JPH01269736A - Helical spring - Google Patents

Helical spring

Info

Publication number
JPH01269736A
JPH01269736A JP63099531A JP9953188A JPH01269736A JP H01269736 A JPH01269736 A JP H01269736A JP 63099531 A JP63099531 A JP 63099531A JP 9953188 A JP9953188 A JP 9953188A JP H01269736 A JPH01269736 A JP H01269736A
Authority
JP
Japan
Prior art keywords
spring
raw material
element wire
reinforced resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63099531A
Other languages
Japanese (ja)
Inventor
Hiromichi Ito
弘道 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63099531A priority Critical patent/JPH01269736A/en
Publication of JPH01269736A publication Critical patent/JPH01269736A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/3665Wound springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To reduce the weight of a spring and to manufacture even a large spring at a low cost by using fiber reinforced resin as spring raw material, and arranging the direction of fibers of a spring element wire at an angle within a specified range with respect to the axis of the spring element wire. CONSTITUTION:Fiber reinforced resin is used as spring raw material, and the direction of fibers of the spring element wire is at an orientation angle + or -alpha deg.with respect to the axis of the spring element wire. The orientation angle + or -alpha deg.is determined depending on the ratio of bending and torsion, that is, spring load. It is good that alpha is 20 deg.-45 deg.. On the other hand, a flexible core 4 is filler material for keeping the cylindrical section of the element wire, and light-weight body is used as the core. As fiber reinforced resin is used as raw material of a helical spring 13, the highness of resiliency of raw material can be utilized and an orientation angle of reinforcing fiber can be obtained in order that raw material elastic property is optimum, so that the weight can be reduced. Helical springs of various properties can be obtained by varying the amount of reinforced fibers, drawing forming die and a mandrel, so that even a large spring can be manufactured at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化樹脂製つる巻ばねに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a fiber-reinforced resin helical spring.

〔従来の技術〕[Conventional technology]

従来のつる巻ばねは極く小さなもの及び特殊な用途のも
のを除き、はとんどが金属製であった。
Conventional helical springs are mostly made of metal, except for very small ones and those for special purposes.

〔発明が解決しようとするllK題〕[The problem that the invention attempts to solve]

従来の金属製つる巻ばねには、下記問題点がある。 Conventional metal helical springs have the following problems.

(1)金属は比弾性率が低い上K、つる巻ばねに必要な
素線の曲げ剛性と捩シ剛性の比率が一定であるため重量
軽減のだめの設計自由度が低く、その結果1重い”つる
巻ばねとならざるを得す、さらには重量分布の自由度も
小さいため動的な最適設計に大きな制限がある。
(1) Metals have a low specific modulus of elasticity, and the ratio of the bending stiffness and torsional stiffness of the strands required for helical springs is constant, so there is little freedom in designing for weight reduction, and as a result, they are heavier. Since it has no choice but to be a helical spring, and furthermore, the degree of freedom in weight distribution is small, there are significant restrictions on dynamic optimal design.

(2)超大型のつる巻ばねの製造は生産技術的にも難し
いため高価格となシがちである上、大きさによっては製
造不可能となることもある。
(2) Manufacturing extremely large helical springs is technically difficult and tends to be expensive, and depending on the size, it may be impossible to manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るつる巻きばねは、ばね素材を繊維強化樹脂
とするとともにばね素線の繊維の方向をばね素線の軸線
に対し2O2以上45°以下の配列角度を有することを
特徴とする。
The helical spring according to the present invention is characterized in that the spring material is a fiber-reinforced resin, and the direction of the fibers of the spring wire is arranged at an angle of 2O2 or more and 45° or less with respect to the axis of the spring wire.

〔作用〕[Effect]

本発明によればばねの素材に繊維強化樹脂を使用するた
め比弾性率を高くできるととも罠、ばね素線の強化繊維
の配列を変えることができるため、適切なP111性設
計を行うことができ大きい重量軽減効果をうろことがで
きる。
According to the present invention, since fiber-reinforced resin is used as the spring material, the specific modulus of elasticity can be increased, and the arrangement of the reinforcing fibers of the spring wire can be changed, making it possible to design an appropriate P111 property. It can have a great weight-reducing effect.

さらに成形自由度が大きいため大型のものでも比較的安
価に製造することができる。
Furthermore, since the degree of freedom in molding is large, even large-sized products can be manufactured at relatively low cost.

〔実飽例〕[Exact example]

第1図につる巻ばねの素線の構造の一実施例を示す、素
線は曲げ変形と捩シ変形とを同時に受けるためばね緊線
の、強化繊維の方向を素線の軸線シ 方向に対し0°と±45°方向の2層に配列する最も重
量軽減効果が大きい。第1図(a)はとの考え方を適用
した例であシ、同図(b)は構造の簡素化を図るため1
層としばね素線の軸線方向に対し配列角度を±α0すな
わちOoと±456の中間的な値とした例である。
Figure 1 shows an example of the structure of the wire of a helical spring. Because the wire undergoes bending and torsion deformation at the same time, the reinforcing fibers of the spring tension are aligned in the direction of the axis of the wire. On the other hand, arranging the layers in two layers in the 0° and ±45° directions has the greatest weight reduction effect. Figure 1 (a) is an example of applying the above concept, and Figure 1 (b) is an example of applying the concept of
This is an example in which the arrangement angle with respect to the axial direction of the layers and spring wires is set to an intermediate value between ±α0, that is, Oo and ±456.

第1図(、)の00方向と±45°方向の強化繊維量の
比率あるいは第1図(e)の配列角度±α0は曲げと捩
シの比率すなわちばね荷ff1K応じて決定する。αは
20°〜45°がよい。第1図中の可撓性コアは素線の
円筒形断面を保持するための充填材料であシ、軽量体を
使用する。
The ratio of the amount of reinforcing fibers in the 00 direction and the ±45° direction in FIG. 1(,) or the arrangement angle ±α0 in FIG. 1(e) is determined depending on the ratio of bending and torsion, that is, the spring load ff1K. α is preferably 20° to 45°. The flexible core in FIG. 1 is filled with a lightweight material to hold the cylindrical cross-section of the wire.

また第2図は緊線中に重量調整用型シを埋め込んだ例で
あり、この付加によ多素線の側柱及び強度に影響を与え
ることなくつる巻きばねの共振点すなわち固有振動数を
変化させることができる。
Figure 2 shows an example in which a weight adjustment mold is embedded in the tension wire, and this addition allows the resonance point, that is, the natural frequency, of the helical spring to be adjusted without affecting the side columns and strength of the multi-strand wire. It can be changed.

第3図は、第1図(a)のつる巻きばねの製造装置の一
例を示す。
FIG. 3 shows an example of the apparatus for manufacturing the helical spring shown in FIG. 1(a).

所要量の強化繊維を一方向に引揃え、樹脂槽にて樹脂を
含浸させた後、引抜き成形用の現内を通過させながら加
熱し、円形断面状に成形する。このとき加熱を弱目にし
て樹脂を半硬化状態にして容易に曲げ成形ができるよう
Kしておく、この半硬化状態の繊維強化樹脂のまわシに
プレイド織機によシ±45°め層を連続的に織シ込んで
ゆき、これを所定の外径を有するマンドレル上に所要の
ピッチで巻き取ってゆく、所要の巻き数だけ巻き終えた
ものに必要な樹脂をさらに含浸させた後、通常の繊維強
化樹脂と同じ要領にて硬化処理する。
After the required amount of reinforcing fibers are aligned in one direction and impregnated with resin in a resin bath, they are heated while being passed through a pultrusion molding material and molded into a circular cross-sectional shape. At this time, turn the heating to low to make the resin semi-hardened so that it can be easily bent and formed.The semi-hardened fiber-reinforced resin is then placed on a plaid loom with layers set at ±45°. The weave is continuously woven and then wound at the required pitch onto a mandrel having a predetermined outer diameter.After the required number of turns is further impregnated with the necessary resin, it is usually Curing treatment is performed in the same manner as the fiber-reinforced resin.

第1図(b)の構造例の場合には可撓性コアをプレイド
織機にかけた後は第3図と同じ工程によりs造する。
In the case of the structural example shown in FIG. 1(b), after the flexible core is put on a plaid loom, it is woven by the same process as shown in FIG. 3.

以上の製造装置は強化繊維の量、引抜き成形型、マンド
レルを変えることによって様々な特性のつる巻ばねを全
く同じ工程でしかも安価に製造できる。
By changing the amount of reinforcing fibers, the pultrusion mold, and the mandrel, the above-described manufacturing apparatus can manufacture helical springs with various characteristics in exactly the same process and at low cost.

〔発明の効果〕〔Effect of the invention〕

つる巻ばねの素材を繊維強化樹脂とすることによシ、素
材の比弾性率の高さを利用できるとと本に、素材弾性特
性が最適になるよう強化繊維の配列角度を決めることが
できるため、重量の軽減が図れる。
By using fiber-reinforced resin as the material for the helical spring, it is possible to take advantage of the material's high specific modulus of elasticity, and the arrangement angle of the reinforcing fibers can be determined to optimize the material's elastic properties. Therefore, the weight can be reduced.

また成形自由度が大きいため、大型のものでも安価に製
造できる。
Furthermore, since there is a large degree of freedom in molding, even large-sized products can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示すつる巻ばね素線の構
造図、第2図はばね素線中に重量調整用型シを埋め込ん
だ例を示す図、第3図は、本発明のつる巻きばねの製造
装置を示す図。 1・・・±45°45°方向2・・・0°力方向材、3
・・・±α0方向部材、4・・・可撓性コア、5・・・
重量調整用型シ、6・・・強化繊維がピン、2・・・樹
脂含浸槽、8・・・樹脂含浸強化繊維、9・・・引抜き
成形型、10・・・半び化状態の繊維強化樹脂、11・
・・プレイド織機、12・・・巻きとシ装置、13・・
・完成つる巻はね。 (b) 第 1−コ
Fig. 1 is a structural diagram of a helical spring wire showing an embodiment of the present invention, Fig. 2 is a diagram showing an example in which a weight adjustment mold is embedded in the spring wire, and Fig. 3 is a diagram of the present invention. FIG. 1 is a diagram showing an apparatus for manufacturing a helical spring according to the invention. 1...±45° 45° direction 2...0° force direction member, 3
...±α0 direction member, 4...Flexible core, 5...
Weight adjustment mold, 6... Reinforced fiber with pin, 2... Resin impregnated tank, 8... Resin impregnated reinforcing fiber, 9... Pultrusion mold, 10... Fiber in half-cut state Reinforced resin, 11.
・・・Plaid loom, 12... Winding and sewage device, 13...
・Completed vine. (b) 1st-co.

Claims (1)

【特許請求の範囲】[Claims] ばね素材を繊維強化樹脂とするとともに、ばね素線の繊
維の方向をばね素線の軸線に対し20゜以上45゜以下
の配列角度を有することを特徴とするつる巻きばね。
A helical spring characterized in that the spring material is a fiber-reinforced resin, and the direction of the fibers of the spring wire is arranged at an angle of 20° or more and 45° or less with respect to the axis of the spring wire.
JP63099531A 1988-04-22 1988-04-22 Helical spring Pending JPH01269736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099531A JPH01269736A (en) 1988-04-22 1988-04-22 Helical spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099531A JPH01269736A (en) 1988-04-22 1988-04-22 Helical spring

Publications (1)

Publication Number Publication Date
JPH01269736A true JPH01269736A (en) 1989-10-27

Family

ID=14249800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099531A Pending JPH01269736A (en) 1988-04-22 1988-04-22 Helical spring

Country Status (1)

Country Link
JP (1) JPH01269736A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136530A (en) * 1990-09-27 1992-05-11 Toyama Pref Gov Frp coil spring and manufacture thereof
EP0637700A2 (en) * 1993-08-04 1995-02-08 Toho Rayon Co., Ltd. Carbon fiber reinforced resin coil spring and method for manufacturing the same
EP0756103A1 (en) * 1995-07-27 1997-01-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Interface apparatus for vibration damping in structural dynamic systems
US5988612A (en) * 1997-08-07 1999-11-23 Bertelson; Peter C. Composite helical springs and process of manufacture
FR2901589A1 (en) * 2006-05-29 2007-11-30 Max Sardou Combined flexion torsion composite spring for e.g. windscreen wiper arm, has reinforcement layers wound around core with minimum diameter, and constituted of reinforcing fibers forming specific angle with respect to axis of core
WO2014014481A1 (en) * 2012-07-18 2014-01-23 Mssc Us Composite coil spring
DE102014115619A1 (en) * 2014-10-28 2016-04-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Spiral spring and related manufacturing process
WO2017073772A1 (en) * 2015-10-29 2017-05-04 日本発條株式会社 Coil spring wire rod and coil spring

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136530A (en) * 1990-09-27 1992-05-11 Toyama Pref Gov Frp coil spring and manufacture thereof
EP0637700A2 (en) * 1993-08-04 1995-02-08 Toho Rayon Co., Ltd. Carbon fiber reinforced resin coil spring and method for manufacturing the same
EP0637700A3 (en) * 1993-08-04 1995-05-03 Toho Rayon Kk Carbon fiber reinforced resin coil spring and method for manufacturing the same.
EP0756103A1 (en) * 1995-07-27 1997-01-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Interface apparatus for vibration damping in structural dynamic systems
US5988612A (en) * 1997-08-07 1999-11-23 Bertelson; Peter C. Composite helical springs and process of manufacture
FR2901589A1 (en) * 2006-05-29 2007-11-30 Max Sardou Combined flexion torsion composite spring for e.g. windscreen wiper arm, has reinforcement layers wound around core with minimum diameter, and constituted of reinforcing fibers forming specific angle with respect to axis of core
JP2015526661A (en) * 2012-07-18 2015-09-10 エムエスエスシー インコーポレイテッド Composite coil spring
CN104583637A (en) * 2012-07-18 2015-04-29 Mssc有限公司 Composite coil spring
WO2014014481A1 (en) * 2012-07-18 2014-01-23 Mssc Us Composite coil spring
US9677637B2 (en) 2012-07-18 2017-06-13 Mitsubishi Steel Mfg. Co., Ltd. Composite coil spring
CN107255130A (en) * 2012-07-18 2017-10-17 三菱制钢株式会社 Compound disc spring
EP3388708A1 (en) * 2012-07-18 2018-10-17 Mitsubishi Steel MFG. CO., LTD. Composite coil spring
US10385940B2 (en) 2012-07-18 2019-08-20 Mssc Inc Composite coil spring
CN107255130B (en) * 2012-07-18 2019-09-20 三菱制钢株式会社 Compound disc spring
DE102014115619A1 (en) * 2014-10-28 2016-04-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Spiral spring and related manufacturing process
CN105546007A (en) * 2014-10-28 2016-05-04 Dringhcf保时捷股份公司 Coil spring and associated production method
WO2017073772A1 (en) * 2015-10-29 2017-05-04 日本発條株式会社 Coil spring wire rod and coil spring

Similar Documents

Publication Publication Date Title
JP3009311B2 (en) Fiber-reinforced resin coil spring and method of manufacturing the same
US6612556B2 (en) Multihelical composite spring
JPS629940A (en) Cylindrical body prepared with fiber-reinforced resin
JPH0258493B2 (en)
CN110914045B (en) Method for producing a part made of composite material and composite part obtained thereby
JPH03237988A (en) Golf club shaft and manufacture thereof
JPH09267400A (en) Frp bent pipe
KR101499474B1 (en) Method for Producing pipe
JPH01269736A (en) Helical spring
JP2016519745A (en) Hybrid spring device
US4673451A (en) Method for manufacture of fiber reinforced resin structure such as a steering wheel core member
JPH07108620A (en) Coiled spring molds
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JPH10114002A (en) Carbon fiber reinforced composite material
WO2017073772A1 (en) Coil spring wire rod and coil spring
JPS5828029A (en) Fiber reinforced plastic coil spring and its manufacture
US20190366617A1 (en) Strand profile and process for producing a strand profile
CN108350968A (en) Elastomeric element wire rod and elastomeric element
JPH02216270A (en) Structural material and production thereof
JPS6032539B2 (en) Coil spring manufacturing method
JP3692691B2 (en) Fiber reinforced plastic tubular body
JP2007064389A (en) Coil spring made of fiber-reinforced resin, and its manufacturing method
JP3807772B2 (en) Golf club shaft made of fiber reinforced plastic
JPS6120427B2 (en)
JP2003300256A (en) Frp spring and manufacturing method therefor