JPH01272908A - Measuring method for loadage of barge - Google Patents

Measuring method for loadage of barge

Info

Publication number
JPH01272908A
JPH01272908A JP10123188A JP10123188A JPH01272908A JP H01272908 A JPH01272908 A JP H01272908A JP 10123188 A JP10123188 A JP 10123188A JP 10123188 A JP10123188 A JP 10123188A JP H01272908 A JPH01272908 A JP H01272908A
Authority
JP
Japan
Prior art keywords
barge
earth
sand
cameras
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10123188A
Other languages
Japanese (ja)
Inventor
Tadashi Kanzaki
神崎 正
Masafumi Sakai
酒井 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP10123188A priority Critical patent/JPH01272908A/en
Publication of JPH01272908A publication Critical patent/JPH01272908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To secure the safety of workers and to take an accurate measurement in a short time by analyzing stereoscopic photographs of the barge which are taken by two cameras installed at fixed positions on the sea by an analytic drawing device connected to a computer. CONSTITUTION:A boom 4 which extends slantingly upward from a rack 1 can slants longitudinally and swivels horizontally. The two cameras 5 are provided facedown atop of the boom 4 so that the installation interval and installation directions meet requirements of stereoscopic photography. Then the barge 7 which is loaded with earth and sand 6 is guided onto the water right below the cameras 5 and the whole of the barge 7 is photographed from slantingly or right above. When the barge 7 is large, divisional photography is performed. Taken stereoscopic photographs are inputted to the analytic drawing device connected to the computer to analyze a reproduced three-dimensional image on the whole, thereby find the amount of earth and sand of each section by integral computation.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は大量土砂の積載量を短時間にしかも正確に求め
られる土運船における積載量の測定方法に関する。 〈従来の技術〉 土運船に積載した大量の土砂の積載量を測定する方法と
して、複数人の作業員が船上の積載土砂の上に立ち、積
載土砂のレベル測量を行って積載土砂の平均断面を求め
、この平均断面から換算する方法や、船の吃水深とから
算出して求める方法が知られている。 く本発明が解決しようとする問題点〉 前記した大量土砂の積載量を測定する方法には次のよう
な不都合がある。 (イ)前者の測定方法にあっては、測量作業中に作業員
が転落事故を起こす危険がある。 しかも、少ない測定点で求めたデータを基に平均断面法
で類推するため、積載土量の測定精度が低いという問題
がある。 (ロ)後者の測定方法の場合、船の揺動の影響を受は易
(、測定精度の信頼性の点で問題が残る。 (ハ)両測定方法共に、測定作業に長時間を要し、最終
的な土砂の積載量を得るまでに時間がかかる。 く本発明の目的〉 本発明は以上の点に鑑みて成されたもので、作業員の安
全性の確保が図れ、短時間で正確な測定値が得られる、
土運船における積載量の測定方法を提供することを目的
とする。 〈本発明の構成〉 以下、本発明に係る土運船における積載量の測定方法に
ついて説明する。 (イ)測定原理 本発明は写真測量法を利用して測定する。 即ち、海上の定位置に2台のカメラを据えイ・1け、こ
れらのカメラの真下に位置する土運船を撮影する。 撮影した土運船の立体写真をコンピュータに接続した解
析図化装置に入力し、この装置内で再現した三次元の映
像を全般的に解析することにより、断面毎の土砂量を積
分計算して求める方法である。 (ロ)測定方法 以下、具体的な土量の測定方法を説明する。
<Industrial Application Field> The present invention relates to a method for measuring the loading capacity of an earth transport vessel, which allows the loading capacity of a large amount of earth and sand to be determined accurately in a short time. <Conventional technology> As a method of measuring the amount of loaded earth and sand loaded on an earth transport ship, multiple workers stand on the loaded earth and sand on the ship, measure the level of the loaded earth and sand, and calculate the average of the loaded earth and sand. There are known methods such as finding a cross section and converting it from this average cross section, and calculating it from the water depth of the ship. Problems to be Solved by the Present Invention> The method of measuring the loading amount of a large amount of earth and sand described above has the following disadvantages. (b) With the former measurement method, there is a risk of workers falling during surveying work. Moreover, since the average cross-section method is used to make analogies based on data obtained from a small number of measurement points, there is a problem in that the accuracy of measuring the amount of loaded soil is low. (b) In the case of the latter measurement method, it is easily affected by the rocking of the ship (there remains a problem with the reliability of measurement accuracy. (c) Both measurement methods require a long time to complete the measurement. , it takes time to obtain the final loading amount of earth and sand.Purpose of the present invention> The present invention has been made in view of the above points, and it is possible to ensure the safety of workers and to Accurate measurements can be obtained,
The purpose of this study is to provide a method for measuring the loading capacity of earth carriers. <Structure of the present invention> Hereinafter, a method for measuring the loading capacity of an earth carrier according to the present invention will be explained. (a) Measurement principle The present invention performs measurement using photogrammetry. That is, two cameras are installed at fixed positions on the sea, and the earth transport ship located directly below these cameras is photographed. The three-dimensional photographs taken of the soil transport ship are input into an analysis plotting device connected to a computer, and the three-dimensional images reproduced within this device are analyzed in general, and the amount of sediment for each cross section is integrally calculated. This is the way to find out. (b) Measuring method The specific method for measuring soil volume will be explained below.

【写真撮影】【photo shoot】

第1図において、1は水上に突出している架台で、その
下端が支承脚2によって海底3に支持されている。 架台1は公知の測量台を用いても良い。 4は架台1から斜め上方にのびるブームで、縦方向の傾
倒と水平方向の旋回が可能に構成されている。 ブーム4の先端には、二組のカメラ5が下向きに取り付
けられている。 カメラ5の設置間隔や設置方向は、立体写真を撮影でき
る条件に従って設置される。 そして、カメラ5の下方の水上に、土砂6を積載した土
運船7を案内する。 ブーム4を移動しなから土運船7の斜め上方から或は真
上から土運船7の全体を撮影する。 土運船7の撮影に際し、撮影日時や船体番号等の表示も
写し込む。 尚、土運船7が大型の場合、カメラ5を高所に設けて土
運船7の全体を撮影しても良いが、土運船7を分割撮影
した方が合理的である。 分割撮影する場合、分割撮影したデータ相互間に連続性
を持たせるために、土運船7に、所定の間隔を介して単
数又は複数の基準点く標識点〉を設置しておくと便利で
ある。 土運船7に基準点を設けておけば、この基準点を基に、
各その土量の積分計算により求めることができる。
In FIG. 1, reference numeral 1 denotes a pedestal that protrudes above the water, and its lower end is supported on the seabed 3 by support legs 2. A known surveying table may be used as the pedestal 1. A boom 4 extends obliquely upward from the pedestal 1, and is configured to be tiltable in the vertical direction and pivotable in the horizontal direction. Two sets of cameras 5 are attached to the tip of the boom 4 facing downward. The installation interval and the installation direction of the cameras 5 are set according to the conditions under which stereoscopic photographs can be taken. Then, an earth transport vessel 7 loaded with earth and sand 6 is guided onto the water below the camera 5. Without moving the boom 4, the whole of the soil transport vessel 7 is photographed from diagonally above or directly above the soil transport vessel 7. When photographing the soil transport ship 7, the date and time of photographing, the hull number, etc. are also imprinted. If the soil transport vessel 7 is large, the camera 5 may be installed at a high place to photograph the entire soil transport vessel 7, but it is more rational to photograph the soil transport vessel 7 in parts. When photographing in parts, it is convenient to install one or more reference points or marker points on the earth transport vessel 7 at predetermined intervals in order to maintain continuity between the data taken in parts. be. If you set a reference point on the soil transport ship 7, based on this reference point,
It can be determined by integral calculation of each soil volume.

【メツシュデータの作成】[Creating mesh data]

次に、カメラ5で撮影した写真を公知の解析図化装置(
例えばブラニコンブC100)にセットし、土運船7に
積載されている土砂6をメツシュデータとしてとらえ、
その高さを測定する。 高さの測定点の数は、土運船7の大きさにより異なるが
、第2図に示すように、前範囲にわたり等間隔て大体5
0〜200点であれば良い。 第2図において十字形で示した地点が測定点を意味する
。 この高さ測定は、土運船7に予め表示しておいた基準点
を高さの基準として行う。 このようにして求めた三次元データはコンピュータに直
接記憶させる。
Next, the photograph taken with the camera 5 is taken using a known analysis plotting device (
For example, set it on a branicomb C100) and capture the earth and sand 6 loaded on the earth carrier 7 as mesh data,
Measure its height. The number of height measurement points varies depending on the size of the earth carrier 7, but as shown in Fig.
Any score between 0 and 200 is sufficient. Points indicated by crosses in FIG. 2 mean measurement points. This height measurement is performed using a reference point displayed in advance on the earth transport vessel 7 as a height reference. The three-dimensional data obtained in this way is directly stored in the computer.

【土砂量の計算】[Calculation of sediment volume]

つづいて、メツシュデータより各メツシュ毎の土量を求
め、これらを合計して土砂6の総積載量を得る。 尚、必要に応じて第2.3図に示すようなメツシュ図や
断面図等をプリンl−’アウトする場合もある。 く本発明の効果〉 本発明は以上のことから次の効果が得られる。 (イ)土運船に作業員が昇降しないで土砂の積載量を測
定できるから、作業員の安全性が確保できる。 (ロ)瞬時に撮影するので、船体の揺動の影響を受けず
に測定が可能である。 (ハ)本発明は撮影距離の1/3,000−115,0
00という高精度の測定が可能であり、そのうえ、精度
の均一性が保てる。 (ニ)積載土砂を撮影した写真或は解析したデータを記
録保存できるので、疑義が生じた場合に客観的な資料と
することができる。
Next, the amount of soil for each mesh is determined from the mesh data, and these are summed to obtain the total amount of soil 6 loaded. It should be noted that, if necessary, mesh diagrams, sectional views, etc. as shown in FIG. 2.3 may be printed out. Effects of the Present Invention The present invention provides the following effects from the above. (b) Since the amount of earth and sand loaded can be measured without workers having to go up and down the earth transport vessel, safety for the workers can be ensured. (b) Since images are taken instantly, measurements can be made without being affected by the rocking of the ship. (c) The present invention is 1/3,000-115,0 of the shooting distance.
It is possible to measure with a high precision of 0.00, and moreover, uniformity of precision can be maintained. (d) Photographs taken of loaded earth and sand or analyzed data can be recorded and stored, so they can be used as objective materials in case of doubts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:本発明に係る土運船における積載量の測定方法
の一実施例の説明図 第2図、メツシュ図の説明図 第3図、その断面図
Figure 1: An explanatory diagram of an embodiment of the method for measuring the loading capacity of an earth carrier according to the present invention. Figure 2: An explanatory diagram of a mesh diagram. Figure 3: A sectional view thereof.

Claims (2)

【特許請求の範囲】[Claims] (1)水面の上方に立体写真撮影用のカメラを据え付け
、 カメラの下方の水上に土運船を位置させて土運船を撮影
し、 撮影した土運船の立体写真をコンピュータに接続した解
析図化装置に入力し、 前記装置内で再現した三次元の映像を解析して各断面毎
の土量の総和を算出して求める、 土運船における積載量の測定方法。
(1) A camera for 3D photography is installed above the water surface, an earthen ship is positioned on the water below the camera, the earthen ship is photographed, and the 3D photograph of the earthen ship is connected to a computer for analysis. A method for measuring the loading capacity of an earth carrier, which involves inputting the soil into a plotting device, analyzing the three-dimensional image reproduced in the device, and calculating the total amount of soil for each section.
(2)土運船に基準点を設けたことを特徴とする、請求
項(1)記載の土運船における積載量の測定方法。
(2) The method for measuring the loading capacity of a soil transport vessel according to claim (1), characterized in that a reference point is provided on the soil transport vessel.
JP10123188A 1988-04-26 1988-04-26 Measuring method for loadage of barge Pending JPH01272908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10123188A JPH01272908A (en) 1988-04-26 1988-04-26 Measuring method for loadage of barge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10123188A JPH01272908A (en) 1988-04-26 1988-04-26 Measuring method for loadage of barge

Publications (1)

Publication Number Publication Date
JPH01272908A true JPH01272908A (en) 1989-10-31

Family

ID=14295124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10123188A Pending JPH01272908A (en) 1988-04-26 1988-04-26 Measuring method for loadage of barge

Country Status (1)

Country Link
JP (1) JPH01272908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114744A (en) * 2005-01-26 2005-04-28 Penta Ocean Constr Co Ltd Method and apparatus for measuring pay load of earth and sand on conveyer
JP2007285704A (en) * 2006-04-12 2007-11-01 Penta Ocean Constr Co Ltd Method for measuring soil quantity loaded in earth and sand carrying vessel
JP2019095379A (en) * 2017-11-27 2019-06-20 五洋建設株式会社 Quantity inspection system and quantity inspection method of loading in ship's storehouse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724806A (en) * 1980-07-23 1982-02-09 Toda Constr Co Ltd Measuring method for volume of underground cavity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724806A (en) * 1980-07-23 1982-02-09 Toda Constr Co Ltd Measuring method for volume of underground cavity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114744A (en) * 2005-01-26 2005-04-28 Penta Ocean Constr Co Ltd Method and apparatus for measuring pay load of earth and sand on conveyer
JP2007285704A (en) * 2006-04-12 2007-11-01 Penta Ocean Constr Co Ltd Method for measuring soil quantity loaded in earth and sand carrying vessel
JP2019095379A (en) * 2017-11-27 2019-06-20 五洋建設株式会社 Quantity inspection system and quantity inspection method of loading in ship's storehouse

Similar Documents

Publication Publication Date Title
CN101218602B (en) Image processor and environment information observing device
CN208043364U (en) A kind of crane girder Static stiffness detector
FI81908C (en) Stereophotogrammetric measurement procedure, especially for large measurement objects at sea
CN105865421B (en) Three-dimensional terrain of water tank measuring device based on camera and laser technology
Hancock et al. The production of digital elevation models for experimental model landscapes
JPH01272908A (en) Measuring method for loadage of barge
Collins et al. Stereometric measurement of streambank erosion
Green Legacy Data in 3D: The Cape Andreas Survey (1969–1970) and Santo António de Tanná Expeditions (1978–1979)
JP3038474B2 (en) Method and apparatus for measuring the amount of soil loaded on an earth moving ship
JP4295892B2 (en) Terrain Survey Unit
JPS582608A (en) Method for measuring volume of underground cave
Warner et al. Measuring trail erosion with a 35 mm camera
Welch et al. Educational and research aspects of non‐metric, close range analogue photogrammetry
Sorensen Stereophotogrammetric analysis of wave surfaces
Gharehaghajlou et al. A parametric study on the bulk density determination of soil specimens using close-range photogrammetry
Moore The photogrammetric measurement of constructional displacements of a rockfill dam
Lundin Determining the positions of objects located beneath a water surface
Smith A photogrammetric system for archaeological mapping using oblique non‐metric photography
Okamoto et al. Fundamental study to estimate fish biomass around coral reef using 3-dimensional underwater video system
JPS6366410A (en) Measurement of water level and instrument for same
Collins et al. FURTHER DEVELOPMENTS IN THE PHOTO‐RADIATION METHOD OF TERRESTRIAL PHOTOGRAMMETRY
McCarter Application of plane table photogrammetry to open pit mapping
FAIRER et al. A close-range photogrammetric technique for mapping neotectonic features in trenches
RU2097695C1 (en) Method determining height of object above plane base by its singular perspective image with unknown elements of orientation
CN116148937A (en) Method, system, equipment and medium for determining gravity anomaly of artificial terrain area