部と、この検出部による像の位置検出に基いて前記
傾斜磁界発生装置により前記磁性体標識検体複合体の濃
縮位置における磁界を調節する磁界調整機構部と、が設
けられていることを特徴とするレーザ磁気免疫測定装置
(4) A test container containing a solution containing a magnetically labeled specimen complex labeled with magnetic fine particles, an incident optical system that guides a laser beam to the surface of the test container, and a laser beam on the surface of the test container. A laser magnetic immunocomputer comprising at least a gradient magnetic field generating device that guides and concentrates the magnetically labeled specimen complex at one point in a light irradiation region, and a light receiving system that receives reflected laser light from the magnetically labeled specimen complex. The measuring device is a measuring device that detects an image of the gradient magnetic field generator by receiving reflected light on a receiver when the laser beam is irradiated to both the gradient magnetic field generator and the water surface of the sample container simultaneously or in chronological order. and a magnetic field adjustment mechanism section that adjusts the magnetic field at the concentration position of the magnetically labeled specimen complex by the gradient magnetic field generator based on the position detection of the image by the detection section. Characteristic laser magnetic immunoassay device.
(5)前記検出部の受光器がスクリーンである請求項4
記載のレーザ磁気免疫測定装置。
(5) Claim 4, wherein the light receiver of the detection section is a screen.
The laser magnetic immunoassay device described.
(6)前記検出部の受光器が受光素子である請求項4記
載のレーザ磁気免疫測定装置。
(6) The laser magnetism immunoassay device according to claim 4, wherein the light receiver of the detection section is a light receiving element.
(7)前記検出部の受光器が撮像管である請求項4記載
のレーザ磁気免疫測定装置。
(7) The laser magnetic immunoassay device according to claim 4, wherein the light receiver of the detection section is an image pickup tube.
JP10291888A 1988-04-26 1988-04-26 Laser magnetic immunoassay method and measuring apparatus Expired - Fee Related JPH07111433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291888A JPH07111433B2 (en) 1988-04-26 1988-04-26 Laser magnetic immunoassay method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291888A JPH07111433B2 (en) 1988-04-26 1988-04-26 Laser magnetic immunoassay method and measuring apparatus

Publications (2)

Publication Number Publication Date
JPH01272973A true JPH01272973A (en) 1989-10-31
JPH07111433B2 JPH07111433B2 (en) 1995-11-29

Family

ID=14340240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291888A Expired - Fee Related JPH07111433B2 (en) 1988-04-26 1988-04-26 Laser magnetic immunoassay method and measuring apparatus

Country Status (1)

Country Link
JP (1) JPH07111433B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
WO2010058303A1 (en) * 2008-11-19 2010-05-27 Koninklijke Philips Electronics N.V. Biosensor system for actuating magnetic particles
WO2011155890A1 (en) * 2010-06-10 2011-12-15 Hemocue Ab Detection of magnetically labeled biological components
JP2019158768A (en) * 2018-03-15 2019-09-19 東芝テック株式会社 Detection device and measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
WO2010058303A1 (en) * 2008-11-19 2010-05-27 Koninklijke Philips Electronics N.V. Biosensor system for actuating magnetic particles
US9103824B2 (en) 2008-11-19 2015-08-11 Koninklijke Philips N.V. Biosensor system for actuating magnetic particles
WO2011155890A1 (en) * 2010-06-10 2011-12-15 Hemocue Ab Detection of magnetically labeled biological components
JP2019158768A (en) * 2018-03-15 2019-09-19 東芝テック株式会社 Detection device and measurement device

Also Published As

Publication number Publication date
JPH07111433B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
Jin et al. A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions
JPH054021B2 (en)
WO1988002118A1 (en) Laser magnetic immunoassay method and apparatus therefor
US10690596B2 (en) Surface plasmon-enhanced fluorescence measurement device and surface plasmon-enhanced fluorescence measurement method
JP2683172B2 (en) Sample measuring method and sample measuring device
CN106092967B (en) A kind of detection method and device of bio-molecular interaction
JPH031117A (en) Scanning type laser microscope device and usage thereof
JPH01272973A (en) Method and apparatus for laser magnetic immunoassay
JPH01109263A (en) Method and apparatus for laser magnetic immunoassay
JPS63302367A (en) Method and apparatus for measuring immunity by magnetism
JPS63108265A (en) Magnetic immune measurement method by using laser
JP2001056303A (en) X-ray stress measuring apparatus
JP2551627B2 (en) Laser magnetic immunoassay device
JPS63188766A (en) Method and instrument for laser magnetic immunoassay
JP2509227B2 (en) Laser magnetic immunoassay device
JPS63106559A (en) Method and apparatus for laser magnetic immunoassay
JPH07111429B2 (en) Laser magnetic immunoassay
RU2293971C2 (en) Radiography and tomography device
JPH07111428B2 (en) Laser magnetic immunoassay method and measuring apparatus
JP3522703B2 (en) Magnetic measuring device and magnetic measuring method
JPS6353457A (en) 2-d scan type state analyzer
CN116359179A (en) Device for detecting surface damage of metal matrix composite by adopting polarized laser scattering
JPH05249114A (en) Method and instrument for immunological measurement
JPS6040937A (en) Immunity-reaction measuring apparatus
JPH05322806A (en) Small-area x-ray diffraction device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees