JPH01268085A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01268085A
JPH01268085A JP9723088A JP9723088A JPH01268085A JP H01268085 A JPH01268085 A JP H01268085A JP 9723088 A JP9723088 A JP 9723088A JP 9723088 A JP9723088 A JP 9723088A JP H01268085 A JPH01268085 A JP H01268085A
Authority
JP
Japan
Prior art keywords
layer
active region
organic film
insulating organic
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9723088A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9723088A priority Critical patent/JPH01268085A/en
Publication of JPH01268085A publication Critical patent/JPH01268085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser wherein a lateral single wave guiding mode is obtained with good reproducibility, leakage currents in a current blocking layer are less, parasitic capacitance is less and therefore high speed operation is possible at a low threshold value, by providing insulating organic film layers on the right and left sides of an active layer, and providing interface between the insulating organic film layer and a conductive semiconductor layer to the same plane as the lower interface of the active region. CONSTITUTION:Conductive type semiconductor layers 13 and 11 having a refractive index lower than the refractive index of an active region and a forbidden band width larger than the forbidden band width of the active region are arranged at the upper and lower parts of the active region 12 in a semiconductor laser. Semiinsulating organic film layers 17 are provided at the right and left parts of the active region 12. The interface between said insulating organic film layer 17 and said conductive type semiconductor layer 11 is provided at the same plane of the lower interface of the active layer 12. For example, an undoped InGaAsP layer is used for said active layer 12. A zinc doped InP layer is used for the clad layer 13. A zinc doped InGaAsP layer is used for a contact layer 14. Polyimide is used for the insulating organic layer 17. A sulfur doped InP substrate is used for a semiconductor substrate 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザに関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor laser.

(従来の技術) 絶縁性有機膜層を電流阻止層に用いた半導体レーザは電
流阻止層での漏れ電流がなくしかも寄生容量が小さいた
め低閾値、高速動作が期待される。しかもこの様な半導
体レーザは阻止構造が簡単なため低価格化が可能である
。この様な構造を有する半導体レーザの従来例(862
年春季応用物理学会予稿集、講演番号28p−ZH−1
)を第3図に示す。第3図において、活性層12は上下
よりn形のバッファ層11、p形のクラッド層13で挾
まれ、電流は活性層12を含むリッヂ構造の両脇に位置
する絶縁性有機膜層17により狭窄される。従って、電
子はn形電極15、n形半導体基板10、バッファ層1
1を経て活性層12に注入され、一方正孔はp形電極1
6、コンタクト層14、クラッド層13を経て活性層1
2に注入される。
(Prior Art) A semiconductor laser using an insulating organic film layer as a current blocking layer is expected to have a low threshold and high speed operation because there is no leakage current in the current blocking layer and the parasitic capacitance is small. In addition, such a semiconductor laser has a simple blocking structure, so it is possible to reduce the cost. A conventional example of a semiconductor laser having such a structure (862
Spring Proceedings of the Japan Society of Applied Physics, Lecture No. 28p-ZH-1
) is shown in Figure 3. In FIG. 3, the active layer 12 is sandwiched between an n-type buffer layer 11 and a p-type cladding layer 13 from above and below, and current is passed through insulating organic film layers 17 located on both sides of the ridge structure including the active layer 12. narrowed. Therefore, electrons are transferred to the n-type electrode 15, the n-type semiconductor substrate 10, and the buffer layer 1.
1 into the active layer 12, while holes are injected into the p-type electrode 1
6. Active layer 1 via contact layer 14 and cladding layer 13
Injected into 2.

(発明が解決しようとする問題点) しかしながら、従来の絶縁性有機膜層を用いた半導体レ
ーザには、歩留りを高くすることが困難であるという欠
点があった。それはエツチングをp形りラッド層13の
途中で精密に制御して止めるのが困難であるため活性層
12を含むリッヂ構造の形状がばらつき横車−導波モー
ドが再現性よく得られないためである。
(Problems to be Solved by the Invention) However, the conventional semiconductor laser using an insulating organic film layer has a drawback in that it is difficult to increase the yield. This is because it is difficult to accurately control and stop etching in the middle of the p-type rad layer 13, and the shape of the ridge structure including the active layer 12 varies, making it difficult to obtain the transverse wheel-waveguide mode with good reproducibility. be.

本発明の目的は、横車−導波モードが再現性よく得られ
、電流阻止層での漏れ電流が少なくしかも寄生容量が小
さいため低閾値、高速動作が可能であり、高い製造歩留
りが期待できる半導体レーザを提供することにある。
The purpose of the present invention is to obtain the transverse wheel-waveguide mode with good reproducibility, to have low leakage current in the current blocking layer, and to have small parasitic capacitance, so low threshold and high-speed operation are possible, and a high manufacturing yield can be expected. The purpose of the present invention is to provide semiconductor lasers.

(問題点を解決するための手段) 本発明の半導体レーザは、活性領域の上下にこの活性領
域の屈折率より低い屈折率を有しかつ前記活性領域の禁
制帯幅より大きい禁制帯幅を有する導電形半導体層を配
置した半導体レーザにおいて、前記活性領域の左右には
絶縁性有機膜層を有し、かつ、前記絶縁性有機膜層と前
記導電形半導体層の界面が活性領域の下側界面と同一平
面上にあることを特徴としている。
(Means for Solving the Problems) The semiconductor laser of the present invention has a refractive index lower than the refractive index of the active region above and below the active region, and a forbidden band width larger than the forbidden band width of the active region. In a semiconductor laser including a conductive semiconductor layer, an insulating organic film layer is provided on the left and right sides of the active region, and an interface between the insulating organic film layer and the conductive semiconductor layer is a lower interface of the active region. It is characterized by being on the same plane as the

(作用) 本発明による半導体レーザでは活性領域を含むメサをエ
ツチングによって形成する際、活性層とクラッド層との
組成の違いを利用した選択エツチングを用いることによ
りメサ形状が再現性よく形成できる。また、絶縁性有機
膜層とクラッド層との界面が活性領域の下側界面と同一
平面上にある構造であるため、絶縁性有機膜層と活性領
域との屈折率差が低減されて横車−導波モードとするた
めに必要な活性領域の幅がlpm以上となる。そのため
、再現性よく横車−導波モードが得られる。また、絶縁
性有機膜層の絶縁性は充分に大きいため注入電流は活性
層にのみ流れ、漏れ電流は従来に比べ著しく低減され再
現性よく低い閾値が得られる。更に、絶縁性有機膜層の
誘電率が半導体に比べ小さいため寄生容量が低減され高
速動作が可能となる。また絶縁性無機膜と比べて、半導
体との界面及び膜中で発生する応力が格段に小さいので
、レーザの特性に応力が与える影響を小さくできる他、
2pm以上の膜厚にしてもクラックが発生しないという
利点を有する。
(Function) In the semiconductor laser according to the present invention, when forming a mesa including an active region by etching, the mesa shape can be formed with good reproducibility by using selective etching that takes advantage of the difference in composition between the active layer and the cladding layer. In addition, since the interface between the insulating organic film layer and the cladding layer is on the same plane as the lower interface of the active region, the difference in refractive index between the insulating organic film layer and the active region is reduced and the horizontal - The width of the active region required for the waveguide mode is lpm or more. Therefore, the transverse wheel-waveguide mode can be obtained with good reproducibility. Furthermore, since the insulating property of the insulating organic film layer is sufficiently high, the injection current flows only to the active layer, the leakage current is significantly reduced compared to the conventional one, and a low threshold value can be obtained with good reproducibility. Furthermore, since the dielectric constant of the insulating organic film layer is smaller than that of a semiconductor, parasitic capacitance is reduced and high-speed operation is possible. In addition, compared to insulating inorganic films, the stress generated at the interface with the semiconductor and in the film is much smaller, so the effect of stress on laser characteristics can be reduced.
It has the advantage that cracks do not occur even when the film thickness is 2 pm or more.

(実施例) 以下、図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例を示す半導体レーザの断面図
である。本実施例では活性層12に禁制帯幅0.95e
VのアンドープInGaAsP層、バッファ層11に硫
黄をI X 1018cm’にドープしたInP層、ク
ラッド層13に亜鉛をI X 11018a’にドープ
したInP層、コンタクト層14に亜鉛をI X 10
19cm’にドープしたInGaAsP層、絶縁性有機
膜層17にポリイミドを用いた。また、半導体基板10
には硫黄ドープInP基板を用いた。絶縁性有機膜層1
8とバッファ層11との界面が活性領域の下側界面と同
一平面上にある構造であるため、絶縁性有機膜層と活性
領域との屈折率差が低減されて横車−導波モードとする
ために必要な活性領域の幅が通常の埋め込み形半導体レ
ーザと同程度の大きさとなった。第2図は、有限要素法
を用いて計算した本発明による半導体レーザの導波モー
ド利得と活性領域幅との関係の説明図である。これより
、横車−導波モード条件は活性層厚が0.1pmのとき
活性領域幅はlpm−2pmとなる。この範囲内に活性
層幅を設定することは容易であるため再現性よく横車−
導波モードが得られた。また、活性層12は上下よりバ
ッファ層11、クラッド層13で、また、左右より絶縁
性有機膜層17で挾まれ、i流は活性層12の両脇に位
置するの絶縁性有機膜層17により狭窄される。従って
、電子はn形電極15、バッファ層11を経て活性層1
2に注入され、一方正孔はp形電極16、コンタクト層
14、クラッド層13を経て活性層12に注入される。
FIG. 1 is a sectional view of a semiconductor laser showing an embodiment of the present invention. In this embodiment, the active layer 12 has a forbidden band width of 0.95e.
The buffer layer 11 is an InP layer doped with sulfur to I x 1018 cm', the cladding layer 13 is an InP layer doped with zinc to I x 11018 a', and the contact layer 14 is an InP layer doped with zinc to I x 10 cm'.
Polyimide was used for the 19 cm' doped InGaAsP layer and the insulating organic film layer 17. In addition, the semiconductor substrate 10
A sulfur-doped InP substrate was used. Insulating organic film layer 1
Since the interface between 8 and the buffer layer 11 is on the same plane as the lower interface of the active region, the difference in refractive index between the insulating organic film layer and the active region is reduced, and the transverse shear-waveguide mode is created. The width of the active region required for this purpose is now comparable to that of a typical buried semiconductor laser. FIG. 2 is an explanatory diagram of the relationship between the guided mode gain and the active region width of the semiconductor laser according to the present invention, calculated using the finite element method. From this, in the transverse wheel-waveguide mode condition, when the active layer thickness is 0.1 pm, the active region width is lpm-2 pm. Since it is easy to set the active layer width within this range, it is possible to easily set the width of the active layer within this range.
A guided mode was obtained. In addition, the active layer 12 is sandwiched between the buffer layer 11 and the cladding layer 13 from above and below, and between the insulating organic film layers 17 from the left and right, and the i-stream is sandwiched between the insulating organic film layers 17 located on both sides of the active layer 12. narrowed by Therefore, electrons pass through the n-type electrode 15 and the buffer layer 11 to the active layer 1.
On the other hand, holes are injected into the active layer 12 via the p-type electrode 16, the contact layer 14, and the cladding layer 13.

その結果、注入電流は活性層にのみ流れ、漏れ電流は従
来に比べ著しい低減され再現性よ<10mA程度の低い
閾値が得られた。また、寄生容量は絶縁性有機膜層17
により低減され10GHz以上の変調帯域が得られた。
As a result, the injection current flows only through the active layer, the leakage current is significantly reduced compared to the conventional method, and a low threshold value of about <10 mA with good reproducibility is obtained. In addition, the parasitic capacitance is the insulating organic film layer 17.
A modulation band of 10 GHz or more was obtained.

本実施例ではバッファ層11に硫黄を I X 11018a’にドープしたInP層、活性層
12に禁制帯幅0.95eVのアンドープInGaAs
P層、クラッド層13に亜鉛を1×1018cm−3に
ドープしたInP層、コンタクト層14に亜鉛をI X
 11019a’にドープしたInGaAsP層を用い
、これらの層よりなるダブルへテロ構造を(100)面
硫黄ドープInP基板にハイドライド気相成長で積層し
た。このハイドライド気相成長では成長温度690°C
とし、III族材料およびV原材料にInメタル、Ga
メタル及びアルシン、ホスフィンガスをそれぞれ用いた
。次にこのダブルへテロ構造を有するウェハを通常のホ
トリソグラフィと選択化学エツチング法を用いてメサ幅
51,1m、高さ2.5μm、活性領域幅1.5pmの
メサを形成した後、絶縁性有機膜層17としてポリイミ
ド層をメサの両側に形成した。この後電極を形成した。
In this example, the buffer layer 11 is an InP layer doped with sulfur to Ix11018a', and the active layer 12 is an undoped InGaAs layer with a forbidden band width of 0.95 eV.
The P layer, the cladding layer 13 is an InP layer doped with zinc at a concentration of 1 x 1018 cm-3, and the contact layer 14 is doped with zinc at IX
Using an InGaAsP layer doped with 11019a', a double heterostructure consisting of these layers was laminated on a (100) plane sulfur-doped InP substrate by hydride vapor phase epitaxy. In this hydride vapor phase growth, the growth temperature is 690°C.
In metal and Ga are used as group III materials and V raw materials.
Metal, arsine, and phosphine gas were used, respectively. Next, a mesa having a mesa width of 51.1 m, a height of 2.5 μm, and an active region width of 1.5 pm was formed on the wafer having the double heterostructure using conventional photolithography and selective chemical etching. Polyimide layers were formed as organic film layers 17 on both sides of the mesa. After this, electrodes were formed.

上記実施例で絶縁性有機膜層としてポリイミドを用いた
のは電極形成の熱プロセスに耐え得るためである。しか
し電極形成に関するプロセスは必ずしも、ここで用いた
順序、方法によらないので誘電率が半導体に比べて低け
れば他の材料でも良い。また、半導体層の成長はハイド
ライド気相成長法を用いたが液相成長法、有機金属気相
成長法、クロライド気相成長法等のエピタキシャル成長
法を用いても実現できる。
The reason why polyimide was used as the insulating organic film layer in the above embodiment is that it can withstand the thermal process of electrode formation. However, the process for forming the electrodes does not necessarily depend on the order and method used here, so other materials may be used as long as the dielectric constant is lower than that of the semiconductor. Although the semiconductor layer is grown using the hydride vapor phase epitaxy method, it can also be realized using an epitaxial growth method such as a liquid phase epitaxy method, an organometallic vapor phase epitaxy method, a chloride vapor phase epitaxy method, or the like.

上記実施例ではInGaAsP/InP半導体材料が用
いられたが、GaAlAs/GaAs、TnGaAIA
s/InP等の他のIII −V族生導体材料からなる
半導体レーザにも適用が可能である。
Although InGaAsP/InP semiconductor materials were used in the above embodiments, GaAlAs/GaAs, TnGaAIA
Application is also possible to semiconductor lasers made of other III-V group raw conductor materials such as s/InP.

(発明の効果) 本発明による半導体レーザは、横車−導波モードが再現
性よく得られ、電流阻止層での漏れ電流が少なくしかも
寄生容量が小さいため低閾値、高速動作が可能であり、
高い製造歩留りが期待できる。
(Effects of the Invention) The semiconductor laser according to the present invention can obtain a transverse shear-waveguide mode with good reproducibility, has low leakage current in the current blocking layer, and has small parasitic capacitance, so it is capable of low threshold and high-speed operation.
High production yields can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である半導体レーザの断面図
、第2図は本発明による半導体レーザの導波モード利得
と活性領域幅との関係説明図、第3図は従来例を説明す
る半導体レーザの断面図である。 10・・・n形半導体基板 11・・・バッファ層 12・・・活性層 13・・・クラッド層 14・・・コンタクト層 15・・・n形電極 16・・・p形電極 17・・・絶縁性有機膜層 を、それぞれ示す。
FIG. 1 is a cross-sectional view of a semiconductor laser which is an embodiment of the present invention, FIG. 2 is an explanatory diagram of the relationship between waveguide mode gain and active region width of the semiconductor laser according to the present invention, and FIG. 3 is a diagram illustrating a conventional example. 1 is a cross-sectional view of a semiconductor laser. 10... N-type semiconductor substrate 11... Buffer layer 12... Active layer 13... Cladding layer 14... Contact layer 15... N-type electrode 16... P-type electrode 17... Each insulating organic film layer is shown.

Claims (1)

【特許請求の範囲】[Claims] 活性領域の上下にこの活性領域の屈折率より低い屈折率
を有しかつ前記活性領域の禁制帯幅より大きい禁制帯幅
を有する導電形半導体層を配置した半導体レーザにおい
て、前記活性領域の左右には絶縁性有機膜層を有し、か
つ、前記絶縁性有機膜層と前記導電形半導体層の界面が
活性領域の下側界面と同一平面上にあることを特徴とす
る半導体レーザ。
In a semiconductor laser in which conductive semiconductor layers having a refractive index lower than the refractive index of the active region and a forbidden band width larger than the forbidden band width of the active region are disposed above and below an active region, on the left and right sides of the active region. A semiconductor laser comprising an insulating organic film layer, and an interface between the insulating organic film layer and the conductive type semiconductor layer is on the same plane as a lower interface of an active region.
JP9723088A 1988-04-19 1988-04-19 Semiconductor laser Pending JPH01268085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9723088A JPH01268085A (en) 1988-04-19 1988-04-19 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9723088A JPH01268085A (en) 1988-04-19 1988-04-19 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01268085A true JPH01268085A (en) 1989-10-25

Family

ID=14186823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9723088A Pending JPH01268085A (en) 1988-04-19 1988-04-19 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01268085A (en)

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH07263747A (en) Manufacture of semiconductor device
JPH0553317B2 (en)
US4121179A (en) Semiconductor injection laser
JPH0274088A (en) Semiconductor laser device
US5228048A (en) Semiconductor laser device
US5149670A (en) Method for producing semiconductor light emitting device
US4783425A (en) Fabrication process of semiconductor lasers
US4779282A (en) Low leakage current GaInAsP/InP buried heterostructure laser and method of fabrication
US5887011A (en) Semiconductor laser
JPH01268085A (en) Semiconductor laser
JPH07254750A (en) Semiconductor laser
JPH0945999A (en) Semiconductor device and manufacture thereof
JPH0474488A (en) Semiconductor laser and manufacture thereof
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP2956255B2 (en) Method for manufacturing ridge waveguide semiconductor laser
KR0130066B1 (en) Semiconductor laser devices and process for making them
KR950008859B1 (en) Semiconductor light emitting device and manufacturing method thereof
JPH05226774A (en) Semiconductor laser element and its production
JPH01238184A (en) Buried semiconductor laser
JPH0430758B2 (en)
JPS60147188A (en) Manufacture of semiconductor laser element
JPH01171288A (en) Buried type semiconductor laser
JPH05235477A (en) Manufacture of semiconductor element
JPH0575201A (en) Semiconductor laser