JPH0127141B2 - - Google Patents
Info
- Publication number
- JPH0127141B2 JPH0127141B2 JP55176245A JP17624580A JPH0127141B2 JP H0127141 B2 JPH0127141 B2 JP H0127141B2 JP 55176245 A JP55176245 A JP 55176245A JP 17624580 A JP17624580 A JP 17624580A JP H0127141 B2 JPH0127141 B2 JP H0127141B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- sintered body
- volume
- iron group
- metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010432 diamond Substances 0.000 claims description 64
- 229910003460 diamond Inorganic materials 0.000 claims description 60
- 229910052751 metal Inorganic materials 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 44
- -1 iron group metals Chemical class 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 7
- 150000001247 metal acetylides Chemical class 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- 239000006104 solid solution Substances 0.000 claims description 5
- 239000008247 solid mixture Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 14
- 238000005491 wire drawing Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000009760 electrical discharge machining Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000003754 machining Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Metal Extraction Processes (AREA)
Description
焼結ダイヤモンドダイスは現在すでに市販され
ており、特に微粒ダイヤモンドよりなる焼結体の
性能は銅線、アルミニウム線、亜鉛メツキ線、ピ
アノ線などの伸線において線肌が良好であり、寿
命も超硬合金ダイスの20〜100倍、天然ダイヤモ
ンドダイスの1.5〜15倍と驚くべき高性能を有し
ている。
しかしながら、これらの焼結ダイヤモンドダイ
スはレーザー加工や放電加工により下穴があけら
れた後ラツピング加工されて製造されるため、ダ
イスの最小径はレーザー加工あるいは放電加工後
の穴径とこれら加工後の変質層の和以下の径のダ
イスは作ることができず、天然ダイヤモンドダイ
スが使用されている極細線の分野などには使用す
ることが困難であつた。そこで本発明者等はこれ
ら極細線にも使用でき、かつ性能が天然ダイヤよ
り優れている材質を開発すべく鋭意研究を行つ
た。
まず、なぜ加工変質層が生じるかを調べるた
め、ダイヤモンド粒子を鉄族金属で結合した市販
のダイヤモンド焼結体を用いてレーザー加工によ
り30μの下穴をあけ、その周辺を観察した。下穴
周辺には幅約60μの亀裂や結合金属である鉄族金
属の偏析する変質層が観察された。このような変
質層が存在するのは次の如く推定できる。レーザ
ーによる下穴加工時には下穴周辺部も高温になる
が、このときダイヤモンド結合材である鉄族金属
も膨張する。このダイヤモンド焼結体はダイヤモ
ンド同志が結合してスケルトン構造となつてお
り、鉄族金属はダイヤモンド粒子の間にとじ込め
られた状態となつている。ダイヤモンドの熱膨張
係数は約1.5〜4.8×10-6であるのに対し、たとえ
ば鉄族金属であるCoは約12.5〜16.0×10-6であ
り、ダイヤモンドとCoの熱膨張差により熱応力
が発生し、ダイヤモンドスケルトン部が破壊して
亀裂が発生したものと考えられる。さらに鉄族金
属はダイヤモンド合成の触媒であるが、これが存
在するため高温時にダイヤモンドが変態してグラ
フアイト化するのも変質層を大きくしている原因
であろう。またCoの偏析が生じるのは下穴部に
存在していたCoが溶融して移動したためと考え
られ、ダイヤモンドのグラフアイト化をより促進
するものと思われる。そこで本発明者等は焼結体
中の鉄族金属を酸処理により溶出した後、前述し
た方法と同様にして下穴加工を行つた。その結果
変質層は鉄族金属を含有した焼結体を加工した場
合より少なく約20μで予想通りであつた。この焼
結体を用いて焼結ダイヤモンドダイスを作り、銅
線と真ちゆうメツキした銅線(スチールコード)
を伸線した。その結果銅線を伸線した場合、伸線
初期は摩擦係数も低く順調に伸線できたが、伸線
途中で急に摩擦力が上昇し断線が生じ伸線不能と
なり、その寿命は鉄族金属を溶出していない焼結
ダイヤモンドダイスより短かかつた。この原因を
調べるため、ダイス内面を観察した結果鉄族金属
が溶出された凹んだ部分に銅が埋込まれ、この銅
と銅線が凝着を起こし摩擦係数が高くなつたもの
と考えられた。またスチールコードを伸線した場
合、伸線後しばらくして線材表面に縦すじが生じ
寿命となり、この場合も鉄族金属を溶出していな
い焼結ダイヤモンドダイスより劣つた性能となつ
た。ダイス内面を観察した結果リダクシヨン部に
はダイヤモンドが脱落して生じたとみられるリン
グ摩耗がかなり生じており、ベアリング部もダイ
ヤモンド粒子が脱落し、内面は非常に荒れてい
た。このようになつた原因としては次の如く考え
られる。焼結ダイヤモンドより結合材である鉄族
金属を溶出した場合、ダイヤモンド粒子同志の結
合のみで各ダイヤモンド粒子は保持されるため強
度低下が生じる。ところがスチールコードは抗張
力が高く、伸線時ダイス内面に負荷される圧力が
非常に高くなるため、ダイヤモンド同志の結合部
であるスケルトン部が破壊してダイヤモンド粒子
が脱落したものと推定される。これらの実験結果
に基いて本発明者等は検討を加え種々の材質を試
作し、ダイスを作成して伸線テストを行つた。そ
の結果ダイヤモンドが容量で40〜95%含有し、残
部が周期律表の第4a、5a、6a族金属の炭化物あ
るいはこれらの固溶体または混合物結晶3〜55容
量%と鉄族金属0.03〜5容量%及び空孔5容量%
未満1%以上より成るダイヤモンド焼結体はレー
ザーや放電加工による加工変質層が非常に少な
く、ダイスとしての性能も非常に優れていること
を発見した。本発明焼結体が何故優れた性能を有
するかは次の如く推測される。レーザーや放電加
工時、下穴周辺部の温度は上昇するがダイヤモン
ドと熱膨張の非常に異なる鉄族金属は少なくダイ
ヤモンド粒子の周辺に存在するのは周期律表の第
4a、5a、6a族の炭化物であるため、熱膨張係数
も鉄族金属のそれに比べ低いため熱応力による亀
裂の発生は少ない。また伸線時においても空孔が
容量で5%未満と少ないため空孔に素線材料が埋
めこまれず、さら炭化物とダイヤモンド粒子が強
固に結合しているため強度低下も生じなかつたた
めであろう。
本発明焼結体では特に炭化物がWCあるいはこ
れと同一結晶構成を有した(Mo、W)Cである
場合、ダイスとしての性能は最も良かつた。
本発明焼結体におけるダイヤモンド粒子の含有
量は容量で40〜95%が好ましい。ダイヤモンドの
含有量が40%未満になるとダイヤモンド焼結体の
特徴である耐摩耗性の良さが失なわれる。またダ
イヤモンドの含有量が95%を越えると結合材が少
なくなりすぎて満足した性能をする焼結体を得る
ことができない。また、周期律表の第4a、5a、
6a族の炭化物の含有量は容量で3〜55%が好ま
しい。炭化物の含有量が3%未満であると、ダイ
ヤモンド粒子の粒度が3μ以下の場合は粒成長し
たり3μ以上のダイヤモンド粒子を用いた場合で
も鉄族金属の含有量が多くなり、鉄族金属を溶出
してできる空孔が多くなりダイスとしての性能は
出なくなる。炭化物の含有量が55%を越えるとダ
イヤモンド粒子の含有量が少なくなるため焼結体
の耐摩耗性は低下する。鉄族金属の含有量は5容
量%以下が望ましい。鉄族金属の含合量が5%を
越えるとレーザーあるいは放電による下穴加工時
に生じる変質層は非常に大きくなる。また空孔は
5容量%未満、1容量%以上が好ましい。空孔が
5容量%以上になると焼結体の強度が低下し、抗
張力の高い線材を伸線する場合ダイヤモンド粒子
が脱落したりする。空孔が1容量%未満になると
鉄族金属の量が増し、下穴加工時の加工変質層が
大きくなる。
本発明焼結体に使用するダイヤモンドは合成ダ
イヤモンド天然ダイヤモンドのいずれでも良い。
このダイヤモンド粉末と周期律表の第4a、5a、
6a族の炭化物粉末あるいはこれらの固溶体また
は混合物結晶粉末及びFe、Co、Niの鉄族金属粉
末を均一にボールミル等の手段を用いて混合す
る。この鉄族金属は予め混合せずに焼結時に溶浸
せしめても良い。また発明者等の先願特願昭52−
51381号の如くボールミル時のポツトとボールを
を混入する炭化物等の化合物と鉄族金属の焼結体
で作成しておき、ダイヤモンド粉末をボールミル
粉砕すると同時にポツトとボールから炭化物等の
化合物と鉄族金属の焼結体の微細粉末を混合せし
める方法もある。
混合した粉末を超高圧装置に入れ、第1図に示
したダイヤモンドが安定な条件下で焼結する。こ
のとき使用した鉄族金属と炭化物等の化合物間に
生じる共晶液相の出現温度以上で焼結する必要が
ある。例えば化合物としてTiCを用い、鉄族金属
としてCoを用いた場合は常圧下では約1260℃で
液相が生じる。高圧下ではこの共晶温度は数十℃
程度上昇するものと考えられている。従つてこの
場合は1300℃以上の温度で焼結される。
このようにして製造されたダイヤモンド焼結体
を、例えば王水の如く鉄族金属を腐食しうること
のできる酸中に入れ鉄族金属を溶出して空孔を作
る。
本発明焼結体の用途としては伸線用ダイスの他
に非鉄金属等の切削加工用バイトなどがある。
以下実施例により具体的に説明する。
実施例 1
粒度0.5μの合成ダイヤモンド粉末とWC及びCo
粉末をWC−Co超硬合金製のポツト、ボールを用
いて粉砕混合した。作成した混合粉末の組成は次
の通りである。
Sintered diamond dies are already on the market today, and the performance of the sintered compact made of fine diamonds is that they have good wire texture when drawing copper wire, aluminum wire, galvanized wire, piano wire, etc., and have a long lifespan. It has amazing high performance, 20 to 100 times that of hard metal dies and 1.5 to 15 times that of natural diamond dies. However, these sintered diamond dies are manufactured by drilling a pilot hole by laser machining or electrical discharge machining and then wrapping, so the minimum diameter of the die is the same as the hole diameter after laser machining or electrical discharge machining. It was impossible to make a die with a diameter smaller than the sum of the altered layers, and it was difficult to use it in the field of ultra-fine wire, where natural diamond dies are used. Therefore, the present inventors conducted intensive research to develop a material that can be used even with these ultra-fine wires and has better performance than natural diamond. First, in order to investigate why the process-altered layer occurs, we used a commercially available diamond sintered body in which diamond particles are bonded with an iron group metal to make a 30μ pilot hole by laser processing, and observed the area around the hole. Around the pilot hole, cracks with a width of approximately 60μ and an altered layer with segregation of iron group metals, which are bonding metals, were observed. The existence of such an altered layer can be estimated as follows. When drilling a pilot hole using a laser, the surrounding area of the pilot hole also becomes hot, and at this time, the iron group metal that is the diamond binding material also expands. This diamond sintered body has a skeleton structure in which diamonds are bonded together, and the iron group metal is trapped between the diamond particles. The coefficient of thermal expansion of diamond is approximately 1.5 to 4.8 × 10 -6 , while that of Co, an iron group metal, is approximately 12.5 to 16.0 × 10 -6 , and the difference in thermal expansion between diamond and Co causes thermal stress. It is thought that the diamond skeleton part was destroyed and cracks were generated. Furthermore, iron group metals are catalysts for diamond synthesis, and the presence of iron group metals causes the diamond to transform into graphite at high temperatures, which may also be the reason for the enlarged altered layer. Furthermore, the segregation of Co is thought to be due to the Co existing in the pilot hole melting and moving, which is thought to further promote graphite formation of diamond. Therefore, the present inventors eluted the iron group metal in the sintered body by acid treatment, and then prepared a pilot hole in the same manner as described above. As a result, the altered layer was about 20 μm, which was as expected, less than when processing a sintered body containing iron group metals. This sintered body is used to make sintered diamond dies, which are then brass-plated with copper wire (steel cord).
was drawn. As a result, when drawing copper wire, the coefficient of friction was low at the beginning of the wire drawing and the wire drawing was successful, but during the wire drawing the frictional force suddenly increased and the wire broke, making it impossible to draw the wire, and its lifespan was reduced to the iron level. It was shorter than a sintered diamond die that does not elute metal. In order to investigate the cause of this, we observed the inner surface of the die and found that copper was embedded in the recessed areas where iron group metals were eluted, and that this copper and copper wire adhered to each other, increasing the coefficient of friction. . Furthermore, when steel cord was drawn, vertical streaks appeared on the surface of the wire some time after the wire was drawn, and its lifespan was reached, and in this case as well, the performance was inferior to that of a sintered diamond die that did not elute iron group metals. Observation of the inner surface of the die revealed that there was considerable ring wear in the reduction section, which appeared to be caused by diamonds falling off, and diamond particles had fallen off in the bearing section as well, and the inner surface was extremely rough. The reason why this happened is thought to be as follows. When the iron group metal, which is a binder, is eluted from the sintered diamond, each diamond particle is held together only by the bonds between the diamond particles, resulting in a decrease in strength. However, steel cord has a high tensile strength, and the pressure applied to the inner surface of the die during wire drawing becomes extremely high, so it is presumed that the skeleton part, which is the bond between the diamonds, broke and the diamond particles fell out. Based on these experimental results, the inventors of the present invention conducted studies, produced prototypes of various materials, created dies, and conducted wire drawing tests. As a result, the diamond content is 40-95% by volume, and the remainder is 3-55% by volume of carbides of metals from groups 4a, 5a, and 6a of the periodic table, solid solutions or mixtures thereof, and 0.03-5% by volume of iron group metals. and voids 5% by volume
It has been discovered that a diamond sintered body consisting of less than 1% has very little machining-altered layer due to laser or electrical discharge machining, and has excellent performance as a die. The reason why the sintered body of the present invention has excellent performance is presumed as follows. During laser or electrical discharge machining, the temperature around the prepared hole increases, but there are few iron group metals whose thermal expansion is very different from that of diamond.
Since it is a carbide of groups 4a, 5a, and 6a, its coefficient of thermal expansion is lower than that of iron group metals, so it is less prone to cracking due to thermal stress. Also, during wire drawing, the pores were small at less than 5% by volume, so the wire material was not buried in the pores, and the carbide and diamond particles were tightly bonded, so there was no decrease in strength. . The sintered body of the present invention had the best performance as a die, especially when the carbide was WC or (Mo, W)C having the same crystal structure. The content of diamond particles in the sintered body of the present invention is preferably 40 to 95% by volume. When the diamond content is less than 40%, the diamond sintered body loses its characteristic good wear resistance. Furthermore, if the diamond content exceeds 95%, the binding material becomes too small, making it impossible to obtain a sintered body with satisfactory performance. Also, periodic table 4a, 5a,
The content of Group 6a carbides is preferably 3 to 55% by volume. If the carbide content is less than 3%, grain growth will occur if the diamond particle size is 3μ or less, and the content of iron group metals will increase even if diamond particles of 3μ or more are used. The number of pores formed by elution increases, and the performance as a die is no longer achieved. When the carbide content exceeds 55%, the wear resistance of the sintered body decreases because the diamond particle content decreases. The content of iron group metals is preferably 5% by volume or less. If the content of iron group metal exceeds 5%, the altered layer produced during pilot hole machining by laser or electric discharge becomes very large. Further, the number of pores is preferably less than 5% by volume, and preferably 1% by volume or more. When the amount of pores exceeds 5% by volume, the strength of the sintered body decreases, and diamond particles may fall off when drawing a wire with high tensile strength. When the number of pores is less than 1% by volume, the amount of iron group metal increases, and the damaged layer during pilot hole drilling becomes large. The diamond used in the sintered body of the present invention may be either synthetic diamond or natural diamond.
This diamond powder and periodic table 4a, 5a,
Group 6a carbide powder or solid solution or mixture crystal powder thereof and iron group metal powder of Fe, Co, and Ni are uniformly mixed using a means such as a ball mill. This iron group metal may be infiltrated during sintering without being mixed in advance. In addition, the inventors' prior patent application filed in 1972-
As shown in No. 51381, the pots and balls during ball milling are made of a sintered body of compounds such as carbides and iron group metals, and at the same time as the diamond powder is ground in the ball mill, the pots and balls are mixed with compounds such as carbides and iron group metals. There is also a method of mixing fine powder of sintered metal. The mixed powder is placed in an ultra-high pressure device and sintered under conditions where the diamond shown in FIG. 1 is stable. At this time, it is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase appears between the iron group metal and the compound such as carbide used. For example, when TiC is used as the compound and Co is used as the iron group metal, a liquid phase occurs at about 1260°C under normal pressure. Under high pressure, this eutectic temperature is several tens of degrees Celsius
It is believed that the degree of Therefore, in this case, sintering is performed at a temperature of 1300°C or higher. The diamond sintered body thus produced is placed in an acid capable of corroding iron group metals, such as aqua regia, to elute iron group metals and create pores. In addition to wire drawing dies, the sintered body of the present invention can be used as cutting tools for cutting non-ferrous metals and the like. This will be explained in detail below using Examples. Example 1 Synthetic diamond powder with particle size of 0.5 μ and WC and Co
The powder was ground and mixed using a pot and ball made of WC-Co cemented carbide. The composition of the prepared mixed powder is as follows.
【表】【table】
【表】
この混合粉末をTa製の容器に詰め超高圧装置
を用いて、まず圧力55Kbを加え、引続いて1450
℃に加熱し、20分間保持して焼結した。この焼結
体を取り出して加熱した王水中に入れ焼結体中の
鉄族金属を溶出した。金属を溶出した後の焼結体
の組成も表1に示す。次にこれらの焼結体にレー
ザー加工により下穴20μをあけた後ラツピングし
て穴径60μのダイスを作成した。レーザー加工時
に生じた下穴周辺の加工変質層の厚さも表1に示
す。このようにして作成したダイスを用いて銅極
細線を伸線した。比較のためCoを結合材として
用いた市販のダイヤモンド焼結体についても本発
明焼結体と同様にして王水処理後ダイスを作成し
銅線を伸線した。また天然ダイヤモンドダイスに
ついても同様にして伸線した。これらの結果も合
せて表1に示す。本発明焼結体はレーザー加工に
よる変質層も少なく、伸線後の線表面も天然ダイ
ヤモンドダイス並にきれいであり、優れた性能を
示すことがわかる。
実施例 2
実施例1で作成した焼結体ABCDEFとCoを結
合材とした市販のダイヤモンド焼結体についての
放電加工により50μの下穴をあけた。このときの
加工変質層の幅を表2に示す。次にこれらの焼結
体の下穴をラツピング加工し線径150μのスチー
ルコード伸線用のダイスを作成し、線速800m/
min、エマルジヨンタイプの潤滑油中で伸線し
た。伸線結果も合わせて表2に示す。本発明焼結
体を用いるとダイス寿命は長いことがわかる。[Table] This mixed powder was packed in a container made of Ta and using an ultra-high pressure device, a pressure of 55Kb was first applied, and then a pressure of 145Kb was applied.
℃ and held for 20 minutes to sinter. This sintered body was taken out and placed in heated aqua regia to dissolve the iron group metals in the sintered body. Table 1 also shows the composition of the sintered body after the metal was eluted. Next, a pilot hole of 20 μm was made in each of these sintered bodies by laser machining, followed by wrapping to create a die with a hole diameter of 60 μm. Table 1 also shows the thickness of the process-affected layer around the pilot hole that occurred during laser processing. An ultrafine copper wire was drawn using the die thus prepared. For comparison, a commercially available diamond sintered body using Co as a binder was treated with aqua regia in the same manner as the sintered body of the present invention, and then a die was made and a copper wire was drawn. Also, natural diamond dies were drawn in the same manner. These results are also shown in Table 1. It can be seen that the sintered body of the present invention has few deteriorated layers due to laser processing, and the wire surface after wire drawing is as clean as that of a natural diamond die, indicating excellent performance. Example 2 A pilot hole of 50 μm was made by electric discharge machining on a commercially available diamond sintered body using the sintered body ABCDEF prepared in Example 1 and Co as a binder. Table 2 shows the width of the process-affected layer at this time. Next, a die for steel cord wire drawing with a wire diameter of 150μ was created by wrapping pilot holes in these sintered bodies, and a wire speed of 800 m/
wire drawing in emulsion type lubricating oil. The wire drawing results are also shown in Table 2. It can be seen that the die life is long when the sintered body of the present invention is used.
【表】
実施例 3
表3に示す組成の混合粉末を作成した。焼結条
件は全て実施例1と同様にして超高圧装置を用い
て焼結しダイヤモンド焼結体を得た。これらG〜
Mの焼結体と市販のCoを結合材とするダイヤモ
ンド焼結体について酸処理を施して鉄族金属の一
部を溶出した後、放電加工により100μの下穴を
あけた。なお王水処理後の焼結体の組成ならびに
放電加工による加工変質層の幅も表3に示す。次
にダイヤモンド粒子によるラツピングにより穴径
0.15mmのダイスを作製し、このダイスを用いて高
炭素鋼線を伸線した。その結果も表3に示す通り
本発明焼結体は優れた伸線性能を示すことが判明
した。[Table] Example 3 A mixed powder having the composition shown in Table 3 was prepared. All the sintering conditions were the same as in Example 1, and the diamond sintered body was obtained by sintering using an ultra-high pressure device. These G~
A sintered body of M and a commercially available diamond sintered body made of Co as a binder were acid-treated to dissolve some of the iron group metals, and then a pilot hole of 100 μm was drilled by electrical discharge machining. Table 3 also shows the composition of the sintered body after aqua regia treatment and the width of the machining-affected layer due to electrical discharge machining. Next, the hole diameter is determined by wrapping with diamond particles.
A 0.15 mm die was made, and high carbon steel wire was drawn using this die. As shown in Table 3, the results showed that the sintered body of the present invention exhibited excellent wire drawing performance.
第1図は本発明の焼結体の製造条件を説明する
為のものでダイヤモンドの圧力、温度相図上での
安定域を示したものである。
1……ダイヤモンド−黒鉛平衡線、A……ダイ
ヤモンド安定領域、B……黒鉛安定領域。
FIG. 1 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the stable range on the pressure and temperature phase diagram of diamond. 1...Diamond-graphite equilibrium line, A...Diamond stability region, B...Graphite stability region.
Claims (1)
が周期率表の第4a、5a、6a族金属の炭化物ある
いはこれらの固溶体または混合物結晶3〜55容量
%、鉄族金属5容量%以下及び空孔5容量%未満
1%以上より成る工具用ダイヤモンド焼結体。 2 残部の炭化物がWCあるいはこれと同一結晶
構造を有する(Mo、W)Cである特許請求の範
囲第1項記載の工具用ダイヤモンド焼結体。 3 ダイヤモンド粉末と周期律表第4a、5a、6a
族金属の炭化物あるいはこれらの固溶体粉末また
は混合物結晶と鉄族金属の混合粉末を作成し、こ
れを粉状で、もしくは型押成型し、超高圧高温装
置を用いてダイヤモンドが安定な高温、高圧下で
ホツトプレスして焼結体を作成し、該焼結体を酸
処理することにより鉄族金属の一部を溶出するこ
とを特徴とするダイヤモンドが容量で40〜95%含
有し、残部が周期律表4a、5a、6a族金属の炭化
物あるいはこれらの固溶体または混合物結晶3〜
55容量%、鉄族金属5容量%以下、及び空孔5容
量%未満1%以上より成る工具用ダイヤモンド焼
結体の製造方法。 4 残部の炭化物がWCあるいはこれと同一結晶
構造を有する(Mo、W)Cである特許請求の範
囲第3項記載の工具用ダイヤモンド焼結体の製造
方法。[Scope of Claims] 1 Contains 40 to 95% by volume of diamond, the remainder being carbides of metals from groups 4a, 5a, and 6a of the periodic table, or 3 to 55% by volume of solid solutions or mixture crystals of these metals, and iron group metals. A diamond sintered body for tools comprising 5% by volume or less and pores of less than 5% by volume and 1% or more. 2. The diamond sintered body for tools according to claim 1, wherein the remaining carbide is WC or (Mo, W)C having the same crystal structure as WC. 3 Diamond powder and Periodic Table 4a, 5a, 6a
A mixed powder of iron group metal carbides or solid solution powders or mixture crystals of these metals is prepared, and this is powdered or molded by molding, and then heated under high temperature and high pressure at which diamond is stable using an ultra-high pressure and high temperature equipment. A sintered body is created by hot pressing, and the sintered body is treated with acid to elute a part of the iron group metal. Table 4a, 5a, 6a group metal carbides or their solid solutions or mixture crystals 3~
A method for producing a diamond sintered body for tools comprising 55% by volume, 5% by volume or less of iron group metals, and 1% or more of pores less than 5% by volume. 4. The method for producing a diamond sintered body for tools according to claim 3, wherein the remaining carbide is WC or (Mo, W)C having the same crystal structure as WC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55176245A JPS57100982A (en) | 1980-12-12 | 1980-12-12 | Diamond sintered body for tool and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55176245A JPS57100982A (en) | 1980-12-12 | 1980-12-12 | Diamond sintered body for tool and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57100982A JPS57100982A (en) | 1982-06-23 |
JPH0127141B2 true JPH0127141B2 (en) | 1989-05-26 |
Family
ID=16010178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55176245A Granted JPS57100982A (en) | 1980-12-12 | 1980-12-12 | Diamond sintered body for tool and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57100982A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219445A (en) * | 1983-05-25 | 1984-12-10 | Sumitomo Electric Ind Ltd | High-hardness sintered body for tool and its manufacture |
JPS61104045A (en) * | 1984-10-26 | 1986-05-22 | Sumitomo Electric Ind Ltd | Diamond sintered body for tool and production thereof |
JPS61125739A (en) * | 1984-11-21 | 1986-06-13 | Sumitomo Electric Ind Ltd | Diamond sintered article for tool and manufacture thereof |
JPS6355161A (en) * | 1987-07-17 | 1988-03-09 | 住友電気工業株式会社 | Manufacture of industrial diamond sintered body |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5547363A (en) * | 1978-09-27 | 1980-04-03 | Sumitomo Electric Ind Ltd | Fine crystal sintered body for tool and its preparation |
-
1980
- 1980-12-12 JP JP55176245A patent/JPS57100982A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5547363A (en) * | 1978-09-27 | 1980-04-03 | Sumitomo Electric Ind Ltd | Fine crystal sintered body for tool and its preparation |
Also Published As
Publication number | Publication date |
---|---|
JPS57100982A (en) | 1982-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11525309B2 (en) | Polycrystalline diamond compact, and related methods and applications | |
US10179390B2 (en) | Methods of fabricating a polycrystalline diamond compact | |
CA2264858C (en) | Manufacture of a metal bonded abrasive product | |
EP2276610B1 (en) | Method for forming aggregate abrasive grains for use in the production of abrading or cutting tools | |
CA2124393C (en) | Method of making an abrasive compact | |
KR101753431B1 (en) | Polycrystalline diamond compacts, and related methods and applications | |
US10858892B2 (en) | Methods of fabricating a polycrystalline diamond compact | |
KR100402986B1 (en) | Manufacturing method of compact for polishing with improved properties | |
US9610555B2 (en) | Methods of fabricating polycrystalline diamond and polycrystalline diamond compacts | |
CN101048249B (en) | High-density milling briquetting | |
GB1574615A (en) | Composite material containing hard metal carbide particlesand method for the production thereof | |
EP2550340B1 (en) | Aggregate abrasives for abrading or cutting tools production | |
JPH0127141B2 (en) | ||
JPS6411703B2 (en) | ||
JPS6146540B2 (en) | ||
JPS5891056A (en) | Diamond sintered body for tools and manufacture | |
JPS58213676A (en) | Diamond sintered body for tool and manufacture | |
CA2978769C (en) | Polycrystalline diamond compacts, and related methods and applications | |
JPS6216725B2 (en) | ||
JPS59219445A (en) | High-hardness sintered body for tool and its manufacture | |
JPH0525935B2 (en) | ||
de Oliveira et al. | Diamond Tooling Bond Systems: PM Processed Diamond Beads: The Use of Ferritic Matrix | |
JPS5899168A (en) | Diamond sintered body for tool and manufacture | |
JPS5899169A (en) | Diamond sintered body for tool and manufacture | |
JPS6126512B2 (en) |