JPH01268174A - Manufacture of light emitting element - Google Patents

Manufacture of light emitting element

Info

Publication number
JPH01268174A
JPH01268174A JP63095639A JP9563988A JPH01268174A JP H01268174 A JPH01268174 A JP H01268174A JP 63095639 A JP63095639 A JP 63095639A JP 9563988 A JP9563988 A JP 9563988A JP H01268174 A JPH01268174 A JP H01268174A
Authority
JP
Japan
Prior art keywords
layer
substrate
light emitting
light
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095639A
Other languages
Japanese (ja)
Inventor
Toshiya Toyoshima
豊島 敏也
Yukio Kikuchi
幸夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63095639A priority Critical patent/JPH01268174A/en
Publication of JPH01268174A publication Critical patent/JPH01268174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To manufacture a high intensity light emitting diode with a GaAlAs light transmission layer having high yield and mass productivity by forming a protective film on one side surface of a Ga1-xAlxAs substrate, and then epitaxially growing a GaAlAs layer to become a light emitting layer on the other side surface of the substrate. CONSTITUTION:After both the surfaces of a Ge-doped p-type Ga0.55Al0.45As substrate 1 is polished in a mirror-surface, they are etched, and an SiO2 film 8 is formed as a protective film on one side surface. Thereafter, the other side surface is etched with an etchant, and it is contained in a liquid epitaxially growing slide boat with the other side surface disposed above. The whole boat is heated, unsaturated solution of Ga, GaAs, Al is first brought into contact with the surface of the substrate, and a Zn-doped P-type Ga0.3Al0.7As layer 2. an undoped Ga0.65Al0.35As layer 3, a Te-doped N-type Ga0.3Al0.7As layer 4, a Te-doped N-type Ga0.55Al0.45As layer 5 are sequentially grown. Then, the film 8 covering the rear surface of the substrate 1 is removed by dissolving. Then, a P-type electrode 6 is formed on the rear surface of the substrate 1, an N-type electrode 7 is formed on the layer 5 side, and it is then pelletized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は発光素子の製造方法に係り、特に光を有効に取
り出すためのGaAl5光透過層を有する高出力GaM
AS系発光ダイオードの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a light emitting device, and in particular, a high power GaM device having a GaAl5 light transmitting layer for effectively extracting light.
The present invention relates to a method for manufacturing an AS-based light emitting diode.

[従来の技術] GaAlAs系発光ダイオードは、高出力、高速応答性
が優れていることから市場の拡大が進んでいる。また最
近では、高出力化が一層望まれ、その結果、発光した光
を吸収したいGa1−χM xA 3層を光透過層とし
た構造の発光ダイオードが開発されるに至った。ここで
光透過層としての機能を果すためにはAQ混晶比Xが発
光波長を規定しているGa+−vMvAs  (0<V
<1)のへ2混晶比yより大きいことが必要である。
[Prior Art] The market for GaAlAs light emitting diodes is expanding due to their excellent high output and high speed response. Recently, higher output has been desired, and as a result, a light-emitting diode having a structure in which a light-transmitting layer is a Ga1-xM x A triple layer that absorbs emitted light has been developed. Here, in order to function as a light-transmitting layer, the AQ mixed crystal ratio X defines the emission wavelength.
It is necessary that the hemi-2 mixed crystal ratio y is greater than <1).

さて、前記した発光ダイオードの実際の製造方法の1つ
として、最終的には発光タイオードの光透過層となるG
a1−χΔ2χAs層を、発光部をエピタキシャル成長
させるための基板として用いる方法かある。ここで、G
a+−xAlxAsA2上しては、このGa、−χAQ
 xA Sをエピタキシャル成長するときに用いたGa
As基板が除去されていた方か、エピタキシャルウェー
ハの湾曲や割れの原因となるGaASとGaAs基板の
格子定数の差による内部応力を低減できる点で好ましい
。このようにGaAs基板を除去したGa1−χAQχ
八s基へを用いれば、発光部をエピタキシャル成長した
後、直ちにGa1−χAQ XA S基板の裏側に電極
を形成することができるわけである。
Now, as one of the actual manufacturing methods of the above-mentioned light emitting diode, G
There is a method of using the a1-χΔ2χAs layer as a substrate for epitaxially growing the light emitting part. Here, G
Above a+-xAlxAsA2, this Ga, -χAQ
Ga used when epitaxially growing xA S
It is preferable that the As substrate be removed because internal stress due to the difference in lattice constant between GaAS and the GaAs substrate, which causes curvature and cracking of the epitaxial wafer, can be reduced. Ga1−χAQχ with the GaAs substrate removed in this way
If the 8s group is used, an electrode can be formed on the back side of the Ga1-χAQ XA S substrate immediately after epitaxial growth of the light emitting part.

したがって、従来技術においては、GaAs基板上にエ
ピタキシャル成長により発光波長に透明な厚さ100μ
m以上のGa1−χへ之χAs層を成長させ、その後、
GaAs基板をエツチングや研磨で完全に取り除き、G
a+−χ門χAs層たけからなるウェーハを作成し、さ
らにこれをエピタキシャル成長の前にエツチングなどに
より表面処理し、発光層のエピタキシャル成長用基板と
していた。
Therefore, in the prior art, a thickness of 100 μm that is transparent to the emission wavelength is formed by epitaxial growth on a GaAs substrate.
Grow a χAs layer to Ga1−χ of m or more, and then
The GaAs substrate is completely removed by etching or polishing, and the
A wafer consisting of an a+-χ gate χAs layer was prepared, and the surface of this wafer was subjected to etching or the like prior to epitaxial growth to serve as a substrate for epitaxial growth of a light-emitting layer.

前述したように、従来技術においては、Ga1−χAQ
χAs基板をエツチングなどの表面処理を施したたけで
、エピタキシャル成長装置に入れて発光層の成長を行っ
ているため、Ga1−χAQχ銚基板のエピタキシャル
成長を行う面とは反対側の面(裏面)に種々の欠陥か発
生する。
As mentioned above, in the prior art, Ga1-χAQ
Since the χAs substrate is subjected to surface treatment such as etching and then placed in an epitaxial growth apparatus to grow the light-emitting layer, there are various treatments on the surface opposite to the surface (back surface) of the Ga1-χAs substrate where the epitaxial growth is performed. Defects occur.

エピタキシャル成長は、通常非酸化雰囲気中で700〜
900℃くらいの温度で行われるが、例えば液相エピタ
キシャル成長の場合は、グラフアイh製のボートや原料
のGa中に含まれる微量の酸素が昇温とともに雰囲気中
に拡散するため、これによってGa1−χAQχAsの
裏面は酸化されてしまう。MO−CVD法によるエピタ
キシャル成長でも、サセプタや反応管に吸着している酸
素により同様にGa1−χAρχAsの酸化が起こり、
Ga+−χARχAsの裏面にはくもりか生じる。また
、Ga、−χへΩχAsは700℃以上に加熱すると、
揮発成分であるAsか蒸発しやすくなり、このためやは
り基板の裏面は光沢を失い微小な凹凸が無数に発生する
。なお、前述の酸化反応は、Ga+−xAlxAsのへ
λ混晶比が大きい程顕著に現われ、例えばx=0.45
になると、液相エピタキシャル成長を900°Cから7
00℃で約3時間かけて行った場合は、Ga+−χMχ
八sへ^S基板の裏面は、粗面になり全く光沢を失って
しまう。
Epitaxial growth is usually performed in a non-oxidizing atmosphere at 700 ~
For example, in the case of liquid phase epitaxial growth, a trace amount of oxygen contained in the Graphi h boat and the raw material Ga diffuses into the atmosphere as the temperature rises. The back surface of χAQχAs is oxidized. Even in epitaxial growth using the MO-CVD method, oxidation of Ga1-χAρχAs occurs similarly due to oxygen adsorbed in the susceptor and reaction tube.
Clouding occurs on the back surface of Ga+-χARχAs. Also, when ΩχAs is heated to 700°C or higher to Ga, -χ,
As is a volatile component, it becomes easy to evaporate, and as a result, the back surface of the substrate loses its luster and countless minute irregularities occur. The above-mentioned oxidation reaction appears more prominently as the λ mixed crystal ratio of Ga+-xAlxAs increases; for example, when x=0.45
In this case, liquid phase epitaxial growth is performed from 900°C to 7°C.
When carried out at 00℃ for about 3 hours, Ga+-χMχ
To 8s^S The back side of the board becomes rough and loses its luster.

このようにGa、−χAQχAs基板の裏面が荒れた粗
面となっている場合、そのまま発光タイオードを製作す
ると、発光部から放射された光はGa1−χ^2χ八S
光へ過層の表面、即ち、Ga1−xAlxAs基板の裏
面の微小な凹凸により乱反射されて光のロスが生じ、発
光効率を著しく損う。このため、従来はエピタキシャル
成長した後に前述のGa1−χへ乏χへSの裏面を研磨
、又はエツチングにより鏡面加工する方法かとられてい
る。しかし、ここで次の欠点や不都合点か現われる。
In this way, if the back surface of the Ga, -χAQχAs substrate is rough and rough, if a light emitting diode is manufactured as is, the light emitted from the light emitting part will be Ga1 -χ^2χ8S
The light is diffusely reflected by minute irregularities on the surface of the overlayer, that is, the back surface of the Ga1-xAlxAs substrate, resulting in light loss, which significantly impairs luminous efficiency. For this reason, conventionally, after epitaxial growth, the back surface of the S layer is mirror-finished by polishing or etching to the Ga1-.chi.-poor .chi. However, here the following drawbacks and inconveniences appear.

エピタキシャル成長が完了したウェーハはGa+−χA
Q xA S基板、Ga+−v AQ NA S層、発
光層およびG a +、z八QへzA Sクラッド層な
と複数のGaMAS’′C″構成されているため、Aρ
混晶比X、 V、 Zの差によるウェーハ内部の応力に
より、歪みかかかっており、ウェーハは湾曲しているの
が昔通である。このようなウェー 5〜 −ハを例えば研磨により鏡面に加工する場合は、第1に
厚さの精度を得ることが非常に困難であり、第2にしば
しば上記の歪によりウェーハに割れか生じタイオードの
収率低下の要因となる。以上2つが主な欠点であり、加
えてもともとGa1−χAQχAs基板自体が厚いもの
を得ることは極めて難しく、通常200μm以下の薄い
基板を使用せざるをえないためウェーハが非常に割れや
すいことか上記欠点の解消を難しいものとしている。
The wafer after epitaxial growth is Ga+-χA
QxA S substrate, Ga + -v AQ NA S layer, light emitting layer, Ga
Traditionally, the wafer is distorted due to stress inside the wafer due to the difference in the mixed crystal ratios X, V, and Z, and the wafer is curved. When processing such a wafer into a mirror surface by polishing, for example, it is very difficult to obtain thickness accuracy, and secondly, the wafer often cracks due to the above distortion, resulting in diode damage. This causes a decrease in yield. The above two are the main drawbacks, and in addition, it is extremely difficult to obtain a thick Ga1-χAQχAs substrate itself, and a thin substrate of usually less than 200 μm must be used, so the wafer is very easy to break. This makes it difficult to eliminate deficiencies.

「発明が解決しようとする課題] 上述したようにGaAs基板上に数100μmのGaA
Q八S光へ過層をエピタキシャル成長させ、もとのGa
As基板を除去してから、GaAlAs光透過層を光透
上層てこの上に発光部をエピタキシャル成長させて光を
効率良く取り出す製造方法では、発光部を得るために通
常40μm程度のエピタキシャル成長を行うか、エピタ
キシャル層表面にはモルホロジーや突起状成長部などに
よる凹凸か発生ずるのか一般的である。
“Problems to be Solved by the Invention” As mentioned above, several hundred μm of GaAs are deposited on a GaAs substrate.
By epitaxially growing a superlayer on Q8S light, the original Ga
In a manufacturing method that removes the As substrate and then epitaxially grows a light-emitting portion of a GaAlAs light-transmissive layer on the light-transparent upper layer lever to efficiently extract light, epitaxial growth of about 40 μm is usually performed to obtain the light-emitting portion. It is common for the surface of an epitaxial layer to have irregularities due to morphology or protruding growth portions.

このなめ、エピタキシャル成長後にウェーハの= 6− 裏面、即ち、GaAJ!As基板の裏面を反射効率を上
げるなめに研磨する必要があるが、研磨する場合に次の
ような不都合があった。
This lick is applied to the = 6- back side of the wafer after epitaxial growth, i.e., GaAJ! It is necessary to polish the back surface of the As substrate in order to increase the reflection efficiency, but there are the following disadvantages when polishing.

(1)  前記のエピタキシャル層表面を平坦な板に貼
り付ける必要があるが、エピタキシャル層表面の凹凸の
ため、平坦に貼り付けるのが困難であり、研磨後の厚さ
の精度を維持することができない。
(1) It is necessary to attach the epitaxial layer surface to a flat plate, but due to the unevenness of the epitaxial layer surface, it is difficult to attach it flatly, and it is difficult to maintain the accuracy of the thickness after polishing. Can not.

(2)  製造上もともと割れやずいGaAl5基板を
使用せざるを得ないこともあって、上記の歪によりウェ
ーハに割れか生じタイオードの収率が低下する。
(2) Since it is necessary to use a GaAl5 substrate which is inherently susceptible to cracking during manufacturing, the above-mentioned distortion causes cracks in the wafer and reduces the yield of diodes.

その結果、従来は、量産性に優れたGaAl5光透過層
付きの高輝度発光ダイオードを得ることが困難であった
As a result, it has hitherto been difficult to obtain a high-brightness light emitting diode with a GaAl5 light-transmitting layer that can be easily mass-produced.

本発明の目的は、前記した従来技術の欠点を解消し、収
率が高くかつ量産性に富んたGaJV!As光透過層付
きの高輝度発光ダイオードを製造することが可能な発光
素子の製造方法を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a GaJV! with high yield and high mass productivity! An object of the present invention is to provide a method for manufacturing a light emitting element that can manufacture a high brightness light emitting diode with an As light transmitting layer.

[課題を解決するための手段] 本発明の発光素子の製造方法は、発光波長に透明な光透
過層として形成したGa+−XM XM S基板上に、
発光層となるGaAlAs層をエピタキシャル成長させ
、このGaAlAs層から発光する光が前記Ga)−x
AQxAs基板を透過した後その表面で反射してGaA
lAs層側から取り出される発光素子の製造方法におい
て、前記Ga1−xAlxAs基板の一方の表面に保護
膜を形成した後、他方の表面に前記発光層となるGaA
lAs層をエピタキシャル成長させるようにしたもので
ある。
[Means for Solving the Problems] The method for manufacturing a light emitting device of the present invention provides a method for manufacturing a light emitting device, in which on a Ga+-XM S substrate formed as a light transmitting layer transparent to the emission wavelength,
A GaAlAs layer that becomes a light emitting layer is epitaxially grown, and the light emitted from this GaAlAs layer is the Ga)-x
After passing through the AQxAs substrate, it is reflected on the surface and GaA
In the method for manufacturing a light-emitting device taken out from the lAs layer side, after forming a protective film on one surface of the Ga1-xAlxAs substrate, a GaA layer that will become the light-emitting layer is formed on the other surface of the Ga1-xAlxAs substrate.
The lAs layer is epitaxially grown.

そして、本製造方法は、Ga+−χAQ xA S基板
の一方の表面を鏡面に仕上げた後その面に保護膜を形成
し、他方の表面に発光層となるGaAlAs層をエピタ
キシャル成長させることが望ましい。
In the present manufacturing method, it is desirable to finish one surface of the Ga+-χAQ xA S substrate to a mirror finish, form a protective film on that surface, and epitaxially grow a GaAlAs layer that will become a light emitting layer on the other surface.

また、本製造方法は、発光層となるGaAlAs層をエ
ピタキシャル成長した後に、前記保護膜の一部または全
部を除去することもできる。
Further, in this manufacturing method, after epitaxially growing the GaAlAs layer that will become the light emitting layer, part or all of the protective film can be removed.

光透過層となるGal−χ^込χAs基板の混晶比は0
<×<1である。
The mixed crystal ratio of the Gal-χ^-containing χAs substrate that becomes the light-transmitting layer is 0.
<×<1.

また、保護膜の種類は目的とするエピタキシャル成長温
度でのGa+−χAQ xA S基板の裏面の熱的、化
学的損傷を防止することかできれば良く、併せて、保護
膜を除去した際にGa+−χAQ xA Sが損傷され
ないこと、保護膜の形成除去が容易であること、発光ダ
イオードの特性を損なわないことなどを考慮し任意に選
択できる。最も上記目的に適しているのは、化学的気相
反応により形成した5102膜であるが、SiN、5i
ON、^QNなど自由に選ぶことが可能である。
In addition, the type of protective film should be one that can prevent thermal and chemical damage to the back side of the Ga+-χAQ xA S substrate at the intended epitaxial growth temperature. It can be arbitrarily selected taking into account that the xAS is not damaged, that the protective film is easy to form and remove, and that the characteristics of the light emitting diode are not impaired. The most suitable film for the above purpose is 5102 film formed by chemical vapor phase reaction, but SiN, 5i
It is possible to freely select ON, ^QN, etc.

またGa1−χAQ xA S基板の裏面、即ち光透過
層の表面に反射の効果を向上させることを目的として、
被膜を形成した場合であっても実質的に基板裏面の荒れ
を防止する効果がある場合は、その被膜も本発明の保護
膜に含まれる。
In addition, for the purpose of improving the reflection effect on the back surface of the Ga1-χAQ xA S substrate, that is, the surface of the light transmission layer,
Even if a film is formed, if it has the effect of substantially preventing roughening of the back surface of the substrate, such a film is also included in the protective film of the present invention.

Ga+−χ^λχAs基板を用いて作成する発光ダイオ
ードであれば、タイオードの種類や構造および製造プロ
セスに関係なく本発明を適用することが出来る。
As long as the light emitting diode is manufactured using a Ga+-χ^λχAs substrate, the present invention can be applied regardless of the type, structure, and manufacturing process of the diode.

[作用コ Ga1−χAQχAs基板の一方の表面に保護膜か形成
されていると、他方の表面にエピタキシャル成長させる
際、この保護膜によって前記基板の一方の表面は熱的、
化学的ストレスから保護される。したがって、エピタキ
シャル成長後のウェーハの研磨加工が不要となるため、
Ga+−xAlxAs基板の厚さをエピタキシャル成長
前に精度好く調節しておけば、厚さ精度の良好なエピタ
キシャルウェーハが得られ、以後のプロセスも円滑に行
なうことができる。
If a protective film is formed on one surface of the Ga1-χAQχAs substrate, when epitaxial growth is performed on the other surface, this protective film protects one surface of the substrate from thermal
Protected from chemical stress. Therefore, there is no need to polish the wafer after epitaxial growth.
If the thickness of the Ga+-xAlxAs substrate is adjusted with good precision before epitaxial growth, an epitaxial wafer with good thickness precision can be obtained, and subsequent processes can be carried out smoothly.

そして、保護膜を形成するGa+−χAQにAs基板の
一方の表面を鏡面に仕上げておくと、この鏡面は保護膜
によって損傷を受けることなくそのまま保護されるから
、発光層から発光した光が光透過層の表面から効率よく
反射して、光を発光層側から有効に取り出せる。
Then, if one surface of the As substrate is finished with a mirror finish on the Ga + - Light is efficiently reflected from the surface of the transparent layer and can be effectively extracted from the light emitting layer side.

また、保護膜が反射の効果を向上させることをも目的と
して形成されているのではなく、単に基板の一方の表面
を保護することのみを目的として形成されているのであ
れば、エピタキシャル成長した後にこの保護膜は必要に
応じて除去しても構わない。
Furthermore, if the protective film is not formed for the purpose of improving the reflection effect, but merely for the purpose of protecting one surface of the substrate, this layer may be removed after epitaxial growth. The protective film may be removed if necessary.

−1〇 − [実施例] 以下本発明の実施例を第1図〜第2図を用いて説明する
-10- [Example] Examples of the present invention will be described below with reference to FIGS. 1 and 2.

直径40m1′Il、厚さ150 μrn 、結晶面(
100)のGeドープ、p型、Gao、 55AQ 0
.45^S基板1の両面を研磨により鏡面にした後、硫
酸(4容)、過酸化水素水(1容)、水(1容)からな
るエツチング液でエツチングし、一方の面にSiH4カ
ス、02カスの気相反応により、厚さ5000人の51
02膜8を保護膜として形成した。その後、前記のエツ
チング液で他方の面をエツチングし、この面を上に、液
相エピタキシャル成長用のスライドボートに収容した。
Diameter 40 m1'Il, thickness 150 μrn, crystal plane (
100) Ge-doped, p-type, Gao, 55AQ 0
.. After polishing both sides of the 45^S substrate 1 to a mirror surface, it was etched with an etching solution consisting of sulfuric acid (4 volumes), hydrogen peroxide (1 volume), and water (1 volume), and SiH4 scum and Due to the gas phase reaction of 02 dregs, the thickness of 51
02 film 8 was formed as a protective film. Thereafter, the other side was etched with the etching solution mentioned above, and the substrate was placed in a slide boat for liquid phase epitaxial growth with this side facing up.

ボート全体を900℃に加熱し、先すGa、GaAs、
AQから成る未飽和の溶液を基板表面に接触させ、基板
表面を約10μmメルトバックした後1℃/分の冷却速
度で温度を下げなからZnドーグのP型Gao、 3M
o7As層2を15μm 、アンドープのGao6sA
Qo3s^S層3を1μm、Teドープのn型Gao、
 3Mo7As層4を20μm、、Teドープのn型G
ao、 55AQ。4.As層5を1μm成長させた(
第1図)。
The whole boat is heated to 900℃, and first Ga, GaAs,
An unsaturated solution consisting of AQ was brought into contact with the substrate surface, and after the substrate surface was melted back by about 10 μm, the temperature was lowered at a cooling rate of 1° C./min.
o7As layer 2 15 μm thick, undoped Gao6sA
Qo3s^S layer 3 is 1 μm thick, Te-doped n-type Gao,
3Mo7As layer 4 of 20 μm thickness, Te doped n-type G
ao, 55AQ. 4. The As layer 5 was grown to a thickness of 1 μm (
Figure 1).

この間の所要時間は約2.5時間であった。その後室温
でウェーハを取り出しフッ酸水溶液にウェーハを1分間
浸漬して、Ga、9.AQ。45AS基板1の裏面に被
着した5i02@8を溶解除去した。この状態でGao
、 5sAQ o、 <5^S基板1の裏面は酸化およ
びAsの輝散などが無く完全な鏡面状であった。続いて
、Gao、 5sAfl o、 49八S基板1の裏面
側にp I!!l電榛6、Teドープn型エピタキシャ
ル層5側にn側電極7を蒸着およびホトリソグラフィー
により形成した後、ペレッI・化したく第2図)6所定
のステムに組み立てI「−20111への電流で発光波
および輝度を測定したところ、発光中心波長は660n
n 、輝度は2(1mcdであった。光透過層の無い同
発光層構造の発光ダイオードの輝度は約10mcdであ
り、発光部から発ぜられな光がGao5.AQ 0.4
5AS光透過層の表面、即ち、Gao、5sAQ。4.
As基板の裏面から効率良く反射していることがわかる
The time required during this time was approximately 2.5 hours. Thereafter, the wafer was taken out at room temperature and immersed in a hydrofluoric acid aqueous solution for 1 minute. AQ. 5i02@8 deposited on the back surface of the 45AS substrate 1 was dissolved and removed. In this state Gao
, 5sAQ o, <5^S The back surface of the substrate 1 was completely mirror-like with no oxidation or As scattering. Next, Gao, 5s Aflo, 498S pI! on the back side of substrate 1. ! After forming the n-side electrode 7 on the Te-doped n-type epitaxial layer 5 side by vapor deposition and photolithography, assemble it into a predetermined stem (see Figure 2) and apply a current to I'-20111. When the emission wave and brightness were measured, the emission center wavelength was 660n.
n, the brightness was 2 (1 mcd).The brightness of a light emitting diode with the same light emitting layer structure without a light transmitting layer was about 10 mcd, and the light emitted from the light emitting part was Gao5.AQ 0.4
The surface of the 5AS light transmitting layer, namely Gao, 5sAQ. 4.
It can be seen that the light is reflected efficiently from the back surface of the As substrate.

エピタキシャル成長後にGa+−χへ2χAs裏面の研
磨やエツチングを行なう必要か無かったため、ウェーハ
の割れなどによるロスは皆無であり、タイオ−ドの収率
は95%と高かった。
Since there was no need to polish or etch the back surface of the 2.chi.As to Ga+-.chi. after epitaxial growth, there was no loss due to cracking of the wafer, and the yield of the diode was as high as 95%.

上記実施例によれは、エピタキシャル成長後のGa1−
χAQχN基板裏面の光沢が失われず、完全な鏡面であ
るため、従来のようなエピタキシャル成長後の鏡面加工
を行なう必要かなく、ウェーハの割れは全く発生したか
った。これによりウェーハの大型化か可能になり、従来
のウェーハの面積か2CI112か限度であったのに対
し、約12cm2(直径401111′N)にまで拡大
することかでき、量産性を大幅に向上させることが出来
る。
According to the above embodiment, Ga1- after epitaxial growth
Since the back surface of the χAQχN substrate does not lose its gloss and has a perfect mirror surface, there is no need to perform mirror polishing after epitaxial growth as in the conventional method, and no cracking of the wafer occurs. This makes it possible to increase the size of the wafer, and while the conventional wafer area was limited to 2CI112, it can be expanded to approximately 12cm2 (diameter 401111'N), greatly improving mass productivity. I can do it.

[発明の効果] 本発明によれば次の効果がある。[Effect of the invention] According to the present invention, there are the following effects.

Ga+−χ^2χAs基板の一方の表面に保護膜を形成
した後、他方の表面に発光層となるGaAl5層層をエ
ピタキシャル成長させるので、Ga1−χAQχAs基
板の表面の熱的、化学的損傷を防止でき、エピタキシャ
ル成長後の基板の一方の表面の損傷部除去作業が不要と
なり、したがって、収率が高く、かつ量産性に富んだ高
輝度発光タイオードか製造できる。
After forming a protective film on one surface of the Ga+-χ^2χAs substrate, a five-layer GaAl layer that will become a light-emitting layer is epitaxially grown on the other surface, so thermal and chemical damage to the surface of the Ga1-χAQχAs substrate can be prevented. Therefore, it is not necessary to remove the damaged portion on one surface of the substrate after epitaxial growth, and therefore a high-brightness light emitting diode can be manufactured with high yield and high mass productivity.

基板の一方の表面を鏡面に仕上げた後その面に保護膜を
形成し、他方の表面にGaAl5層をエピタキシャル成
長させる場合には、エピタキシャル成長後の基板の一方
の表面の光沢か失われず、完全な鏡面を保つことができ
るので、反射効率を著しく高めることができる。
When one surface of the substrate is polished to a mirror surface, a protective film is formed on that surface, and a GaAl5 layer is epitaxially grown on the other surface, the gloss of one surface of the substrate after epitaxial growth is not lost and the surface is completely mirror-finished. can be maintained, so the reflection efficiency can be significantly increased.

GaAl5層層をエピタキシャル成長させた後保護膜の
一部または全部を除去する場合には、損傷のない基板表
面が現われるため、直ちにこの基板表面に電極を形成す
ることかできる。
If part or all of the protective film is removed after epitaxially growing the five-layer GaAl layer, an undamaged substrate surface appears, and electrodes can be immediately formed on this substrate surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発光素子の製造方法に係る一実施例を
示す発光層形成後のエピタキシャルウェーハの断面図、
第2図はGaAlAs光透過層付きGaAlAs発光ダ
イオードを示す断面図である。 図中、1は光透過層としてのP型Ga1−χAQχAs
基板、2〜5は発光層となるGaAl5層であって、2
はp型GaAl5エピタキシャル層、3はアンドープの
GaAlAsエピタキシャル層、4,5はn型GaAl
Asエピタキシャル層、8は保護膜としての5iO2J
Iuである。
FIG. 1 is a cross-sectional view of an epitaxial wafer after forming a light emitting layer, showing one embodiment of the method for manufacturing a light emitting device of the present invention;
FIG. 2 is a sectional view showing a GaAlAs light emitting diode with a GaAlAs light transmitting layer. In the figure, 1 is P-type Ga1-χAQχAs as a light-transmitting layer.
Substrates 2 to 5 are GaAl5 layers serving as light emitting layers;
is a p-type GaAl5 epitaxial layer, 3 is an undoped GaAlAs epitaxial layer, and 4 and 5 are n-type GaAl
As epitaxial layer, 8 is 5iO2J as a protective film
It is Iu.

Claims (1)

【特許請求の範囲】 1、発光波長に透明な光透過層として形成したGa_1
_−_xAl_xAs基板上に、発光層となるGaAl
As層をエピタキシャル成長させ、このGaAlAs層
から発光する光が前記Ga_1_−_xAl_xAs基
板を透過した後その表面で反射してGaAlAs層側か
ら取り出される発光素子の製造方法において、前記Ga
_1_−_xAl_xAs基板の一方の表面に保護膜を
形成した後、他方の表面に前記発光層となるGaAlA
s層をエピタキシャル成長させることを特徴とする発光
素子の製造方法。 2、Ga_1_−_xAl_xAs基板の一方の表面を
鏡面に仕上げた後その面に保護膜を形成し、他方の表面
に発光層となるGaAlAs層をエピタキシャル成長さ
せることを特徴とする請求項1記載の製造方法。 3、発光層となるGaAlAs層をエピタキシャル成長
させた後に、前記保護膜の一部または全部を除去するこ
とを特徴とする請求項1又は2記載の製造方法。
[Claims] 1. Ga_1 formed as a light-transmitting layer transparent to the emission wavelength
GaAl serving as a light emitting layer is placed on the ____xAl_xAs substrate.
In the method for manufacturing a light emitting device, in which an As layer is epitaxially grown, light emitted from the GaAlAs layer passes through the Ga_1_-_xAl_xAs substrate, is reflected on the surface thereof, and is extracted from the GaAlAs layer side.
_1_-_xAl_xAfter forming a protective film on one surface of the As substrate, GaAlA, which will become the light emitting layer, is formed on the other surface.
A method for manufacturing a light emitting device, comprising epitaxially growing an s-layer. 2. The manufacturing method according to claim 1, characterized in that one surface of the Ga_1_-_xAl_xAs substrate is finished to a mirror finish, a protective film is formed on that surface, and a GaAlAs layer serving as a light emitting layer is epitaxially grown on the other surface. . 3. The manufacturing method according to claim 1 or 2, wherein part or all of the protective film is removed after the GaAlAs layer serving as the light emitting layer is epitaxially grown.
JP63095639A 1988-04-20 1988-04-20 Manufacture of light emitting element Pending JPH01268174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095639A JPH01268174A (en) 1988-04-20 1988-04-20 Manufacture of light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095639A JPH01268174A (en) 1988-04-20 1988-04-20 Manufacture of light emitting element

Publications (1)

Publication Number Publication Date
JPH01268174A true JPH01268174A (en) 1989-10-25

Family

ID=14143081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095639A Pending JPH01268174A (en) 1988-04-20 1988-04-20 Manufacture of light emitting element

Country Status (1)

Country Link
JP (1) JPH01268174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208811A (en) * 1999-01-14 2000-07-28 Agilent Technol Inc Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208811A (en) * 1999-01-14 2000-07-28 Agilent Technol Inc Semiconductor device

Similar Documents

Publication Publication Date Title
TWI362761B (en)
JP3230638B2 (en) Light emitting diode manufacturing method
JP2953468B2 (en) Compound semiconductor device and surface treatment method thereof
CA1043896A (en) Light emitting diode array with dome geometry
JPH01187883A (en) High luminance led epitaxial substrate and its manufacture
JP2009218569A (en) Group iii nitride semiconductor light-emitting device and production method therefor
JP2000100801A (en) Epitaxial wafer, its manufacture and surface cleaning method for compound semiconductor substrate used therefor
JPH10135140A (en) Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JP2001044499A (en) ZnO COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE USING SILICON SUBSTRATE AND MANUFACTURING METHOD THEREFOR
US3998672A (en) Method of producing infrared luminescent diodes
JPH01268174A (en) Manufacture of light emitting element
CN116053368A (en) Red light LED chip with ZnO sacrificial layer and manufacturing method thereof
US4008106A (en) Method of fabricating III-V photocathodes
JPS5493378A (en) Manufacture for semiconductor device
JPS59175776A (en) Power boosting processing for semiconductor light emitting element
JPH0766450A (en) Light emitting diode device and its manufacture
TWI392115B (en) Method of increasing light extraction efficiency of gan light emitting diode
KR890003418B1 (en) Manufacturing method of semiconductor light emitting diode
JPS5881973A (en) Method for etching gold-germanium alloy film
KR890004429B1 (en) Semiconductor radiation diode manufacturing method
JPH02210830A (en) Surface treatment method of gaas substrate
JPS63146480A (en) Manufacture of buried type semiconductor laser
JPS60260185A (en) Manufacture of semiconductor laser
JPH0313739B2 (en)
JPS5976486A (en) Manufacture of light emitting diode