JPH0127018B2 - - Google Patents

Info

Publication number
JPH0127018B2
JPH0127018B2 JP58229201A JP22920183A JPH0127018B2 JP H0127018 B2 JPH0127018 B2 JP H0127018B2 JP 58229201 A JP58229201 A JP 58229201A JP 22920183 A JP22920183 A JP 22920183A JP H0127018 B2 JPH0127018 B2 JP H0127018B2
Authority
JP
Japan
Prior art keywords
parts
binder
meth
acrylate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58229201A
Other languages
Japanese (ja)
Other versions
JPS60122769A (en
Inventor
Hiroshi Tsuboi
Hidetoshi Takehara
Yoichi Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58229201A priority Critical patent/JPS60122769A/en
Publication of JPS60122769A publication Critical patent/JPS60122769A/en
Publication of JPH0127018B2 publication Critical patent/JPH0127018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、アルミナ、チタン酞バリりム、プ
ラむト等のいわゆるセラミツクスを成圢する際に
甚いられるバむンダヌに関するものであり、特に
有機溶剀を甚いない氎系のセラミツクス成圢甚バ
むンダヌに関する。 セラミツクスの成圢法には也匏プレス成圢法、
ドクタヌブレヌド法、抌出成圢法等があるがこれ
らの成圢法に甚いられる各皮バむンダヌには倚く
の欠点がある。 也匏プレス成圢法は、アルミナ等のセラミツク
ス粉䜓を氎、最滑剀、バむンダヌ、可塑剀等ず混
合しお調補したスラリヌをスプレヌドラむするこ
ずによ぀お顆粒化したセラミツクス組成物を金型
に充填しおプレス成圢する方法である。 この成圢法に斌いお䜿甚されるバむンダヌずし
おは、䞀般にポリビニルアルコヌル、メチルセル
ロヌス、カルボキシメチルセルロヌスのNa塩が
䜿甚されおいる。しかしながら、これらのバむン
ダヌを䜿甚しお埗られる顆粒䜓は堅く、そのため
プレス圧を高くしなければならず、金型の摩耗が
倧きくなり金型の寿呜が短くプレス機も倧型化す
るずいう蚭備䞊の問題があり、たた耇雑な圢状の
成圢を行なうこずも困難である。グリセリンやポ
リ゚チレングリコヌルのような可塑剀をバむンダ
ヌず䜵甚するこずによ぀お顆粒䜓を若干柔かくし
おプレス圧を䞋げるこずは可胜であるが、バむン
ダヌ以倖の有機物が増加するこずにより焌成前の
バむンダヌ陀去工皋である脱バむンダヌの際の収
瞮が倧きくなり、フクレ、歪などの倉圢やワレが
生じたり、結合力が䜎䞋しお機械的匷床が匱くな
り、奜たしくない。さらに、成圢埌の貯蔵䞭に可
塑剀が衚面にブリヌゞングしたり、揮発しお脆く
なる原因ずもなる。たた、ポリビニルアルコヌ
ル、メチルセルロヌス、カルボキシメチルセルロ
ヌスのNa塩は熱分解性が悪く、脱バむンダヌ工
皋で分解もしくは燃焌陀去できないカヌボンや
Naのようなアルカリ金属等を含む灰分が倚く残
存し、焌成工皋におけるフクレ、ワレ、キレツな
どの倉圢の原因ずなり、IC基板、ICパツケヌゞ、
誘電䜓等電子郚品ずしお甚いた堎合には電気絶瞁
性などの電気的特性が損われる原因ずな぀おい
る。 さらに、これらのバむンダヌは吞湿性が倧き
く、プレス成圢埌の吞湿により機械的匷床が䜎䞋
しお、脱バむンダヌ前の保管や取扱い䞭に砎損す
る原因ずな぀おいる。 ドクタヌブレヌド法は、セラミツクス粉末を有
機溶剀、分散剀、可塑剀、有機溶剀系バむンダヌ
等ず混合しお調補したスラリヌをキダリダヌフむ
ルム䞊にドクタヌブレヌドで厚みを調補しおキダ
ステむングし、也燥しおテヌプ状のグリヌンシヌ
トに成圢する方法である。有機溶剀ずしおはトル
゚ン、トリクロロ゚チレン、むスプロピルアルコ
ヌル、゚チルアルコヌル等が甚いられるが、匕火
による爆発や火灜の危険性、成圢時の臭気、人䜓
ぞの有毒性、也燥時の蒞発有機ガスの公害問題等
倚くの問題点がある。 さらに防爆蚭備、廃ガス凊理蚭備、溶剀回収蚭
備などの蚭眮も必芁ずなる。有機溶剀系バむンダ
ヌずしおは䞀般にポリビニルブチラヌルが甚いら
れおいるが、熱分解性が悪く、脱バむンダヌ埌に
残存するカヌボン、Na分等の灰分のためにプレ
ス成圢甚バむンダヌず同様の問題が生じおいる。
たたフタル酞゚ステル等の可塑剀を䜿甚しなけれ
ばならず、成圢埌の貯蔵䞭の可塑剀の衚面ぞのブ
リヌゞングや揮発により成圢品が脆くなる。 抌出成圢法は、セラミツクス粉末ず氎、分散
剀、滑剀、バむンダヌ、可塑剀等ずを混合しお、
抌出成圢機により抌出し成圢する方法である。バ
むンダヌずしおは䞀般にメチルセルロヌス、ヒド
ロキシ゚チルセルロヌス、ポリビニルアルコヌル
が甚いられおいるが、熱分解性が悪く、脱バむン
ダヌ埌に残存するカヌボン、Na等の灰分のため
にプレス成圢甚バむンダヌず同様の問題が生じお
いる。 本発明者はかかる珟状に鑑み、プレス成圢法、
ドクタヌブレヌド法、抌出成圢法等におけるバむ
ンダヌのこれらの問題点を解決すべく鋭意研究を
重ねた結果、炭玠数〜20個のアルキル基を有す
るメタアクリル酞アルキル゚ステル及び炭玠
数〜個のアルキレン基を有するメタアク
リル酞アルコキシアルキル゚ステルからなる矀よ
り遞ばれた少なくずも皮のモノマヌ25〜85重量
ず酢酞ビニル10〜60重量ずカルボキシル基含
有モノマヌ〜60重量䜆し、モノマヌ党䜓の
合蚈は100重量である。ずを共重合させお埗ら
れたセラミツクス成圢甚バむンダヌがかかる芁求
を満たすバむンダヌであるこずを芋出し、本発明
を完成するにいた぀た。 すなわち本発明は、プレス成圢法ではプレス圧
の枛少、成圢性、吞湿性の改良ドクタヌブレヌ
ド法では溶剀系から安党で衛生的な氎系ぞの移
行、熱分解性の改良抌出成圢法では熱分解性の
改良、成圢性の改良をそれぞれもたらすセラミツ
クス成圢に甚いるバむンダヌを提䟛するこずを目
的ずするものである。 尚、以䞋の蚘茉においお、メタアクリル酞
はアクリル酞およびたたはメタクリル酞を、
メタアクリレヌトはアクリレヌトおよびた
たはメタクリレヌトを衚わすものずする。 本発明に甚いられる炭玠数〜20個のアルキル
基を有するメタアクリル酞アルキル゚ステル
ずしおは、メチルメタアクリレヌト、゚チル
メタアクリレヌト、む゜プロピルメタア
クリレヌト、―ブチルメタアクリレヌト、
む゜ブチルメタアクリレヌト、シクロヘキシ
ルメタアクリレヌト、―゚チルヘキシル
メタアクリレヌト、―ドデシルメタア
クリレヌト、ステアリルメタアクリレヌト等
を甚いるこずができる。 炭玠数〜個のアルキレン基を有するメ
タアクリル酞アルコキシアルキル゚ステルずし
おは、メトキシメチルメタアクリレヌト、メ
トキシ゚チルメタアクリレヌト、゚トキシメ
チルメタアクリレヌト、゚トキシ゚チルメ
タアクリレヌト、゚トキシブチルメタアク
リレヌト、ブトキシ゚チルメタアクリレヌト
等を甚いるこずができる。 このような炭玠数〜20個のアルキル基を有す
るメタアクリル酞アルキル゚ステル及び炭玠
数〜個のアルキレン基を有するメタアク
リル酞アルコキシアルキル゚ステルからなる矀よ
り遞ばれた少なくずも皮のモノマヌは、党共重
合モノマヌ100重量䞭25〜85重量の範囲の比
率で甚いなければならない。25重量未満の少な
い比率では熱分解性が䜎䞋したり、堅くな぀おプ
レス圧が䞊が぀たり、バむンダヌずしおの結合力
が䜎䞋したりする。85重量を超える比率では芪
氎性が䜎䞋しセラミツクス粉䜓ぞのぬれや吞着量
が䜎䞋しバむンダヌずしおの結合力が䜎䞋する。 酢酞ビニルは共重合モノマヌ100重量䞭10〜
60重量の範囲の比率で甚いなければならない。
10重量未満の少ない比率では熱分解性が䜎䞋す
る。60重量を超える比率では堅くな぀おプレス
圧が䞊が぀たりバむンダヌずしおの結合力が䜎䞋
したりする。 カルボキシル基含有モノマヌずしおは、メタ
アクリル酞、マレむン酞、むタコン酞、モノむ゜
プロピルマレ゚ヌト等のマレむン酞半゚ステル、
むタコン酞半゚ステル等の、分子䞭に少なくず
も個のカルボキシル基を有するモノマヌを甚い
るこずができる。これらのカルボキシル基含有モ
ノマヌは酞の状態で甚いおもよく、䞀郚たたは党
郚をアンモニアあるいは有機アミンで䞭和しお甚
いおもよい。このような有機アミンずしおは、モ
ノ゚チルアミン、ゞ゚チルアミン、モノ――プ
ロピルアミン、ゞ――プロピルアミン、モノ―
―ブチルアミン、ゞ――ブチルアミン、モノ
゚タノヌルアミン、ゞ゚タノヌルアミン、トリ゚
タノヌルアミン、トリ゚チレンゞアミン、トリ゚
チレンテトラミン、ヘキサメチレンゞアミン、ヘ
キサメチレンテトラミン、ピリゞン、ピペリゞ
ン、等の䜎分子アミン類やポリゞメチルアミノ゚
チルメタクリレヌト、アルキレンゞクロリドずア
ルキレンポリアミンずの瞮合物等の高分子アミン
類が䜿甚できる。 このようなカルボキシル基含有モノマヌは、党
共重合モノマヌ100重量䞭〜60重量の範囲
の比率で甚いなければならない。重量未満の
少ない比率では芪氎性が䜎䞋し、セラミツクス粉
䜓ぞのぬれや吞着量が䜎䞋しおバむンダヌずしお
の結合力が䜎䞋する。60重量を超える比率では
熱分解性が䜎䞋したり、堅くな぀おプレス圧が䞊
が぀たり、バむンダヌずしおの結合力が䜎䞋した
りする。たた吞湿性も増倧する。 これらず共重合可胜なモノマヌを、前蚘のメ
タアクリル酞アルキル゚ステル䞊びにメタ
アクリル酞アルコキシアルキルからなる矀より遞
ばれた少なくずも皮のモノマヌや酢酞ビニルや
カルボキシル基含有モノマヌのいずれかの比率が
前蚘範囲を䞋たわるこずのない割合で、必芁に応
じお甚いるこずができる。 このような共重合可胜なモノマヌずしおは、
―ヒドロキシ゚チルメタアクリレヌト、グリ
セロヌルメタアクリレヌト、トリメチロヌル
プロパンメタアクリレヌト、ペンタ゚リスリ
トヌルメタアクリレヌト、グリシゞルメ
タアクリレヌト、ゞメチルアミノ゚チルメ
タアクリレヌト、ゞ゚チルアミノ゚チルメ
タアクリレヌト、メタアクリロニトリル、
アクリルアミド、―メチロヌルアクリルアミ
ド、スチレン、α―メチルスチレン、゚チレン、
塩化ビニル等を甚いるこずができる。本発明のセ
ラミツクス成圢に甚いるバむンダヌを埗るための
重合方法は特に制限はなく、埓来公知の重合方法
を甚いるこずができる。 このようにしお埗られる本発明のセラミツクス
圢成に甚いるバむンダヌは、そのたたバむンダヌ
ずしお甚いおもよく、あるいはアンモニアや前蚘
の有機アミン等で適宜䞭和しお甚いおもよい。 本発明のセラミツクス成圢に甚いるバむンダヌ
は、プレス成圢法ではプレス圧の枛少、成圢性、
吞湿性の改良ドクタヌブレヌド法では溶剀系か
ら安党で衛生的な氎系ぞの移行、熱分解性の改
良抌出成圢法においおは熱分解性、成圢性の改
良をそれぞれ達成するこずができるものである。 本発明を実斜䟋により曎に詳しく説明するが、
本発明はこれらの実斜䟋に限定されるものではな
い。なお、実斜䟋䞭の郚は党お重量郚を、は党
お重量を瀺すものずする。 実斜䟋  バむンダヌの合成 撹拌機、枩床蚈、冷华管、窒玠導入管、混合モ
ノマヌ滎䞋ロヌトおよび重合開始剀滎䞋ロヌトを
備えたセパラブルフラスコに蒞留氎150郚および
乳化剀ずしおポリオキシ゚チレンノニルプニル
゚ヌテルHLB18.2、花王石鹞(æ ª)補郚を仕
蟌み、窒玠導入管より窒玠を導入し、フラスコ内
を窒玠雰囲気にした。次に混合モノマヌ滎䞋ロヌ
トぞ゚チルアクリレヌト30郚、酢酞ビニル45郚、
メタクリル酞25郚の混合モノマヌ100郚を仕蟌み、
重合開始剀滎䞋ロヌトぞ―ブチルヒドロパ
ヌオキシ氎溶液20郚を仕蟌んだ。80℃にフラスコ
の内枩を調節しながら混合モノマヌ及び重合開始
剀を時間かけお滎䞋し、さらに80℃で時間加
熱埌冷华し、アンモニア氎でPH8.0に調敎しお固
圢分濃床35のセラミツクス成圢に甚いる氎系バ
むンダヌを埗た。このバむンダヌに぀いお灰分及
びNa分を枬定し、その結果を第衚に瀺した。 灰分は、癜金ルツボ䞭に也燥したバむンダヌを
入れ、650℃の電気炉䞭で空気雰囲気䞋時間で
灰化させ、その重量を枬定した。 Na分は、䞊蚘灰分の郚を鉱酞で溶解し、原
子吞光光床蚈により枬定した。 実斜䟋  セラミツクスの成圢 アルミナAL―160SG、玔床99.0、平均粒
子埄0.4Ό、昭和軜金属(æ ª)補100郚、蒞留氎40郚、
分散剀アクアリツクNL、日本觊媒化孊工業(æ ª)
補、ポリアクリル酞アンモニりム0.2郚及び実
斜䟋で埗られた35セラミツクス成圢に甚いる
氎系バむンダヌ20郚をボヌルミルで24時間混合
し、埗られたスラリヌをスプレヌドラむしお平均
粒子埄100Όの顆粒を埗た。この顆粒を金型ぞ充
填し、500Kgcm2、1000Kgcm2、1500Kgcm2の各
プレス圧でプレスし、厚みmm、巟10mm、長さ30
mmの成圢品を埗た。金型からの離型性および成圢
品の衚面平滑性は良奜であ぀た。これらの成圢品
の生密床、抗折匷床、吞湿性を枬定し、その結果
を第衚に瀺した。 抗折匷床は、むンストロン匷床詊隓機1102型を
甚い、スパン巟20mm、ヘツドスピヌド0.5cm分
で枬定した。 吞湿性の評䟡は、プレス圧1000Kgcm2で埗られ
た成圢品を20℃、盞察湿床65で24時間加湿埌の
重量増加率およびさらに20℃、盞察湿床95で24
時間加湿した時の重量増加率を枬定しお行぀た。 比范䟋  アルミナAL―160SG100郚に察しおバむン
ダヌずしおポリビニルアルコヌルGL―05、日
本合成化孊(æ ª)補郚を甚いた以倖は実斜䟋ず
同様にしお成圢し、埗られた成圢品に぀いお生密
床、抗折匷床、吞湿性を枬定した。なお、ポリビ
ニルのアルコヌルの灰分、Na分も枬定した。灰
分Na分は実斜䟋のセラミツクス成圢甚バむン
ダヌに比べおかなり倚い。たた、プレス圧も同皋
床の生密床を埗るのに実斜䟋に比べお高くしな
ければならなか぀た。さらに、同皋床の生密床に
おける抗折匷床は䜎く、吞湿性は高くな぀おい
た。これらの結果を第衚に瀺した。 比范䟋  ゚チルアクリレヌト15郚、酢酞ビニル20郚及び
メタクリル酞65郚からなる混合モノマヌ100郚を
甚いた以倖は実斜䟋及び実斜䟋ず同様にしお
重合及び成圢を行ない、埗られたバむンダヌの灰
分、Na分及び成圢品の生密床、抗折匷床、吞湿
性を枬定し、それらの結果を第衚に瀺した。実
斜䟋に比べお灰分が倚く、吞湿性は高く、たた
プレス圧も高く、抗折匷床は䜎か぀た。 実斜䟋  バむンダヌの合成 実斜䟋ず同様の装眮で重合を行な぀た。フラ
スコにたず蒞留氎100郚及びポリオキシ゚チレン
サルプヌトのアンモニりム塩ハむテノヌル
―08、第䞀工業補薬(æ ª)補郚を仕蟌んだ。次
に、混合モノマヌ滎䞋ロヌトぞ―ドデシルメタ
クリレヌト20郚、―ブチルアクリレヌト30郚、
―メトキシ゚チルアクリレヌト10郚、酢酞ビニ
ル20郚、メタクリル酞10郚およびアクリル酞10郚
からなる混合モノマヌ100郚を仕蟌み、重合開始
剀滎䞋ロヌトぞ―ブチルヒドロパヌオキシ
ド氎溶液を20郚仕蟌んだ。80℃にフラスコの内枩
を調節しながら混合モノマヌ及び重合開始剀をそ
れぞれ時間かけお滎䞋し、さらに80℃で時間
加熱埌冷华し、アンモニア氎でPH8.0に調敎しお
固圢分濃床45のセラミツクス成圢に甚いる氎系
バむンダヌを埗た。このバむンダヌの灰分及び
Na分を第衚に瀺した。 実斜䟋  セラミツクスの成圢 アルミナAL―160SG100郚、蒞留氎40郚、
分散剀アクアリツクNL0.2郚及び実斜䟋で
埗られた45セラミツクス成圢に甚いる氎系バむ
ンダヌ30郚をボヌルミルで24時間混合し、埗られ
たスラリヌを枛圧脱泡埌シリコン塗垃離型玙䞊に
厚み1.5m/mでキダステむングした。 次に、60℃より昇枩速床℃分で120℃たで
昇枩加熱し、含氎率0.1以䞋たで也燥しお柔軟
性のあるテヌプ状のグリヌンシヌトを䜜成した。
シヌトの生密床及び匕匵物性を枬定した。 匕匵物性はシヌトをダンベル号圢
JISK6301に打抜き、匕匵速床0.5cm分で匕
匵り、砎壊時の䌞びず匷床を枬定した。これらの
結果を第衚に瀺した。 比范䟋  アルミナAL―160SG100郚、バむンダヌず
しおポリビニルブチラヌル3000K、電気化孊工
業(æ ª)補13.5郚、可塑剀ずしお―オクチルフタ
レヌト郚、分散剀ずしおグリセリルトリオレヌ
ト0.5郚及び溶媒ずしおトリクロロ゚チレン40郚
ず゚チルアルコヌル20郚をボヌルミルで24時間混
合し、実斜䟋ず同様にしおグリヌンシヌトを䜜
成し、生密床ず匕匵物性を枬定した。たた、ポリ
ビニルブチラヌルの灰分ずNa分も枬定した。こ
れらの結果を第衚に瀺した。灰分、Na分共に
実斜䟋のセラミツクス成圢に甚いるバむンダヌ
に比べおかなり倚か぀た。 比范䟋  ―ドデシルメタクリレヌト23郚、―ブチル
アクリレヌト35郚、―メトキシ゚チルアクリレ
ヌト15郚、酢酞ビニル25郚及びアクリル酞郚か
らなる混合モノマヌ100郚を甚いる以倖は実斜䟋
ず同様にしお重合を行ない、アンモニア氎でPH
8.0に調敎しおバむンダヌを埗た。このバむンダ
ヌを甚いお実斜䟋ず同様にしおグリヌンシヌト
を埗ようずしたが、也燥によりシヌトにクラツク
がはい぀た。 実斜䟋  バむンダヌの合成 実斜䟋ず同様の装眮で重合を行な぀た。混合
モノマヌ滎䞋ロヌトに―ブチルアクリレヌト20
郚、―゚トキシ゚チルアクリレヌト15郚、酢酞
ビニル25郚及びメタクリル酞40郚からなる混合モ
ノマヌ100郚を仕蟌み、重合開始剀滎䞋ロヌトに
過硫酞アンモニりム氎溶液20郚を仕蟌んだ。 次に95℃にフラスコの内枩を調節しながら混合
モノマヌ及び重合開始剀をそれぞれ時間かけお
滎䞋し、さらに30分間95℃で加熱埌冷华し、アン
モニア氎でPH7.0に調節しお固圢分濃床20のセ
ラミツクス成圢に甚いる氎系バむンダヌを埗た。 実斜䟋  セラミツクスの成圢 チタン酞バリりムKYORIX 、共立窒業原
料(æ ª)補100郚、蒞留氎40郚、分散剀アクアリ
ツクNL0.2郚、滑剀ずしおステアリン酞郚及
び実斜䟋で埗られた濃床20のセラミツクス成
圢に甚いる氎系バむンダヌ15郚を䞇胜混合撹拌機
5DMV型、䞉英補䜜所補で混合した。次に混
合物をコンテむニナアスニヌダヌ栗本鐡工所
補で盎埄玄mmの棒状に抌出した。埗られた抌
出成圢品を60℃より昇枩速床℃分で120℃た
で昇枩加熱し、さらに30分間120℃で加熱しお含
氎率0.1以䞋たで也燥した。也燥埌切断し、䞊
䞋の円圢平面をサンドペヌパヌで研磚しお長さ10
mmのシリンダヌ状にし、長さ方向の圧壊匷床を枬
定した。その結果を第衚に瀺した。尚、圧壊匷
床は本屋匏硬床蚈朚屋補䜜所補により枬定し
た。 比范䟋  チタン酞バリりムKYORIX 100郚に察
しおバむンダヌずしおメチルセルロヌスマヌポ
ロヌズ―600、束本油脂補薬(æ ª)補郚を甚い
お実斜䟋ず同様にしお抌出成圢を行な぀たのち
圧壊匷床を枬定した。たた、メチルセルロヌスの
灰分、Na分に぀いおも枬定し、それらの結果を
第衚に瀺した。 実斜䟋のセラミツクス成圢に甚いるバむンダ
ヌに比べお灰分、Na分共に倚か぀た。 比范䟋  ―ブチルアクリレヌト10郚、―゚トキシ゚
チルアクリレヌト10郚、酢酞ビニル郚、スチレ
ン73郚及びメタクリル酞郚からなる混合モノマ
ヌ100郚を甚いた以倖は実斜䟋ず同様に重合を
行ない、アンモニア氎でPH7.0に調節しお抌出成
圢に甚いた。たた、このバむンダヌの灰分、Na
分及び成圢品の圧壊匷床を枬定した。結果は第
衚に瀺した。実斜䟋ず比べお圧壊匷床の䜎いも
のであ぀た。
The present invention relates to a binder used when molding so-called ceramics such as alumina, barium titanate, ferrite, etc., and particularly to a water-based binder for molding ceramics that does not use an organic solvent. Ceramics molding methods include dry press molding,
There are doctor blade methods, extrusion molding methods, etc., but the various binders used in these molding methods have many drawbacks. In the dry press molding method, a mold is filled with a ceramic composition that is granulated by spray drying a slurry prepared by mixing ceramic powder such as alumina with water, a lubricant, a binder, a plasticizer, etc. This is a method of press forming. As the binder used in this molding method, polyvinyl alcohol, methyl cellulose, and sodium salt of carboxymethyl cellulose are generally used. However, the granules obtained using these binders are hard, and therefore the press pressure must be increased, resulting in equipment problems such as increased die wear, shortened die life, and larger press machines. There are problems and it is also difficult to mold complex shapes. By using a plasticizer such as glycerin or polyethylene glycol in combination with a binder, it is possible to soften the granules slightly and reduce the pressing pressure, but this increases the amount of organic substances other than the binder, making it difficult to remove the binder before firing. When removing the binder, the shrinkage becomes large, causing deformation such as blistering and distortion, and cracking, and the bonding force decreases, resulting in weak mechanical strength, which is undesirable. Furthermore, during storage after molding, the plasticizer may bleed onto the surface or volatilize, causing brittleness. In addition, the Na salts of polyvinyl alcohol, methylcellulose, and carboxymethylcellulose have poor thermal decomposition properties, and carbon and carbon that cannot be decomposed or burned out in the binder removal process.
A large amount of ash containing alkali metals such as Na remains, which causes deformation such as blisters, cracks, and cracks during the firing process, causing damage to IC substrates, IC packages, etc.
When used as a dielectric or other electronic component, it causes loss of electrical properties such as electrical insulation. Furthermore, these binders have high hygroscopicity, and mechanical strength decreases due to moisture absorption after press molding, causing breakage during storage or handling before binder removal. In the doctor blade method, a slurry prepared by mixing ceramic powder with an organic solvent, a dispersant, a plasticizer, an organic solvent binder, etc. is cast onto a carrier film with a doctor blade to adjust the thickness, and then dried. This is a method of forming into a tape-shaped green sheet. Toluene, trichloroethylene, ispropyl alcohol, ethyl alcohol, etc. are used as organic solvents, but they pose problems such as the risk of explosion or fire due to ignition, odor during molding, toxicity to the human body, and pollution problems due to evaporated organic gas during drying. There are many problems. Additionally, it will be necessary to install explosion-proof equipment, waste gas treatment equipment, solvent recovery equipment, etc. Polyvinyl butyral is generally used as an organic solvent binder, but it has poor thermal decomposition properties and ash content such as carbon and sodium that remains after binder removal causes the same problems as binders for press molding.
Furthermore, a plasticizer such as a phthalate ester must be used, and the molded product becomes brittle due to breathing or volatilization of the plasticizer on the surface during storage after molding. In the extrusion molding method, ceramic powder is mixed with water, a dispersant, a lubricant, a binder, a plasticizer, etc.
This is a method of extrusion molding using an extrusion molding machine. Methyl cellulose, hydroxyethyl cellulose, and polyvinyl alcohol are generally used as binders, but they have poor thermal decomposition properties, and the same problems as binders for press molding occur due to ash content such as carbon and Na remaining after binder removal. . In view of the current situation, the present inventor has developed a press molding method,
As a result of extensive research to solve these problems with binders in doctor blade methods, extrusion molding methods, etc., we have developed a (meth)acrylic acid alkyl ester having an alkyl group of 1 to 20 carbon atoms and a carbon number of 1 to 4. 25-85% by weight of at least one monomer selected from the group consisting of (meth)acrylic acid alkoxyalkyl esters having alkylene groups, 10-60% by weight of vinyl acetate, and 5-60% by weight of carboxyl group-containing monomers ( However, the total amount of all monomers is 100% by weight.) It was discovered that a binder for ceramic molding obtained by copolymerizing the above-mentioned monomers satisfies these requirements, and the present invention was completed. In other words, the present invention aims to reduce press pressure, improve moldability, and moisture absorption in the press molding method; shift from a solvent-based to a safe and hygienic water-based system in the doctor blade method, and improve thermal decomposition; and improve thermal decomposition in the extrusion method. The object of the present invention is to provide a binder for use in ceramic molding that provides improved degradability and improved moldability. In the following description, (meth)acrylic acid refers to acrylic acid and/or methacrylic acid,
(Meth)acrylate shall denote acrylate and/or methacrylate. As the (meth)acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms used in the present invention, methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate acrylate,
Isobutyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-dodecyl (meth)acrylate, stearyl (meth)acrylate, etc. can be used. Examples of the (meth)acrylic acid alkoxyalkyl ester having an alkylene group having 1 to 4 carbon atoms include methoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, ethoxymethyl (meth)acrylate, ethoxyethyl (meth)acrylate, Ethoxybutyl (meth)acrylate, butoxyethyl (meth)acrylate, etc. can be used. At least one selected from the group consisting of (meth)acrylic acid alkyl esters having an alkyl group having 1 to 20 carbon atoms and (meth)acrylic acid alkoxyalkyl esters having an alkylene group having 1 to 4 carbon atoms. The seed monomers should be used in proportions ranging from 25 to 85% by weight out of 100% by weight of total copolymerized monomers. If the ratio is too low (less than 25% by weight), the thermal decomposition property will decrease, the press pressure will increase due to the hardness, and the binding strength as a binder will decrease. If the ratio exceeds 85% by weight, the hydrophilicity decreases, the amount of wetting and adsorption to ceramic powder decreases, and the binding strength as a binder decreases. Vinyl acetate is 10~10% by weight of copolymer monomer
Must be used in proportions in the range of 60% by weight.
At a small proportion of less than 10% by weight, the thermal decomposition property decreases. If the ratio exceeds 60% by weight, the binder becomes hard and press pressure increases, and the binding strength as a binder decreases. As a carboxyl group-containing monomer, (meth)
Maleic acid half esters such as acrylic acid, maleic acid, itaconic acid, monoisopropyl maleate,
Monomers having at least one carboxyl group in one molecule can be used, such as itaconic acid half ester. These carboxyl group-containing monomers may be used in an acid state, or may be partially or completely neutralized with ammonia or an organic amine. Such organic amines include monoethylamine, diethylamine, mono-n-propylamine, di-n-propylamine, mono-
Low molecular weight amines such as n-butylamine, di-n-butylamine, monoethanolamine, diethanolamine, triethanolamine, triethylenediamine, triethylenetetramine, hexamethylenediamine, hexamethylenetetramine, pyridine, piperidine, and polydimethylaminoethyl Polymer amines such as methacrylate and a condensate of alkylene dichloride and alkylene polyamine can be used. Such carboxyl group-containing monomers should be used in a proportion ranging from 5 to 60% by weight based on 100% by weight of the total copolymerized monomers. If the ratio is less than 5% by weight, the hydrophilicity decreases, the amount of wetting and adsorption to ceramic powder decreases, and the binding strength as a binder decreases. If the ratio exceeds 60% by weight, the thermal decomposition property will decrease, the press pressure will increase due to the hardness, and the binding strength as a binder will decrease. Hygroscopicity also increases. The above-mentioned (meth)acrylic acid alkyl ester and (meth)acrylic acid alkyl ester and (meth)
At least one monomer selected from the group consisting of alkoxyalkyl acrylates, vinyl acetate, and a carboxyl group-containing monomer can be used as necessary in a proportion that does not fall below the above range. Such copolymerizable monomers include 2
-Hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, trimethylolpropane (meth)acrylate, pentaerythritol (meth)acrylate, glycidyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, (meth)acrylonitrile,
Acrylamide, N-methylolacrylamide, styrene, α-methylstyrene, ethylene,
Vinyl chloride etc. can be used. The polymerization method for obtaining the binder used in the ceramic molding of the present invention is not particularly limited, and conventionally known polymerization methods can be used. The binder used to form the ceramics of the present invention obtained in this way may be used as a binder as it is, or may be used after being appropriately neutralized with ammonia, the above-mentioned organic amine, or the like. The binder used in the ceramic molding of the present invention reduces press pressure, improves moldability, and
Improved hygroscopicity; The doctor blade method allows for a transition from a solvent-based to a safe and sanitary water-based system, and improved thermal decomposition; The extrusion molding method can achieve improved thermal decomposition and moldability. be. The present invention will be explained in more detail by examples.
The present invention is not limited to these examples. In addition, all parts in the examples indicate parts by weight, and all percentages indicate weight %. Example 1 (Synthesis of binder) In a separable flask equipped with a stirrer, a thermometer, a cooling tube, a nitrogen introduction tube, a mixing monomer dropping funnel, and a polymerization initiator dropping funnel, 150 parts of distilled water and polyoxyethylene nonylphate as an emulsifier were added. Three parts of enyl ether (HLB18.2, manufactured by Kao Soap Co., Ltd.) was charged, and nitrogen was introduced from the nitrogen introduction tube to create a nitrogen atmosphere inside the flask. Next, 30 parts of ethyl acrylate, 45 parts of vinyl acetate,
Prepare 100 parts of mixed monomer of 25 parts of methacrylic acid,
20 parts of a 2% aqueous t-butylhydroperoxy solution was charged into the polymerization initiator dropping funnel. While adjusting the internal temperature of the flask to 80℃, the mixed monomer and polymerization initiator were added dropwise over 2 hours, heated at 80℃ for 1 hour, cooled, and adjusted to pH 8.0 with aqueous ammonia until the solid content concentration was 35. % water-based binder used for ceramic molding was obtained. The ash content and Na content of this binder were measured and the results are shown in Table 1. The ash content was determined by placing the dried binder in a platinum crucible, incinerating it in an electric furnace at 650° C. in an air atmosphere for 2 hours, and measuring its weight. The Na content was measured by dissolving a part of the above ash with mineral acid and using an atomic absorption spectrophotometer. Example 2 (Molding of ceramics) 100 parts of alumina (AL-160SG, purity 99.0%, average particle size 0.4ÎŒ, manufactured by Showa Light Metal Co., Ltd.), 40 parts of distilled water,
Dispersant (Aquarik NL, Nippon Shokubai Chemical Co., Ltd.)
0.2 parts of ammonium polyacrylate (M.D., Ammonium Polyacrylate) and 20 parts of the aqueous binder used for 35% ceramic molding obtained in Example 1 were mixed in a ball mill for 24 hours, and the resulting slurry was spray-dried to form granules with an average particle size of 100Ό. I got it. The granules were filled into a mold and pressed at press pressures of 500Kg/cm 2 , 1000Kg/cm 2 , and 1500Kg/cm 2 to a thickness of 3 mm, width of 10 mm, and length of 30 mm.
A molded product of mm was obtained. The releasability from the mold and the surface smoothness of the molded product were good. The green density, bending strength, and hygroscopicity of these molded articles were measured, and the results are shown in Table 1. The bending strength was measured using an Instron strength testing machine model 1102 at a span width of 20 mm and a head speed of 0.5 cm/min. The evaluation of hygroscopicity was based on the weight increase rate after humidifying a molded product obtained at a press pressure of 1000 kg/cm 2 at 20°C and 65% relative humidity for 24 hours, and the weight increase rate after humidifying the molded product at 20°C and 95% relative humidity for 24 hours.
This was done by measuring the weight increase rate when humidified for a period of time. Comparative Example 1 A molded product was obtained in the same manner as in Example 2 except that 7 parts of polyvinyl alcohol (GL-05, manufactured by Nippon Gosei Kagaku Co., Ltd.) was used as a binder for 100 parts of alumina (AL-160SG). The green density, bending strength, and hygroscopicity of the molded products were measured. In addition, the ash content and sodium content of polyvinyl alcohol were also measured. The ash Na content is considerably higher than that of the ceramic molding binder of Example 1. Furthermore, the pressing pressure had to be higher than in Example 2 to obtain the same green density. Furthermore, the bending strength was low and the hygroscopicity was high at the same green density. These results are shown in Table 1. Comparative Example 2 Polymerization and molding were carried out in the same manner as in Examples 1 and 2, except that 100 parts of a mixed monomer consisting of 15 parts of ethyl acrylate, 20 parts of vinyl acetate, and 65 parts of methacrylic acid were used, and the resulting binder was The ash content, sodium content, green density, bending strength, and hygroscopicity of the molded products were measured, and the results are shown in Table 1. Compared to Example 1, the ash content was higher, the hygroscopicity was higher, the pressing pressure was higher, and the bending strength was lower. Example 3 (Synthesis of binder) Polymerization was carried out using the same apparatus as in Example 1. First, add 100 parts of distilled water and ammonium salt of polyoxyethylene sulfate (Hitenol N) to a flask.
-08, 2 parts (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were prepared. Next, 20 parts of n-dodecyl methacrylate, 30 parts of n-butyl acrylate,
100 parts of a mixed monomer consisting of 10 parts of 2-methoxyethyl acrylate, 20 parts of vinyl acetate, 10 parts of methacrylic acid, and 10 parts of acrylic acid were charged, and 20 parts of a 2% t-butyl hydroperoxide aqueous solution was charged into the polymerization initiator dropping funnel. is. While adjusting the internal temperature of the flask to 80°C, the mixed monomer and polymerization initiator were added dropwise over 2 hours each, heated at 80°C for 1 hour, cooled, and adjusted to pH 8.0 with aqueous ammonia to reduce the solid content concentration. A water-based binder used for 45% ceramic molding was obtained. The ash content of this binder and
The Na content is shown in Table 2. Example 4 (Molding of ceramics) 100 parts of alumina (AL-160SG), 40 parts of distilled water,
0.2 parts of the dispersant (Aquarik NL) and 30 parts of the aqueous binder used for 45% ceramic molding obtained in Example 3 were mixed in a ball mill for 24 hours, and the resulting slurry was defoamed under reduced pressure and then spread on silicone coated release paper to a thickness. Casting was done at 1.5m/m. Next, the mixture was heated from 60°C to 120°C at a heating rate of 1°C/min, and dried to a moisture content of 0.1% or less to produce a flexible tape-shaped green sheet.
The green density and tensile properties of the sheet were measured. The tensile properties were determined by punching out the sheet into dumbbell size 3 (JISK6301), pulling it at a pulling speed of 0.5 cm/min, and measuring the elongation and strength at break. These results are shown in Table 2. Comparative Example 3 100 parts of alumina (AL-160SG), 13.5 parts of polyvinyl butyral (3000K, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a binder, 5 parts of n-octyl phthalate as a plasticizer, 0.5 parts of glyceryl triolate as a dispersant, and a solvent. 40 parts of trichlorethylene and 20 parts of ethyl alcohol were mixed in a ball mill for 24 hours, a green sheet was prepared in the same manner as in Example 4, and the green density and tensile properties were measured. The ash and sodium contents of polyvinyl butyral were also measured. These results are shown in Table 2. Both the ash content and the sodium content were considerably higher than those of the binder used for ceramic molding in Example 3. Comparative Example 4 Same as Example 3 except that 100 parts of a mixed monomer consisting of 23 parts of n-dodecyl methacrylate, 35 parts of n-butyl acrylate, 15 parts of 2-methoxyethyl acrylate, 25 parts of vinyl acetate, and 2 parts of acrylic acid was used. Polymerize with aqueous ammonia and adjust the pH
I adjusted it to 8.0 and got the binder. An attempt was made to obtain a green sheet using this binder in the same manner as in Example 4, but cracks appeared in the sheet due to drying. Example 5 (Synthesis of binder) Polymerization was carried out using the same apparatus as in Example 1. Add 20 n-butyl acrylate to the mixing monomer dropping funnel.
15 parts of 2-ethoxyethyl acrylate, 25 parts of vinyl acetate, and 40 parts of methacrylic acid were charged, and 20 parts of a 5% ammonium persulfate aqueous solution was charged into the polymerization initiator dropping funnel. Next, while adjusting the internal temperature of the flask to 95℃, the mixed monomer and polymerization initiator were added dropwise over 2 hours each, heated at 95℃ for another 30 minutes, cooled, and adjusted to pH 7.0 with aqueous ammonia to solidify. An aqueous binder used for ceramic molding with a concentration of 20% was obtained. Example 6 (Molding of ceramics) 100 parts of barium titanate (KYORIX A, manufactured by Kyoritsu Nitugyo Genryo Co., Ltd.), 40 parts of distilled water, 0.2 parts of dispersant (Aquarik NL), 2 parts of stearic acid as a lubricant, and Example 15 parts of the aqueous binder used for ceramic molding with a concentration of 20% obtained in step 5 was mixed with a universal mixer (Model 5DMV, manufactured by Sanei Seisakusho). Next, the mixture was extruded into a rod shape with a diameter of about 5 mm using a container kneader (manufactured by Kurimoto Iron Works). The obtained extrusion molded product was heated from 60°C to 120°C at a heating rate of 1°C/min, and further heated at 120°C for 30 minutes to dry to a water content of 0.1% or less. After drying, cut it and polish the top and bottom circular planes with sandpaper to a length of 10 mm.
It was made into a cylinder shape of mm, and the crushing strength in the longitudinal direction was measured. The results are shown in Table 3. The crushing strength was measured using a Honya type hardness meter (manufactured by Kiya Seisakusho). Comparative Example 5 Extrusion molding was carried out in the same manner as in Example 6 using 3 parts of methyl cellulose (Marporose M-600, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) as a binder to 100 parts of barium titanate (KYORIX A). The crushing strength was then measured. The ash and sodium contents of methylcellulose were also measured, and the results are shown in Table 3. Compared to the binder used for ceramic molding in Example 5, both ash and sodium content were higher. Comparative Example 6 Polymerization was carried out in the same manner as in Example 5, except that 100 parts of a mixed monomer consisting of 10 parts of n-butyl acrylate, 10 parts of 2-ethoxyethyl acrylate, 5 parts of vinyl acetate, 73 parts of styrene, and 2 parts of methacrylic acid was used. The pH was adjusted to 7.0 with aqueous ammonia and used for extrusion molding. In addition, the ash content of this binder, Na
The compressive strength of the molded product was measured. The result is the third
Shown in the table. The crushing strength was lower than that of Example 6.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  炭玠数〜20個のアルキル基を有するメ
タアクリル酞アルキル゚ステル及び炭玠数〜
個のアルキレン基を有するメタアクリル酞
アルコキシアルキル゚ステルからなる矀より遞ば
れた少なくずも皮のモノマヌ25〜85重量ず酢
酞ビニル10〜60重量ずカルボキシル基含有モノ
マヌ〜60重量䜆し、モノマヌ党䜓の合蚈は
100重量である。ずを共重合させお埗られたセ
ラミツクス成圢に甚いるバむンダヌ。
1 (Meth)acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms and having 1 to 20 carbon atoms
25 to 85% by weight of at least one monomer selected from the group consisting of (meth)acrylic acid alkoxyalkyl esters having four alkylene groups, 10 to 60% by weight of vinyl acetate, and 5 to 60% by weight of a carboxyl group-containing monomer. (However, the total of all monomers is
It is 100% by weight. ) is a binder used for ceramic molding obtained by copolymerizing with.
JP58229201A 1983-12-06 1983-12-06 Binder for ceramic forming Granted JPS60122769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58229201A JPS60122769A (en) 1983-12-06 1983-12-06 Binder for ceramic forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58229201A JPS60122769A (en) 1983-12-06 1983-12-06 Binder for ceramic forming

Publications (2)

Publication Number Publication Date
JPS60122769A JPS60122769A (en) 1985-07-01
JPH0127018B2 true JPH0127018B2 (en) 1989-05-26

Family

ID=16888395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58229201A Granted JPS60122769A (en) 1983-12-06 1983-12-06 Binder for ceramic forming

Country Status (1)

Country Link
JP (1) JPS60122769A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751974B1 (en) * 1996-07-31 1998-09-18 Atochem Elf Sa PRESSURE SENSITIVE ADHESIVE POLYMERS

Also Published As

Publication number Publication date
JPS60122769A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
JPH0153233B2 (en)
KR100650035B1 (en) Method for preparing ceramic composition
KR100714138B1 (en) Ceramic-molding binder
JPS60180957A (en) Manufacture of ceramic product
EP1090890B1 (en) Method for preparing ceramic compositions
JPH0223492B2 (en)
JP2000233975A (en) Ceramic precursor composition, ceramic green sheet using same and its production
JPH0127018B2 (en)
EP0650946B1 (en) Ceramic materials
JP4361659B2 (en) Ceramic molding binder
JP4773607B2 (en) Granulation treatment agent for iron making and granulation treatment method using the same
JPS60122768A (en) Binder for ceramic forming
CN109160766B (en) Core-shell structure expanding agent for concrete and preparation method thereof
JPH10167836A (en) Binder resin for compacting ceramic
JPH01111769A (en) Production of ceramic green sheet
JP2000272970A (en) Binder for molding ceramics
JPS6259072B2 (en)
US5599890A (en) Polymeric binder
JP2596980B2 (en) Green sheet manufacturing binder
JP2003073749A (en) Granulation method for raw material for iron manufacture
JPS61101449A (en) Manufacture of ceramic green sheet
JP2001146484A (en) Binder for molding ceramic
RU2079467C1 (en) Mixture for manufacturing of ammunition
JPS63162565A (en) Ceramics forming binder
JPH0377831B2 (en)