JPH01270547A - Admixture for concrete - Google Patents

Admixture for concrete

Info

Publication number
JPH01270547A
JPH01270547A JP9750388A JP9750388A JPH01270547A JP H01270547 A JPH01270547 A JP H01270547A JP 9750388 A JP9750388 A JP 9750388A JP 9750388 A JP9750388 A JP 9750388A JP H01270547 A JPH01270547 A JP H01270547A
Authority
JP
Japan
Prior art keywords
concrete
resin acid
air
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9750388A
Other languages
Japanese (ja)
Other versions
JP2592495B2 (en
Inventor
Masanori Iizuka
正則 飯塚
Toshiharu Kojima
俊治 小島
Ryoichi Tamaoki
良市 玉置
Akitoshi Tsuji
辻 彰敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP9750388A priority Critical patent/JP2592495B2/en
Publication of JPH01270547A publication Critical patent/JPH01270547A/en
Application granted granted Critical
Publication of JP2592495B2 publication Critical patent/JP2592495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To make it possible to keep the target air flow rate for a long period, by using fine particles of resin acid or a bi- or polyvalent metallic complex thereof as an air-entraining agent for concrete. CONSTITUTION:An admixture (air-entraining agent) for concrete obtained by using a water-insoluble or sparingly soluble resin acid or a complex of a polyvalent metal (e.g., Mg, Ba, Zn, Fe or Al) and having 0.05-100mum, preferably 0.05-50mum average particle diameter. The above-mentioned complex is preferably obtained normally by adding a polyvalent metallic hydroxide in an amount of 50-100% based on neutralization equiv. of the resin acid. The amount of the admixture added to the cement is normally 0.001-0.1% based on the cement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セメント、モルタノベコンクリート用の混和
剤、更に詳しく言えば、空気連行剤(以下AE剤と呼称
)に関するものであり、更に詳しくは、セメント、モル
タル及びコンクリート中の空気量の経時による低下を防
止し得るAE剤に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an admixture for cement and mortar concrete, and more specifically, to an air entraining agent (hereinafter referred to as AE agent). relates to an AE agent that can prevent the amount of air in cement, mortar, and concrete from decreasing over time.

〔従来の技術〕[Conventional technology]

セメントスラリー、モルタル及びコンクリートに空気連
行性を与えるAE剤を用いることにより、(1)凍結融
解に対する抵抗性の向上、(2)ワーカビリティーの改
善、(3)ポンプビリティ−の改善、(4)気泡の保水
力増加に伴うブリージングの減少、(5)単位水量の減
少等の効果がある。−船釣に使用れているAE剤として
は、樹脂酸Na塩、アルキルベンゼンスルホン酸塩、ア
ルキルスルホン酸のトリエタノールアミン塩、ポリオキ
シエチレンアルキル硫酸塩等のアニオン界面活性剤或い
はポリオキシエチレンアルキルフェノール等のノニオン
活性剤等がある。また、空気連行型の減水剤としては、
リグニンスルホン酸塩、アルキルナフタリンスルホン酸
ホルマリン縮合物塩等がある。一方、低泡性減水剤、即
ち通常の使用量でコンクリート中の空気量が3%以下の
減水剤としては、β−ナフタリンスルホン酸ホルマリン
高縮合物塩、メラミンホルマリン縮合物スルホン酸塩等
がある。通常、AE剤及び減水剤の併用によりコンクリ
ートに連行される空気量は一定(日本建築学会の基準で
は4±1%)であって、経時による減少がないほうが好
ましい。
By using an AE agent that gives air entrainment properties to cement slurry, mortar, and concrete, it is possible to (1) improve freeze-thaw resistance, (2) improve workability, (3) improve pumpability, and (4) air bubbles. This has the effects of reducing breathing due to increased water holding capacity, and (5) reducing unit water volume. - AE agents used for boat fishing include anionic surfactants such as resin acid Na salts, alkylbenzene sulfonates, alkyl sulfonic acid triethanolamine salts, polyoxyethylene alkyl sulfates, and polyoxyethylene alkyl phenols. There are nonionic activators, etc. In addition, as an air-entraining water reducing agent,
Examples include lignin sulfonate, alkylnaphthalene sulfonic acid formalin condensate salt, and the like. On the other hand, examples of low-foaming water reducers, i.e., water reducers whose air content in concrete is 3% or less when used in normal amounts, include β-naphthalene sulfonic acid formalin high condensate salts, melamine formalin condensate sulfonates, etc. . Normally, the amount of air entrained into concrete by the combined use of an AE agent and a water reducing agent is constant (4±1% according to the standards of the Architectural Institute of Japan), and it is preferable that it not decrease over time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のAE剤により連行される空気量は
コンクリートの水セメント比、コンクリートの配合、コ
ンクリートの柔らかさ、セメントのフライアッンユ代替
率等の因子により、時間の経過とともに空気量の減少が
激しくなるという欠点があった。
However, the amount of air entrained by conventional AE agents decreases rapidly over time due to factors such as the water-cement ratio of concrete, the mix of concrete, the softness of concrete, and the rate of replacement of cement with flywheel. There were drawbacks.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は上記した従来のAE剤の欠点を改善すべくなさ
れたものである。通常、コンクリートはAE剤を使用し
なくても1〜2%の空気泡を含んでいるが、これにAE
剤を用いて積極的に気泡を連行させている。7へE剤と
してアニオン活性剤を使った場合、コンクリート中の水
の表面張力が下がっているので、界面活性剤が含まれて
いない水に比べて僅かな撹拌によって気泡が入りやすく
なる。そして、その周囲の水にはアニオン性活性剤の親
油基を気体側に、親水基を水側に向けて配向している。
The present invention has been made to improve the drawbacks of the conventional AE agents mentioned above. Normally, concrete contains 1 to 2% air bubbles even without the use of AE agents;
A chemical agent is used to actively entrain air bubbles. 7. When an anionic surfactant is used as the E agent, the surface tension of the water in the concrete is lowered, so air bubbles are more likely to enter with slight agitation compared to water that does not contain a surfactant. In the surrounding water, the lipophilic groups of the anionic activator are oriented toward the gas side and the hydrophilic groups are oriented toward the water side.

活性剤の添加量が多くなればなるほど分子間の距離が接
近し、分子間引力が強くなり気泡が安定化する。し、か
じながら、これに低泡性の減水剤が添加されると、活性
剤の分子の間に入り分子間引力を弱め破泡しやすくなる
と言われている。勿論、セメント、骨材或いはミキサー
の羽根により消泡する場合もある。また、連行された気
泡の直径が20μm以下になると急激に気泡の内圧が高
くなり、水に溶けて消泡する。
As the amount of the activator added increases, the distance between the molecules becomes closer, the intermolecular attraction becomes stronger, and the bubbles become more stable. However, it is said that when a low-foaming water reducing agent is added to this, it enters between the molecules of the active agent and weakens the intermolecular attraction, making it easier to break the foam. Of course, defoaming may be caused by cement, aggregate, or mixer blades. Furthermore, when the diameter of the entrained bubbles becomes 20 μm or less, the internal pressure of the bubbles increases rapidly, and the bubbles dissolve in water and disappear.

本発明者らは活性剤により連行されたコンクリート中の
気泡が消泡しても、次から次へと気泡を連行させ得る方
法について鋭意検討した結果、平均粒径0.05〜10
0μmの水に難溶性又は水不溶性の樹脂酸もしくは樹脂
酸の金属コンブレンクスをコンクリートに添加すると、
目標とする空気量を長時間持続し得ることを見出し、本
発明を完成させるに至った。即ち、樹脂酸もしくは樹脂
酸の2価以上の金属コンプレックスの微粒子は普通の水
では水不溶性又は難溶性であるが、コンクリートに添加
されるとコンクリートより溶出するアルカリイオンと反
応し、可溶性となり徐々に溶出し、コンクリートの表面
張力を下げ、コンクリートミキサーの撹拌力により空気
を抱き込み気泡化し、前述した理由により消泡した気泡
量を補い、空気量の経時安定化を図るものである。
The inventors of the present invention have conducted intensive studies on a method that allows air bubbles to be entrained one after another even if the air bubbles in concrete entrained by the activator disappear.
When a resin acid or a metal complex of a resin acid that is sparingly soluble or water-insoluble in 0 μm water is added to concrete,
It was discovered that the target amount of air could be maintained for a long period of time, and the present invention was completed. In other words, fine particles of resin acids or divalent metal complexes of resin acids are insoluble or poorly soluble in ordinary water, but when added to concrete, they react with alkali ions eluted from the concrete, becoming soluble and gradually It dissolves, lowers the surface tension of the concrete, traps air and turns it into bubbles using the stirring force of the concrete mixer, compensates for the amount of bubbles that have defoamed due to the reasons mentioned above, and stabilizes the amount of air over time.

本発明において金属コンプレックスとは、樹脂酸中のカ
ルボキシル基と多価金属が分子内又は分子間結合して水
難溶性又は不溶性化合物を形成しているものを言う。ま
た、本発明において樹脂酸とは、天然樹脂中に遊離又は
ニスデルとして存在する有機酸の総称であり、樹脂酸も
しくはその金属コンブレンクス微粒子の粒径はコンクリ
ートの物性に悪影響を与えないために、できる限り小さ
い方が好ましい。しかしながら、余りに小さいと微粒子
の表面積が増大し、コンクリート混練中に殆ど溶解し、
空気量の経時安定性が劣る。一方、粒径が余り大きいと
微粒子の表面積が小さくなり、目標とする空気量を得る
ための添加量が多くなり、コンクリート打設時に全量が
溶解せず未溶解粒子が残り、コンクリートの強度低下を
起こし好ましくない。これらの面から平均粒径は0.0
5〜100μmであることが必要であり、好ましくは0
.05〜50μmである。
In the present invention, the metal complex refers to a compound in which a carboxyl group in a resin acid and a polyvalent metal are bonded intramolecularly or intermolecularly to form a poorly water-soluble or insoluble compound. In addition, in the present invention, resin acid is a general term for organic acids that exist free or as Nisdel in natural resins. It is preferable that it be as small as possible. However, if the particles are too small, the surface area of the particles will increase and most of them will dissolve during concrete mixing.
The stability of air volume over time is poor. On the other hand, if the particle size is too large, the surface area of the fine particles will become small, and the amount of air added will be large to obtain the target amount of air, and the entire amount will not dissolve during concrete pouring and undissolved particles will remain, resulting in a decrease in the strength of the concrete. I don't like waking up. From these aspects, the average particle size is 0.0
It needs to be 5 to 100 μm, preferably 0
.. 05 to 50 μm.

本発明で使用する樹脂酸は平均粒径が所望のものであれ
ば、市販のものがそのまま使用できる。粒径が大きすぎ
る場合には粉砕して使用される。
As the resin acid used in the present invention, commercially available resin acids can be used as is as long as they have a desired average particle size. If the particle size is too large, it is used after being crushed.

樹脂酸の多価金属コンプレックスの製造に使用する多価
金属は、2価以上の金属であって、樹脂酸のカルボキシ
ル基と分子内又は分子間結合し水不溶性或いは水難溶性
を示す化合物を生成するものであれば何でも使用できる
。樹脂酸に対する添加量は樹脂酸の中和当量の50〜5
00%が望ましい。実用的な化合物としては、Ca。
The polyvalent metal used in the production of the polyvalent metal complex of resin acid is a metal with a valence of more than 2, which forms a compound that is insoluble or poorly soluble in water by bonding intramolecularly or intermolecularly with the carboxyl group of the resin acid. You can use anything. The amount added to the resin acid is 50 to 5 of the neutralization equivalent of the resin acid.
00% is desirable. A practical compound is Ca.

Mg、 Ba、 Zn、 Fe、 Alの水酸化化合物
が一般的であるが、炭酸、硫酸、硝酸などの塩、又は酸
化の形で使用してもよい。また、樹脂酸の多価金属コン
ブレンクスを生成させるには、樹脂酸の水サスペンショ
ン或いは樹脂酸のアルカリ金属塩の水溶液に上記の多価
金属化合物を混合することにより、容易に行うことがで
きる。この際、加熱処理することは反応促進の点から好
ましい方法である。樹脂酸と多価金属化合物との反応に
より、全てが多価金属コンプレックスになっていても、
また一部コンプレックスとなり残部が遊離の樹脂酸との
混合物の形になっていても、何れの場合でも効果上に大
きな差異はない。樹脂酸の微粒子は微粉体で保存する場
合は問題ないが、水サスペンションで保存する場合、徐
々に溶解し、AE剤として使用する場合の空気の長時間
保持性能が多価金属コンプレックスの場合より劣ること
になるので、本発明においては多価金属コンプレックス
とする方が好ましい。
Hydroxide compounds of Mg, Ba, Zn, Fe, and Al are generally used, but they may also be used in the form of salts such as carbonic acid, sulfuric acid, nitric acid, or in the form of oxidation. Further, the formation of a polyvalent metal complex of resin acid can be easily carried out by mixing the above-mentioned polyvalent metal compound into an aqueous suspension of resin acid or an aqueous solution of an alkali metal salt of resin acid. At this time, heat treatment is a preferable method from the viewpoint of promoting reaction. Even if everything becomes a polyvalent metal complex due to the reaction between resin acid and polyvalent metal compound,
Furthermore, even if some of the resin is complex and the rest is in the form of a mixture with free resin acid, there is no significant difference in effectiveness in either case. Resin acid fine particles pose no problem when stored as a fine powder, but when stored in a water suspension, they gradually dissolve, and when used as an AE agent, their long-term air retention performance is inferior to that of polyvalent metal complexes. Therefore, in the present invention, it is preferable to use a polyvalent metal complex.

本発明のコンクリート用混和剤は、市販の減水剤、スラ
ンプロス防止剤、早強剤、起泡剤、消泡剤等の他の混和
剤との併用も可能である。
The concrete admixture of the present invention can also be used in combination with other admixtures such as commercially available water reducers, slump loss inhibitors, early strength agents, foaming agents, and antifoaming agents.

本発明の混和剤の形態としては、粉粒体、水サスペンシ
ョンがあり、また予めセメントに配合しておくことも可
能である。コンクリートに対する添加時期は、コンクリ
ート打設時までなら何時でも添加することが可能であり
、その効果を十分発揮する。生コンクリートミキサー車
でコンクリートを搬送する場合には、適度な撹拌を与え
ることが望ましい。また練り置きコンクリートの場合に
も練りかえしが必要である。
The admixture of the present invention can be in the form of powder or water suspension, and can also be blended into cement in advance. It can be added to concrete at any time up to the time of concrete pouring, and its effects are fully demonstrated. When transporting concrete using a fresh concrete mixer truck, it is desirable to provide appropriate agitation. Remixing is also necessary in the case of premixed concrete.

セメントに対する添加量は、コンクリートの配合、柔ら
かさ、併用混和剤の種類により変わるが、通常対セメン
トo、 ooi〜0.1%である。
The amount added to cement varies depending on the mix, softness, and type of admixture of concrete, but is usually 0.00 to 0.1% of cement.

〔実 施 例〕〔Example〕

以下実施例により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to Examples.

実施例1 炭化水素系化合物14.6%、ロジン誘導体化合物27
.3%、フェノール性化合物58.1%よりなる樹脂酸
(米国バーキュレス社製;VIN SQLレジン)50
gに表1に示す2価又は3価の金属化合物を添加し、こ
れに水900gを加えジュースミキサーにて30秒間撹
拌した。このサスペンショ7一 ン200gをガラスピーズ(直径0.5mm) 500
gと共にサンドグラインダー(五十嵐機械製造■製;N
o、 TSG−6H)の容器に入れ、冷却しなから15
00rpmで粉砕し、粉砕後フィルターによりガラスピ
ーズを除去し粒径を測定(島津製作所■製;沈降式粒度
分布測定装置/5A−CPa形)した。得られたサスペ
ンションをコンクリートに添加し、空気量の経時変化、
スランプ、圧縮強度を測定した。併用した減水剤はβ−
ナフタリンスルホン酸ホルマリン高縮合物Ca塩と低級
オレフィン(炭素数4)と無水マレイン酸共重合物の微
粒化物(平均粒径0.10μm)を固形分比で95対5
に配合したものであり、固形分換算で対セメント0.5
%添加した。尚、使用したミキサーは傾胴式でコンクリ
ート混練後1分間に4回転させて60分まで撹拌した。
Example 1 Hydrocarbon compound 14.6%, rosin derivative compound 27
.. 3%, phenolic compound 58.1% (manufactured by Vercules, USA; VIN SQL Resin) 50
The divalent or trivalent metal compounds shown in Table 1 were added to g, and 900 g of water was added thereto and stirred for 30 seconds using a juice mixer. 200g of this suspension 71 and glass beads (diameter 0.5mm) 500
Sand grinder (manufactured by Igarashi Machine Manufacturing ■; N
o, TSG-6H) container and cool it for 15 minutes.
After the grinding, the glass beads were removed using a filter and the particle size was measured (manufactured by Shimadzu Corporation; sedimentation type particle size distribution analyzer/model 5A-CPa). The obtained suspension is added to concrete, and the change in air content over time,
Slump and compressive strength were measured. The water reducing agent used in combination was β-
Micronized product (average particle size 0.10 μm) of naphthalene sulfonic acid formalin high condensate Ca salt, lower olefin (carbon number 4), and maleic anhydride copolymer (average particle size 0.10 μm) in a solid content ratio of 95:5
It is blended with 0.5 to cement in terms of solid content.
% added. The mixer used was a tilting type mixer, and after mixing the concrete, it was rotated 4 times per minute and stirred for up to 60 minutes.

比較用AE剤として樹脂酸のNa塩であるビンソール(
山宗化学■販売品)を使用した。
Vinsol (Na salt of resin acid) was used as a comparative AE agent.
A product sold by Yamasou Chemical Co., Ltd.) was used.

くコンクリートの配合〉 W/C=55.5% =8− 6/A=5(1,0% C=320kg/m’ (中央ポルトランドセメント) 細骨材−紀の月産 粗骨材−宝塚産砕石 結果を表1に示す −11〜 樹脂酸と多価金属化合物を配合し微粉砕した本発明品は
、表1から明らかな様にコンクリートの圧縮強度を低下
させることなく、目標とするコンクリート空気量(4±
1%)を長時間保持する効果のあることがわかる。これ
に比べ樹脂酸を原料として製造された1価の金属塩(N
a塩)水溶液であるビンソールは、目標とする空気量を
長時間保持することがてきず、本発明品は(憂れたAE
剤であると言える。
Concrete mix> W/C = 55.5% = 8- 6/A = 5 (1.0% C = 320 kg/m' (Central Portland Cement) Fine aggregate - Monthly coarse aggregate - Takarazuka The crushed stone results are shown in Table 1-11~ As is clear from Table 1, the product of the present invention, which is made by blending a resin acid and a polyvalent metal compound and pulverizing it, can produce the target concrete without reducing the compressive strength of the concrete. Air volume (4±
1%) for a long period of time. In comparison, monovalent metal salts (N
(a) Vinsol, which is an aqueous solution, cannot maintain the target amount of air for a long time, and the product of the present invention
It can be said that it is a drug.

実施例2 実施例1により得られた各種樹脂酸と多価金属化合物の
配合物を90℃で5時間加熱した。このものについて、
コンクリート試験により空気量の経時変化を測定した。
Example 2 The blends of various resin acids and polyvalent metal compounds obtained in Example 1 were heated at 90° C. for 5 hours. About this thing
Changes in air content over time were measured using concrete tests.

コンクリートの配合、試験法は実施例1と同じ方法で行
った。結果を表2に示す。
The mix of concrete and the test method were the same as in Example 1. The results are shown in Table 2.

樹脂酸と多価金属化合物を配合し微粉砕し、更に加熱処
理してなる微粒子である本発明品は、コンクリートの圧
縮強度を低下させることなく、目標とするコンクリート
空気量(4±・1%)を長時間保持する優れたAE剤で
あることがわかる。
The product of the present invention, which is a fine particle made by blending a resin acid and a polyvalent metal compound, pulverizing it, and then heat-treating it, can achieve the target concrete air content (4±.1%) without reducing the compressive strength of concrete. ) is found to be an excellent AE agent that retains for a long time.

実施例3 実施例1と同じ樹・脂酸50gに表3に示す2価又は3
価の金属化合物を所定量゛(樹脂酸のカルボキシル基の
中和当量の1.2倍量)添加し、85℃で10時間撹拌
し、冷却後、赤外線吸収スペクトルにて金属塩になった
ことを確認した。このものについて、コンクリート試験
により空気量の経時変化を測定した。コンクリートの配
合、試験法は実施例1と同じ方法で行った。結果を表3
に示す。
Example 3 50 g of the same resin/resin acid as in Example 1 was added with the divalent or trivalent compound shown in Table 3.
A predetermined amount of a metal compound having a valent value (1.2 times the neutralization equivalent of the carboxyl group of the resin acid) was added, stirred at 85°C for 10 hours, and after cooling, an infrared absorption spectrum showed that it had become a metal salt. It was confirmed. Regarding this product, the change in air content over time was measured by a concrete test. The mix of concrete and the test method were the same as in Example 1. Table 3 shows the results.
Shown below.

本発明品である加熱処理により得られた樹脂酸の多価金
属コンプレックスの微粒化物は、コンクリートの圧縮強
度を低下させることなく、目標とする空気量を長時間保
持する効果があることがわかる。
It can be seen that the atomized polyvalent metal complex of resin acid obtained by heat treatment, which is the product of the present invention, is effective in maintaining the target air content for a long time without reducing the compressive strength of concrete.

実施例4 炭化水素系化合物14.8%、ロジン誘導体化合物27
4%、フェノール性化合物58.0%よりなる樹脂酸(
米国バーキュレス社製;VINSOL レジン)50g
に水900gを加えジュースミキサーにて30秒間撹拌
した。このサスペンション200gをガラスピーズ(直
径0.5mm) 500gと共にサンドグラインダー(
五十嵐機械製造■製;No、TSG−6H)の容器に入
れ、冷却しなから1500rpmで粉砕し、粉砕後フィ
ルターによりガラスピーズを除去し粒径を測定(島津製
作所■製;沈降式粒度分布測定装置/5A−CF2形)
した。得られたサスペンションをコンクリートに添加し
、空気量の経時変化、スランプ、圧縮強度を測定した。
Example 4 Hydrocarbon compound 14.8%, rosin derivative compound 27
4% and 58.0% phenolic compounds (
Manufactured by Vercules, USA; VINSOL resin) 50g
900 g of water was added to the mixture and stirred for 30 seconds using a juice mixer. Add 200g of this suspension to a sand grinder (with 500g of glass beads (diameter 0.5mm)
Place the container in a container made by Igarashi Kikai Mfg. (No., TSG-6H) and grind at 1500 rpm without cooling. After grinding, remove the glass beads with a filter and measure the particle size (Made by Shimadzu Mfg.; Sedimentation type particle size distribution measurement. Device/5A-CF2 type)
did. The resulting suspension was added to concrete, and changes in air content over time, slump, and compressive strength were measured.

併用した減水剤はβ−ナフタリンスルホン酸ホルマリン
高縮合物Ca塩と低級オレフィン(炭素数4)と無水マ
レイン酸共重合物の微粒子(平均粒径0.10μm)を
固形分比で95対5に配合したものであり、固形分換算
で対セメント0.5%添加した。尚、使用したミキサー
は傾胴式でコンクリート混練後1分間に4回転させて6
0分まで撹拌した。
The water reducing agent used in combination was a combination of β-naphthalene sulfonic acid formalin high condensate Ca salt, lower olefin (carbon number 4), and maleic anhydride copolymer fine particles (average particle size 0.10 μm) in a solid content ratio of 95:5. It was blended, and 0.5% of cement was added in terms of solid content. The mixer used was a tilting type, and after mixing the concrete, it made 4 revolutions per minute and 6
Stir until 0 minutes.

比較用AE剤として樹脂酸のNa塩であるビンソール(
山宗化学■販売品)を使用した。
Vinsol (Na salt of resin acid) was used as a comparative AE agent.
A product sold by Yamasou Chemical Co., Ltd.) was used.

〈コンクリートの配合〉 W/C=55.7% S/A=50.0% C=320kg/m3 (中央ポルトランドセメント) 細骨材−紀の用度 粗骨材−宝塚産砕石 結果を表4に示す 表4に示す様に市販のAE剤ビンソールは、混練直後の
空気量の経時低下が激しい。これに対し本発明品は経時
安定性が大てあり、4±1%を確保する優れたAE剤で
あることがわかる。
<Concrete mix> W/C = 55.7% S/A = 50.0% C = 320 kg/m3 (Central Portland cement) Table 4 shows the results of fine aggregate - period coarse aggregate - crushed stone from Takarazuka As shown in Table 4, the commercially available AE agent Vinsol shows a significant decrease in air content over time immediately after kneading. On the other hand, the product of the present invention has excellent stability over time and is an excellent AE agent that maintains a stability of 4±1%.

樹脂酸の微粒子は初期の空気量が高くなるが、これに消
泡剤を少量添加すれば気泡の経時安定性が更によくなる
ことがわかる(実験No、 2.3)。
Although resin acid fine particles have a high initial air content, it is clear that if a small amount of antifoaming agent is added to these particles, the stability of the bubbles over time becomes even better (Experiment No. 2.3).

粒径が大になると(実験No、6)、時間と共に空気量
が少し減少するが、この場合には市販のAE剤を少量添
加併用することにより(実験No、 7 )、空気量を
更に安定化することができることがわかる。
When the particle size becomes large (Experiment No. 6), the air amount decreases a little over time, but in this case, by adding a small amount of a commercially available AE agent (Experiment No. 7), the air amount can be further stabilized. It turns out that it is possible to convert

出願人代理人  古 谷   馨Applicant's agent Kaoru Furutani

Claims (1)

【特許請求の範囲】 1 水不溶性又は難溶性である平均粒径0.05〜10
0μmの微粒子状の樹脂酸もしくは樹脂酸の2価以上の
金属コンプレックスを含有するコンクリート用混和剤。 2 減水剤を含有する請求項1記載のコンクリート用混
和剤。
[Claims] 1. Average particle size of 0.05 to 10 that is insoluble or poorly soluble in water.
A concrete admixture containing 0 μm fine particles of resin acid or a divalent or higher valent metal complex of resin acid. 2. The concrete admixture according to claim 1, which contains a water reducing agent.
JP9750388A 1988-04-20 1988-04-20 Admixture for concrete Expired - Fee Related JP2592495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9750388A JP2592495B2 (en) 1988-04-20 1988-04-20 Admixture for concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9750388A JP2592495B2 (en) 1988-04-20 1988-04-20 Admixture for concrete

Publications (2)

Publication Number Publication Date
JPH01270547A true JPH01270547A (en) 1989-10-27
JP2592495B2 JP2592495B2 (en) 1997-03-19

Family

ID=14194067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9750388A Expired - Fee Related JP2592495B2 (en) 1988-04-20 1988-04-20 Admixture for concrete

Country Status (1)

Country Link
JP (1) JP2592495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133261A (en) * 2011-12-27 2013-07-08 Miyoshi Oil & Fat Co Ltd Air entraining stable volume change inhibitor for cement composition and cement composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133261A (en) * 2011-12-27 2013-07-08 Miyoshi Oil & Fat Co Ltd Air entraining stable volume change inhibitor for cement composition and cement composition

Also Published As

Publication number Publication date
JP2592495B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP7444306B2 (en) Hardening material, hardening material liquid, chemical liquid for soil stabilization, method for producing the chemical liquid, and ground stabilization method
JP6189934B2 (en) Stable defoamer for cementitious compositions
JPH09500605A (en) Coagulation and hardening accelerator for silica-based hydraulic binders
JP2933994B2 (en) Admixture for cement
JP2005139060A (en) Setting accelerator for cement
JPH04124054A (en) Superhigh-strength concrete
JP2592494B2 (en) Admixture for cement
JP3766891B2 (en) Powder admixture for cement and concrete
JP2004231884A (en) Injection material
JPH01270547A (en) Admixture for concrete
GB2057418A (en) Prevention of slump loss in fresh concrete
JPH04198050A (en) Cement admixture
JPS5835944B2 (en) Anti-caking agent for blast furnace slag granulated sand
JP4358400B2 (en) Cement additive
JPH11310444A (en) Powder cement dispersing agent
JPH0365547A (en) Air-entraining agent for concrete
JPH0372937A (en) Gradual release foaming agent
JPH01270548A (en) Admixture for concrete
JPS63285138A (en) Grinding aid for cement clinker and blast furnace slag
JPS6144744A (en) Admixing agent for hydraulic cement
JPH0717421B2 (en) Method for producing atomized cement admixture
JPS6183659A (en) Cement additive
JPH0215496B2 (en)
JPH04254454A (en) Cement admixture
JPH0248450A (en) Admixture for cement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees