JPH01267942A - Plasma x-ray generation device - Google Patents

Plasma x-ray generation device

Info

Publication number
JPH01267942A
JPH01267942A JP63095571A JP9557188A JPH01267942A JP H01267942 A JPH01267942 A JP H01267942A JP 63095571 A JP63095571 A JP 63095571A JP 9557188 A JP9557188 A JP 9557188A JP H01267942 A JPH01267942 A JP H01267942A
Authority
JP
Japan
Prior art keywords
electrode
plasma
rays
ray
insulation body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095571A
Other languages
Japanese (ja)
Inventor
Isao Ochiai
落合 勲
Yasuo Kato
加藤 靖夫
Toshihiko Sato
俊彦 佐藤
Yukio Okamoto
幸雄 岡本
Hiroshi Arita
浩 有田
Koji Suzuki
光二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63095571A priority Critical patent/JPH01267942A/en
Publication of JPH01267942A publication Critical patent/JPH01267942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To constrain the fly substance impacting a X-ray draw-out window from an electrode by providing an insulation body to the part of the electrode at the opposite side to the draw-out direction of X-rays. CONSTITUTION:The tip part of an inner side electrode 1 in the opposition to the draw-out direction of X-rays has the structure formed in a hole, and an insulation body 6 is provided on the bottom. That is the insulation body 6 provided to the electrode at the opposite side to the direction drawing out the X-rays, has the action to disperse the current up to several hundreds KA concentratively flowed when the insulation body is absent. And the insulation body 6 has the action to repel the charged particle of high energy come flying from a pinch plasma of high temperature and density, and to accumulate an electric charge. This causes the substance come flying to a X-ray draw-out window 7 to be considerably reduced, and the damage of the window 7 by the impact of the fly substance from an electrode to be prevented since the fusion or the sputtering of the electrode is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はX線リソグラフィまたはX線顕微鏡等の光源に
用いる高寿命なX線発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a long-life X-ray generator used as a light source for X-ray lithography, X-ray microscopes, and the like.

〔従来の技術〕[Conventional technology]

プラズマとすべき気体を充填した電極間に電圧を印加し
、プラズマを発生せしめ、上記プラズマを集中し、高温
・高密度のプラズマから発生するX線を取り出す装置が
、例えば特開昭62−122034号に記載されている
A device that applies a voltage between electrodes filled with a gas to be turned into plasma to generate plasma, concentrates the plasma, and extracts X-rays generated from the high-temperature, high-density plasma is disclosed in, for example, Japanese Patent Laid-Open No. 62-122034. listed in the number.

上記従来技術において、電極は銅タングステン等の金属
材料のみから成っていた。
In the prior art described above, the electrode was made only of a metal material such as copper tungsten.

〔発明が解決しようとする1t111題〕X線を発生さ
せるのに十分な高温高密度プラズマは、1対の電極間の
放電によって生成した場合、円柱状となる。X線リソグ
ラフィ、X線顕微鏡等に応用する場合、線源が点光源と
みなせるように、円柱状プラズマの軸の方向にX線取り
出し窓を設け、X線を取り出すようになっている。X線
取り出し窓は、X線を効率よく取り出すために、厚さが
5〜25μmと非常に薄いベリリウム等の箔膜で構成さ
れている。さらに、X線を取出す側は反対の側には通常
、電極が存在している。
[1t111 Problems to be Solved by the Invention] High-temperature, high-density plasma sufficient to generate X-rays has a cylindrical shape when generated by a discharge between a pair of electrodes. When applied to X-ray lithography, X-ray microscopes, etc., an X-ray extraction window is provided in the direction of the axis of the cylindrical plasma to extract the X-rays so that the radiation source can be regarded as a point light source. The X-ray extraction window is made of a very thin foil film made of beryllium or the like with a thickness of 5 to 25 μm in order to efficiently extract X-rays. Further, there is usually an electrode on the side opposite to the side from which the X-rays are extracted.

従来の電極は良導体である銅タングステン、タングステ
ン等の金属材料で構成されていたが、数akAに及ぶ激
しい放電のため、電極の一部が融解、スパッタリングに
よる損傷を受け、飛散物を発生する。この飛散物が上記
X線取り出し窓に衝突してX線取り出し窓を破損すると
いう問題があった。
Conventional electrodes are made of metal materials such as copper tungsten and tungsten, which are good conductors, but due to the intense discharge of several AKA, parts of the electrodes are damaged by melting and sputtering, producing flying debris. There was a problem in that these flying objects collided with the X-ray extraction window and damaged the X-ray extraction window.

本発明の目的は、上記取り出し氷に衝突する金属飛散物
を低減し、寿命の長いプラズマX線発生装置を得ること
にある。
An object of the present invention is to reduce the amount of metal scattering that collides with the extracted ice, and to obtain a plasma X-ray generator with a long life.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、X線を取り出す向きと、反対側にある電極
の一部を、絶縁体で構成することにより達成される。
The above object is achieved by configuring a part of the electrode on the opposite side to the direction in which X-rays are extracted from an insulator.

〔作用〕[Effect]

X線を取り出す向きと反対側にある電極に設けた絶縁体
は、絶縁物がない場合に集中して流入していた数百kA
に及ぶ電流を分散させる作用を有する。また、上記絶縁
物は高温高密度のピンチプラズマから飛来する高エネル
ギーの荷電粒子を反撥させ、電荷を?#積する作用があ
る。それによって、電極は融解したり、スパッタリング
を受けることが低減するので、X線取り出し窓に飛来す
る物質が大幅に低減し、電極からの飛散物の衝突による
X線取り出し窓の損傷が防止される。
The insulator provided on the electrode on the opposite side of the direction from which the X-rays are taken out reduces the concentration of several hundred kiloamps that would otherwise have flown in if there was no insulator.
It has the effect of dispersing the current that spans. In addition, the above insulator repels high-energy charged particles flying from the high-temperature, high-density pinch plasma, and releases electric charge. #It has the effect of multiplying. As a result, the electrodes are less likely to be melted or sputtered, which greatly reduces the amount of substances flying into the X-ray extraction window, and prevents damage to the X-ray extraction window due to collisions with objects flying from the electrodes. .

〔実施例〕〔Example〕

つぎに、本発明の実施例を図面とともに説明する。第1
図は本発明によるプラズマX線発生装置の一実施例を示
す構成図、第2図、第3図、第4図は、他の実施例を示
す図である。第1図に示す実施例は、良く知られたプラ
ズマフォーカス装置に本発明を実施した場合の例を示す
。X線を発生させるための放電管は、同軸円筒状に配置
した内側電極1と外側電極2.および画電極を絶縁し、
沿面放電による初期プラズマを作る絶縁体3と、放電空
間14を取り囲む真空容器13とにより構成されている
Next, embodiments of the present invention will be described with reference to the drawings. 1st
The figure is a block diagram showing one embodiment of the plasma X-ray generator according to the present invention, and FIGS. 2, 3, and 4 are diagrams showing other embodiments. The embodiment shown in FIG. 1 shows an example in which the present invention is implemented in a well-known plasma focusing device. A discharge tube for generating X-rays includes an inner electrode 1 and an outer electrode 2 arranged in a coaxial cylindrical shape. and insulate the picture electrode,
It is composed of an insulator 3 that generates initial plasma by creeping discharge, and a vacuum container 13 that surrounds a discharge space 14.

上記電極1および2には、あらかじめ充電装置20によ
り充電されたコンデンサ4から、電圧が印加されるよう
になっている。放電空間14を真空ポンプ18により、
あらかじめ真空に排気し。
A voltage is applied to the electrodes 1 and 2 from a capacitor 4 that has been charged in advance by a charging device 20. The discharge space 14 is operated by a vacuum pump 18.
Evacuate to vacuum beforehand.

ネオン、アルゴン、クリプトン等の気体が充填されたボ
ンベ17から、数〜数10 T o r r気体を充填
し、上記電極1,2に電圧を印加すると、絶縁体3が放
電空間14に接している表面に沿面放電が起り、リング
状のプラズマが形成される。上記プラズマは、プラズマ
中を流れる電流とその電流が形成する磁界によって生じ
るローレンツ力により、電j@1.2で囲まれる空間を
、その開放端に向って進行する。上記プラズマが内側電
Mlの先端部に到達すると、電流自身が形成する磁界に
よりプラズマは圧縮(ピンチ)され、内側電極1の先端
の空間10に高温高密度のプラズマ柱が形成される。こ
のプラズマから波長1〜数100人の軟X線が放射され
る。
When a cylinder 17 filled with a gas such as neon, argon, or krypton is filled with several to several tens of Torr gas and a voltage is applied to the electrodes 1 and 2, the insulator 3 comes into contact with the discharge space 14. A creeping discharge occurs on the surface, forming a ring-shaped plasma. The plasma moves toward its open end in a space surrounded by electric j@1.2 due to the Lorentz force generated by the current flowing in the plasma and the magnetic field formed by the current. When the plasma reaches the tip of the inner electrode M1, the plasma is compressed (pinched) by the magnetic field formed by the current itself, and a high-temperature, high-density plasma column is formed in the space 10 at the tip of the inner electrode 1. Soft X-rays with wavelengths of 1 to several 100 are emitted from this plasma.

上記軟X線は軸方向に設けたX線取り出し窓7により大
気中に取り出される。上記X線の取り出し方向と反対に
ある内側電極1の先端部は、図示のように穴を形成した
構造となっており、その底に、本発明の特徴である絶縁
物6を設けている。
The soft X-rays are extracted into the atmosphere through an X-ray extraction window 7 provided in the axial direction. The tip of the inner electrode 1, which is opposite to the direction in which the X-rays are taken out, has a hole structure as shown in the figure, and an insulator 6, which is a feature of the present invention, is provided at the bottom of the hole.

22はプラズマから飛来する荷電粒子を偏向するための
磁石である。
22 is a magnet for deflecting charged particles flying from the plasma.

本実施例では内側電極1の先端部の直径を30または4
0mmとしており、穴の深さすなわち、電w41の先端
から絶縁物6の表面までの距離を60閣、絶縁体の直径
を20mmとした。内側電極1の材質は銅タングステン
であり、絶縁物6の材質にはアルミナ等のファインセラ
ミックスなどを用いることができる。上記のように本実
施例では、絶縁物3を備えているために、内側電極1の
先端部に形成した穴の底面での電流の集中や、荷電粒子
によるスパッタリングが少なくなり、その部分からの飛
散物がなくなった。このため、X線取り出し窓の損傷が
少なくなり、寿命が長くなった。また、絶縁物6を用い
たことによるX線の出力低下などの悪影響は見られなか
った。
In this embodiment, the diameter of the tip of the inner electrode 1 is 30 or 4
The depth of the hole, that is, the distance from the tip of the electric wire w41 to the surface of the insulator 6 was 60 mm, and the diameter of the insulator was 20 mm. The material of the inner electrode 1 is copper tungsten, and the material of the insulator 6 may be fine ceramics such as alumina. As described above, in this embodiment, since the insulator 3 is provided, concentration of current at the bottom of the hole formed at the tip of the inner electrode 1 and sputtering due to charged particles are reduced, and sputtering from that part is reduced. There are no more flying objects. As a result, damage to the X-ray extraction window is reduced and its lifespan is extended. Furthermore, no adverse effects such as a decrease in X-ray output due to the use of the insulator 6 were observed.

第2図に示した実施例は、上記のプラズマフォーカス型
X線源の内側電極1の中心に抜き穴をあけ、その上部に
、本発明の特徴である絶縁物6を設けたもので、絶縁物
6はOリング8を介して内側電極1に固定さオしている
。このようにすると、上記の効果の他に放電管を分解す
ることなく容易に絶縁物6を交換することができる。
In the embodiment shown in FIG. 2, a hole is made in the center of the inner electrode 1 of the plasma focus type X-ray source, and an insulator 6, which is a feature of the present invention, is provided above the hole. The object 6 is fixed to the inner electrode 1 via an O-ring 8. By doing so, in addition to the above effects, the insulator 6 can be easily replaced without disassembling the discharge tube.

第3図は、本発明をガスパフZピンチ方式と呼ばれてい
るプラズマX線発生装置に実施した例を示したものであ
る。第3図において、11は上部電極、12は下部電極
、15は上記電極11と12を絶縁する絶縁体、9は高
速方スパルブであり、上部電極11の一部に本発明の特
徴である絶縁物6を設けている。本実施例でも、前記実
施例と同様の効果が得られる。
FIG. 3 shows an example in which the present invention is implemented in a plasma X-ray generator called a gas puff Z-pinch system. In FIG. 3, 11 is an upper electrode, 12 is a lower electrode, 15 is an insulator that insulates the electrodes 11 and 12, and 9 is a high-speed spur valve. Item 6 is provided. In this embodiment as well, the same effects as in the previous embodiment can be obtained.

第4図は、プラズマフォーカス方式で生成した高温高密
度プラズマから発生するX1!;Aのうち、ある波長の
X線を回折格子で分光して取り出す場合に1本発明を実
施した例である。第4図で、7は。
Figure 4 shows X1! generated from high temperature, high density plasma generated by the plasma focus method. This is an example in which the present invention is implemented when X-rays of a certain wavelength are separated and extracted using a diffraction grating. In Figure 4, 7 is.

穴のあいたX線取り出し窓で、14は、回折格子であり
、6が本発明の特徴である絶縁物である。
In the perforated X-ray extraction window, 14 is a diffraction grating, and 6 is an insulator, which is a feature of the present invention.

30はスリット、31は被照射体である。本実施例では
、回折格子14の損傷がなくなるという効果がある。
30 is a slit, and 31 is an irradiated object. This embodiment has the effect of eliminating damage to the diffraction grating 14.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によるプラズマxB発生装置は、X
線の取り出し方向と反対側にある電極の一部に絶縁物を
備えたことにより、X線取り出し窓に衝突する電極から
の飛散物を大幅に抑制することができるので、X線取り
出し窓の長寿命化がはかれるという効果がある。
As described above, the plasma xB generator according to the present invention has
By providing an insulator on a part of the electrode on the opposite side of the X-ray extraction direction, it is possible to significantly suppress debris from the electrode that collides with the X-ray extraction window. It has the effect of extending the lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のプラズマフォーカス方式X
線発生装置の要部縦断面図、第2図は本発明の他の実施
例を示したプラズマフォーカス方式X線発生装置の縦断
面図、第3図はガスパフZピンチ方式に本発明を実施し
た例を示すX線発生装置の縦断面図、第4図は分光装置
を付加した実施例を示すx6発生装置の縦断面図である
。 1・・・内側’iff極、2・・・外側電極、3・・・
絶縁体、6・・・絶縁物、7・・・X線取り出し窓、1
o・・・上部電極。 第 l 凹 第 2 口 IAfFvA’l−’ノWLプ(二 男 3  つ 鳩 4 国
Figure 1 shows a plasma focus method X according to an embodiment of the present invention.
FIG. 2 is a longitudinal cross-sectional view of the main part of the ray generator, FIG. 2 is a longitudinal cross-sectional view of a plasma focus type X-ray generator showing another embodiment of the present invention, and FIG. 3 is a longitudinal cross-sectional view of the main part of the X-ray generator using the gas puff Z-pinch method. FIG. 4 is a vertical cross-sectional view of an x6 generator showing an embodiment in which a spectroscopic device is added. 1...Inner 'if pole, 2...Outer electrode, 3...
Insulator, 6... Insulator, 7... X-ray extraction window, 1
o... Upper electrode. 1st concave 2nd mouth IAfFvA'l-'ノWLpu (second son 3 pigeons 4 countries

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマとすべき気体を充填し、一対の電極と上記
電極を絶縁する絶縁体を備えた放電管と、上記電極間に
電圧を抑加し、電流を流す電源と、上記電極間に発生し
、集束させたプラズマから発生するX線を取り出す窓を
備えたX線発生装置において、X線の取り出し方向と反
対側にある電極の一部に絶縁物を設けたことを特徴とす
るプラズマX線発生装置。
1. A discharge tube filled with gas to be turned into plasma and equipped with a pair of electrodes and an insulator that insulates the electrodes, a power supply that suppresses voltage between the electrodes and allows current to flow, and a discharge tube that suppresses the voltage between the electrodes and generates electricity between the electrodes. In an X-ray generator equipped with a window for extracting X-rays generated from focused plasma, a plasma Line generator.
JP63095571A 1988-04-20 1988-04-20 Plasma x-ray generation device Pending JPH01267942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095571A JPH01267942A (en) 1988-04-20 1988-04-20 Plasma x-ray generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095571A JPH01267942A (en) 1988-04-20 1988-04-20 Plasma x-ray generation device

Publications (1)

Publication Number Publication Date
JPH01267942A true JPH01267942A (en) 1989-10-25

Family

ID=14141280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095571A Pending JPH01267942A (en) 1988-04-20 1988-04-20 Plasma x-ray generation device

Country Status (1)

Country Link
JP (1) JPH01267942A (en)

Similar Documents

Publication Publication Date Title
JP3978385B2 (en) Apparatus and method for generating extreme ultraviolet radiation based on gas discharge
JP4880179B2 (en) Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
JPH0372184B2 (en)
US4715054A (en) Plasma x-ray source
Bhuyan et al. Comparative study of soft x-ray emission characteristics in a low energy dense plasma focus device
JPS61200695A (en) Soft x rays generator
TW447225B (en) Plasma focus high energy photon source with blast shield
JP2750348B2 (en) X-ray of gas laser, especially for plasma X-ray tube for pre-ionization and application as electron gun
US4602376A (en) Soft X-ray source with cylindrical plasma compression
EP0340832B1 (en) Sealed, high flux neutron tube
US4841556A (en) Plasma X-ray source
JP2002519815A (en) Radiation (eg X-ray pulse) generator mechanism
JPH01267942A (en) Plasma x-ray generation device
JPH01243349A (en) Plasma extreme ultraviolet light generator
KR920004961B1 (en) X-ray generation system for an ultra fine lithography and a method therefor
JPH0211974B2 (en)
JPS6078400A (en) Intense x-ray source using plasma micro-channel
JP3098360B2 (en) Single / tandem acceleration dual-purpose ion accelerator
US5382866A (en) Method of focusing a charged particle beam and plasma lens therefor
JPH08236292A (en) Laser plasma x-ray generation device
JPH0373100B2 (en)
JPS63211598A (en) Plasma x-ray generation device
JPH0638391B2 (en) X-ray exposure device
JPH0377253A (en) Plasma x-ray generation apparatus
KR20210096376A (en) Extreme ultraviolet photon generator using magnetized arc plasma