JPH01267551A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01267551A
JPH01267551A JP9614488A JP9614488A JPH01267551A JP H01267551 A JPH01267551 A JP H01267551A JP 9614488 A JP9614488 A JP 9614488A JP 9614488 A JP9614488 A JP 9614488A JP H01267551 A JPH01267551 A JP H01267551A
Authority
JP
Japan
Prior art keywords
photoreceptor
charge transfer
electric field
transfer layer
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9614488A
Other languages
Japanese (ja)
Other versions
JP2838891B2 (en
Inventor
Shigenori Otsuka
大塚 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14157187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01267551(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP63096144A priority Critical patent/JP2838891B2/en
Priority to EP19890106919 priority patent/EP0340523B1/en
Priority to DE1989618151 priority patent/DE68918151T2/en
Publication of JPH01267551A publication Critical patent/JPH01267551A/en
Priority to US07/865,706 priority patent/US5173384A/en
Application granted granted Critical
Publication of JP2838891B2 publication Critical patent/JP2838891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0679Disazo dyes
    • G03G5/0683Disazo dyes containing polymethine or anthraquinone groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0679Disazo dyes
    • G03G5/0681Disazo dyes containing hetero rings in the part of the molecule between the azo-groups

Abstract

PURPOSE:To enhance durability and sensitivity by allowing a combination of an electric charge generating layer and a charge transfer layer to have quantum efficiency eta being sufficiently small in dependence on an electric field E in a phototensitive body and the charge transfer layer to have a specified thickness. CONSTITUTION:The photosensitive body has n<=0.5 in the relationship between the quantum efficiency eta of the photosensitive body and the electric field E, represented by formula I where eta0 is a constant, and the charge transfer layer has a thickness of >=25mum. The photosensitive body is composed fundamentally of the charge generating layer and the charge transfer layer, and it is preferred to successively laminate the charge generating layer and the charge transfer layer on a conductive substrate, thus permitting durability and sensitivity to be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は電子写真感光体に関するものであシ、詳しくz
、耐久性に優れ、感度の向上した電子写真感光体に関す
るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an electrophotographic photoreceptor.
, relates to an electrophotographic photoreceptor with excellent durability and improved sensitivity.

(従来の技術〕 電子写真技術は即時性、高品質の画像73;得られるこ
となどから、近年では複写機の分野にとどまらず、各種
プリンター分野等でも広く使われ応用されてきている。
(Prior Art) Electrophotographic technology has been widely used and applied in recent years not only in the field of copying machines but also in various printer fields because of its ability to provide instantaneous and high-quality images.

電子写真技術の中核となる感光体については、その光導
電性材料として、従来からのセレニウム、ヒ素−セレニ
ウム合金、硫化カドミニウム、酸化亜鉛といった無機系
導電体から、最近では軽量、成膜が容易、製造が容易で
ある等の利点を有する、有機系の光導電材料を使用した
感光体が開発されている。
Photoconductive materials for photoreceptors, which are the core of electrophotographic technology, range from conventional inorganic conductors such as selenium, arsenic-selenium alloys, cadmium sulfide, and zinc oxide to lightweight, easy-to-form, and Photoreceptors using organic photoconductive materials have been developed, which have advantages such as ease of manufacture.

有機系の感光体としては、光導電性微粉末をバインダー
樹脂中に分散させた、いわゆる分散型感光体と、導電性
支持体上に電荷発生層及び電荷移動層を設けた積層型感
光体とが知られているが、後者のタイプが高感度、高耐
刷性という点で実用に供せられている。
Organic photoreceptors include so-called dispersion type photoreceptors in which photoconductive fine powder is dispersed in a binder resin, and laminated type photoreceptors in which a charge generation layer and a charge transfer layer are provided on a conductive support. are known, but the latter type is in practical use because of its high sensitivity and high printing durability.

(発明が解決しようとする課題〕 しかしながら、従来の有機系積層型感光体は、無機系の
高性能な感光体であるヒ素−セレニウム合金にくらべる
と感度、耐久性が未だ不十分である。そのため更に性能
を向上すべく種々の検討が行われている。
(Problems to be Solved by the Invention) However, conventional organic layered photoreceptors still have insufficient sensitivity and durability compared to arsenic-selenium alloys, which are high-performance inorganic photoreceptors. Various studies are being conducted to further improve performance.

感度を向上させるためにはよシ高感度な新規感光材料が
探索され、また耐久性を向上させるために、電気的劣化
の少い感光材料、機械的損傷の少い高強度なバインダー
材料の追求が行われている。その結果、感度および電気
的性能については十分な特性および耐久性を持つものが
開発されているが、機械的特性において、未だ不十分で
限られた耐久性にとどまっている。
In order to improve sensitivity, new photosensitive materials with high sensitivity are being searched for, and in order to improve durability, photosensitive materials with less electrical deterioration and high strength binder materials with less mechanical damage are being sought. is being carried out. As a result, although products with sufficient sensitivity and electrical performance and durability have been developed, mechanical properties are still insufficient and have limited durability.

即ち、トナー、紙との摩擦や、方法、負荷によって程度
の差はあるが、クリーニング部材による摩擦など、実用
上の負荷によって感光層の摩耗が生じ、膜厚が減少する
。そして膜厚の減少は帯電性の低下をもたらし、この低
下が現像系で許容できる範囲を超えると感光体は寿命を
迎えてしまい、結果として耐刷性能が劣ることとなる。
That is, the photosensitive layer is abraded due to practical loads such as friction with toner and paper, friction with a cleaning member, etc., although the degree varies depending on the method and load, and the film thickness is reduced. A decrease in film thickness leads to a decrease in chargeability, and if this decrease exceeds a range that can be tolerated by the developing system, the photoreceptor will reach the end of its life, resulting in poor printing durability.

この機械的特性は主として電荷移動層のバインダー樹脂
材料によって変わり、通常アクリル樹脂、メタクリル樹
脂、ポリエステル樹脂、ポリカーボネート樹脂などが使
用されている。しかし、これらの材料は従来技術では十
分な強度を持たせるに至っておらず、通常のブレードク
リーニング方式をとったプロセスにおいて使用した場合
、数万枚のコピーによって感光層の摩耗が著るしくなり
、感光体は交換せざるを得なくなる。摩耗による膜減り
量は、材料、プロセスによって異るが、7万枚のコピー
プロセスで0.2〜/μm程度が通常であシ、この摩耗
量を減らすための使用条件の検討、新しい材料の開発が
種々行われている。
This mechanical property mainly depends on the binder resin material of the charge transfer layer, and acrylic resin, methacrylic resin, polyester resin, polycarbonate resin, etc. are usually used. However, these materials have not yet been made sufficiently strong using conventional techniques, and when used in a process that uses a normal blade cleaning method, the photosensitive layer becomes severely abraded after tens of thousands of copies are made. The photoreceptor will have to be replaced. The amount of film loss due to wear varies depending on the material and process, but it is usually around 0.2~/μm in a copying process of 70,000 sheets.In order to reduce this amount of wear, we need to consider usage conditions and develop new materials. Various developments are underway.

本発明者は、従来と同様の各材料を使用しながらも耐久
性を向上する方法について種々検討を行なったところ、
従来よシ十分感光層の膜厚全厚くすること、具体的には
電荷移動層の膜厚を大巾に厚くすることによって摩耗に
よる電気特性の変化、特に帯電性の低下を防ぎ得ること
を見出した。
The inventor conducted various studies on ways to improve durability while using the same materials as before, and found that
We have discovered that it is possible to prevent changes in electrical properties due to abrasion, especially a decline in chargeability, by increasing the total thickness of the photosensitive layer, more specifically by significantly increasing the thickness of the charge transfer layer, compared to conventional methods. Ta.

しかしながら、通常の積層型感光体では、電荷移動層の
膜厚を厚くすることだよって著るしく電気特性が阻害さ
れて、感度の低下と著るしい残留電位の上昇が見られ、
実用に適さないことも判った。ところが特定の電気特性
を有する積層型感光体においては、電荷移動層の膜厚を
従来使用されている/θないし2 Ol1m付近の膜厚
よシ大巾に厚くし、2りないしeoμmにまで上げても
電気特性は悪化せず、すなわち残留電位の上昇も小さく
実用上問題ないレベルにあり、感度はむしろ向上するこ
とを見出し、従来よシ耐久性の優れた感度の高い感光体
が得られることを見出し本発明に到達した。
However, in conventional laminated photoreceptors, increasing the thickness of the charge transfer layer significantly impairs the electrical characteristics, resulting in a decrease in sensitivity and a significant increase in residual potential.
It was also found that it was not suitable for practical use. However, in a laminated photoreceptor with specific electrical characteristics, the thickness of the charge transfer layer must be made much thicker than the conventionally used film thickness of /θ to 2Ol1 m, reaching 2 to eoμm. It has been found that the electrical properties do not deteriorate even when the photoreceptor is used, that is, the increase in residual potential is small and at a level that poses no problem in practical use, and that the sensitivity is actually improved, making it possible to obtain a highly sensitive photoreceptor with excellent durability compared to conventional photoreceptors. This discovery led to the present invention.

(課題を解決するための手段) すなわち、本発明は感光体としての量子効率ηと電場E
との関係において、ηが十分に弱い程度の電場依存性を
有する電荷発生層と電荷移動層との組み合せ及び特定の
電荷移動層の膜厚を有することばより耐久性並びに感度
の優れた感光体を提供することにある。
(Means for Solving the Problems) That is, the present invention provides quantum efficiency η and electric field E as a photoreceptor.
In terms of the relationship between It is about providing.

そして、その目的は導電性支持体の上に有機電荷発生物
質を含有する電荷発生層と有機電荷移動物質を含有する
電荷移動層とを積層してなる積層型有機電子写真感光体
において、該感光体が感光体としての量子効率ηと電場
Eとの関係を下記式(1)で表わした場合Knがo、s
lJ下であシ、かつ前記電荷移動層の膜厚が25μm以
上であることを特徴とする電子写真感光体により容易に
達成される。
The object is to provide a laminated organic electrophotographic photoreceptor in which a charge generation layer containing an organic charge generation substance and a charge transfer layer containing an organic charge transfer substance are laminated on a conductive support. When the relationship between the quantum efficiency η of the body as a photoreceptor and the electric field E is expressed by the following formula (1), Kn is o, s
This can be easily achieved by using an electrophotographic photoreceptor characterized in that the film thickness is less than 1J and the thickness of the charge transfer layer is 25 μm or more.

η=ηoEn   ・・・・・・・(1)以下、本発明
の詳細な説明する。
η=ηoEn (1) The present invention will be explained in detail below.

電荷移動層の順に積層することが好ましり、以下この積
層順とした場合について説明するが、これに限られるも
のではない。
It is preferable to stack the charge transfer layers in this order, and a case in which this stacking order is used will be described below, but it is not limited thereto.

導電性支持体としては、アルミニウム、ステンレス鋼、
銅、ニッケルなどの金属材料、表面にアルミニウム、銅
、パラジウム、酸化スズ、酸化インジウム等導電性層を
設けたポリエステルフィルム、紙などの絶縁性支持体が
使用される。
Conductive supports include aluminum, stainless steel,
Metal materials such as copper and nickel, polyester films with conductive layers such as aluminum, copper, palladium, tin oxide, and indium oxide on the surface, and insulating supports such as paper are used.

導電性支持体と電荷発生層の間には通常使用される様な
公知のバリアー層が設けられていてもよい。バリアー層
としては例えば陽極酸化アルミニウム膜等の金属酸化物
層;ポリアミド、ポリウレタン、セルロース、カゼイン
等の樹脂層が使用できる。また、本発明の感光体はその
他の層を設けてもよい。
A commonly used barrier layer may be provided between the conductive support and the charge generation layer. As the barrier layer, for example, a metal oxide layer such as an anodized aluminum film; a resin layer such as polyamide, polyurethane, cellulose, casein, etc. can be used. Further, the photoreceptor of the present invention may be provided with other layers.

本発明の感光体はその光導電性として特定の物性を有し
ていなければならない。
The photoreceptor of the present invention must have specific physical properties for its photoconductivity.

即ち、感光体としての量子効率ηの電場依存性が十分小
さく、下記式(1)の如く電場Eのベキ乗で近似したと
き η=ηoEn     @醗−・−・・(1)nがo、
r以下であることが必要とされる。ここでいう感光体と
しての量子効率とは、感光体全露光するため入射した光
量子lケに対してその光で励起され発生したキャリアー
が移動して中和した感光体表面の電荷の個数の比で表わ
されるものでアシ、ゼログラフィー利得、光注入効率と
も呼ばれている。
That is, when the electric field dependence of the quantum efficiency η as a photoreceptor is sufficiently small and approximated by the power of the electric field E as shown in the following formula (1), η=ηoEn @醗−・−・・(1) n is o,
r is required to be less than or equal to r. The quantum efficiency of a photoreceptor referred to here is the ratio of the number of charges on the surface of the photoreceptor that are neutralized by the movement of carriers generated by being excited by the light per 1 photons of light that are incident on the photoreceptor to fully expose the photoreceptor. It is expressed by , and is also called reed, xerographic gain, and light injection efficiency.

一般にηは電場、入射光の波長に依存する。In general, η depends on the electric field and the wavelength of incident light.

ここでいう電場Eは感光体内にかかる平均の電場であり
、表面電位を感光体膜厚で割った値を意味する。
The electric field E here is the average electric field applied within the photoreceptor, and means the value obtained by dividing the surface potential by the photoreceptor film thickness.

入射光の波長はこの感光体が使用される像露光の波長域
の光を用い、使用される波長域で上記の様な小さな電場
依存性か要求される。
The wavelength of the incident light is within the wavelength range of image exposure in which this photoreceptor is used, and a small electric field dependence as described above is required in the wavelength range used.

lの測定方法については、例えばフィジカルレビュー誌
l/巻、72号、!/ 6J頁から3/7’1頁に記載
される様な方法によって測定され、次式で求められる。
Regarding the method of measuring l, see, for example, Physical Review Magazine l/Volume, No. 72,! / It is measured by the method described on page 3/7'1 from page 6J, and is determined by the following formula.

但し、Cは感光体の静電容量、eは電子電荷、Nは単位
時間あたりの入射光量子の数 PH1nitは初期光減
衰速度である。測定時の入射光は像露光に使用する領域
の波長の単色光か用いられる。
Here, C is the capacitance of the photoreceptor, e is the electronic charge, N is the number of incident photons per unit time, and PH1nit is the initial light attenuation rate. The incident light during measurement is monochromatic light having a wavelength in the region used for image exposure.

量子効率の電場依存性の形を一義的に決めることは難し
いが、本発明では電場と量子効率を対数一対数プロット
し、直線として近似したときの傾きで表すこととする。
Although it is difficult to uniquely determine the form of electric field dependence of quantum efficiency, in the present invention, the electric field and quantum efficiency are plotted logarithmically and logarithmically, and expressed by the slope when approximated as a straight line.

この傾きは量子効率を電場のベキ乗で表わした場合のベ
キ数に相当する。この近似のために一般に使われる最小
二乗法による一次回帰か有効である。また一般に電場依
存性は低電場側で種々の要因からこの直線から大きくは
ずれる傾向にあるが、本発明における電場依存性は感光
体として通常使用される電場域である/×/θ5v//
c!ILからj X / 0” V/CRで直線近似し
た特性を用いるが、よシ好筐しくけ!; X 10’ 
v/CTLからs x 1o5v/cmの範囲で満足す
ることが好ましい。
This slope corresponds to the power number when quantum efficiency is expressed as a power of the electric field. For this approximation, linear regression using the least squares method, which is commonly used, is effective. Generally, the electric field dependence tends to deviate from this straight line due to various factors on the low electric field side, but the electric field dependence in the present invention is in the electric field range normally used for photoreceptors /×/θ5v//
c! From IL, we will use the characteristics approximated by a straight line with V/CR, but be careful!;
It is preferable to satisfy the range from v/CTL to s x 1o5v/cm.

積層型感光体の量子効率は電荷発生層での電荷発生効率
及び電荷発生層から電荷移動層への注入の効率によって
決まるが、電荷移動物質に適当なものを選ぶことによっ
て電荷注入の効率は非常に低電場側を除けばほぼ無視で
き、電荷発生層での電荷発生効率で決まってしまう。又
適正な電荷移動層を選べば輸送中の損失も無視出来、膜
厚には依存しない。本発明の条件である量子効率の′l
t場依存性を小さくするためには、電荷発生効率の電場
依存性の小さな電荷発生物質を選択しなければならない
The quantum efficiency of a laminated photoreceptor is determined by the charge generation efficiency in the charge generation layer and the efficiency of charge injection from the charge generation layer to the charge transfer layer, but the efficiency of charge injection can be greatly improved by selecting an appropriate charge transfer material. It can be almost ignored except for the low electric field side, and is determined by the charge generation efficiency in the charge generation layer. Furthermore, if an appropriate charge transfer layer is selected, loss during transport can be ignored and does not depend on the film thickness. ′l of quantum efficiency, which is a condition of the present invention
In order to reduce the t-field dependence, a charge generation material whose charge generation efficiency has a small dependence on the electric field must be selected.

検討した所、有機電荷発生物質を選択することで本発明
の条件を満たすことが判った。この様な電荷発生物質は
未だ完全には特定できないがアゾ顔料、フタロシアニン
顔料、キナクリドン顔料、ペリレン顔料、多環キノン顔
料、インジゴ顔料、ベンズイミダゾール顔料、ビリリウ
ム塩、チアピリリウム塩色素類、スクェアリリウム塩色
素類などの各種有機電荷発生物質から合目的に選ぶこと
ができよう。
Upon investigation, it was found that the conditions of the present invention could be met by selecting an organic charge generating substance. Although such charge-generating substances have not yet been completely identified, they include azo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, polycyclic quinone pigments, indigo pigments, benzimidazole pigments, biryllium salts, thiapyrylium salt pigments, and squarelylium salt pigments. It may be conveniently selected from various organic charge-generating substances such as the following.

電荷発生層はこれらの電荷発生物質を真空蒸着した均一
な層でも、又パインダニ樹脂中に微粒子状に分散した層
であってもよい。この様な場合バインダー樹脂としては
、ポリ酢酸ビニル、ポリアクリル酸エステル、ポリメタ
クリル酸エステル、ポリエステル、ポリカーボネート、
ポリビニルブチラール、フェノキシ41[1、セルロー
ス類、ウレタン樹脂など各種バインダー樹脂が使用され
、電荷発生層として通常o、iμm〜/ 11 m b
好壕しくは0.1!rμTL〜0.Aμmの厚みの層と
して設けられる。
The charge-generating layer may be a uniform layer in which these charge-generating substances are vacuum-deposited, or may be a layer in which fine particles are dispersed in pine mite resin. In such cases, binder resins include polyvinyl acetate, polyacrylic ester, polymethacrylic ester, polyester, polycarbonate,
Various binder resins such as polyvinyl butyral, phenoxy 41[1, celluloses, and urethane resins are used, and the charge generation layer usually has a thickness of o, iμm~/11 m b
Preferably 0.1! rμTL~0. It is provided as a layer with a thickness of Aμm.

また、電荷移動層中の有機電荷移動物質としては1,2
.&、7−)リニトロフルオレノン、テトラシアノキノ
ジメタン等の電子吸引性物質、カルバゾール、インドー
ル、イミダゾール、オキサゾール、チアゾール、オキサ
ジアゾール、ピラゾール、ピラゾリン、チアジアゾール
等の複素環化合物、アニリンの誘導体、ヒドラゾン誘導
体、スチルベン骨格を有する共役系化合物などあるいは
これらの化合物からなる基を主鎖もしくは、側鎖に有す
る重合体等の電子供与性物質が挙げられる。
In addition, the organic charge transfer substance in the charge transfer layer is 1,2
.. &, 7-) Electron-withdrawing substances such as linitrofluorenone and tetracyanoquinodimethane, heterocyclic compounds such as carbazole, indole, imidazole, oxazole, thiazole, oxadiazole, pyrazole, pyrazoline, and thiadiazole, derivatives of aniline, Examples include electron-donating substances such as hydrazone derivatives, conjugated compounds having a stilbene skeleton, and polymers having a group consisting of these compounds in the main chain or side chain.

更にこれら電荷移動物質とともに、バインダー樹脂が電
荷移動層には配合されても良いが、バインダー樹脂とし
ては、ポリカーボネート樹脂、アクリル樹脂、メタクリ
ル樹脂、ポリエステル樹脂、ポリスチレン樹脂、シリコ
ーン樹脂などの熱可塑性樹脂や種々の硬化性樹脂が用い
られる。特に、摩耗はあっても傷の発生の少ないポリカ
ーボネート樹脂、ポリエステル樹脂が好ましい。ポリカ
ーボネート樹脂のビスフェノール成分としては、ビスフ
ェノールA1ビスフエノールC、ビスフェノール2等公
知の種々の成分が使用できるが、ビスフェノールC、ビ
スフェノールZをビスフェノール成分としたポリカーボ
ネートが好適である。
Furthermore, a binder resin may be blended into the charge transfer layer together with these charge transfer substances, but examples of the binder resin include thermoplastic resins such as polycarbonate resin, acrylic resin, methacrylic resin, polyester resin, polystyrene resin, and silicone resin. Various curable resins are used. Particularly preferred are polycarbonate resins and polyester resins, which cause few scratches even if they are abraded. As the bisphenol component of the polycarbonate resin, various known components such as bisphenol A, bisphenol C, and bisphenol 2 can be used, but polycarbonate containing bisphenol C and bisphenol Z as the bisphenol component is preferred.

また、本発明の電荷移動層には、成膜性、可とう性等を
向上するための添加剤、残留電位の蓄積を抑制するため
の添加剤など、周知の添加剤を含有してもよい。
Further, the charge transfer layer of the present invention may contain well-known additives such as additives for improving film formability, flexibility, etc., and additives for suppressing accumulation of residual potential. .

電荷移動層の膜厚は25μm以上とする必要があり、J
Oplllから60μmがより好ましい。
The thickness of the charge transfer layer must be 25 μm or more, and J
More preferably, it is 60 μm from Opll.

(発明の効果) かくして得られる本発明の感光体は、感度にすぐれ、大
巾に改善された耐久性を有し、極めて高性能な特性を有
する。
(Effects of the Invention) The thus obtained photoreceptor of the present invention has excellent sensitivity, greatly improved durability, and extremely high performance characteristics.

本発明の感光体は電子写真複写機の他、レーザー、発光
ダイオード(LED)、LCDシャッター、ブラウン管
等を光源とするプリンター、ファクシミリの感光体とし
て、電子写真の応用分野例も広く用いることかできる。
In addition to electrophotographic copying machines, the photoreceptor of the present invention can also be used in a wide range of electrophotographic application fields, including as a photoreceptor for printers and facsimiles that use lasers, light emitting diodes (LEDs), LCD shutters, cathode ray tubes, etc. as light sources. .

(実施例) 次に本発明全実施例によシ更に具体的に説明するが、本
発明はその要旨を越えない限υ、これらに限定されるも
のではない。なお、以下において「部」は、「重量部」
を示す。
(Examples) Next, all embodiments of the present invention will be explained in more detail, but the present invention is not limited to these examples as long as they do not exceed the gist thereof. In addition, in the following, "part" means "part by weight"
shows.

実施例1 下記構造を有するビスアゾ化合物IIO部にエチレング
リコールlジメチルエーテル100部ヲ加えてサンドグ
ラインドミル【で分散処理ヲ行った。この液と、フェノ
キシ樹脂(ユニオンカーバイド社製、商品名PKHH)
j部、ポリビニルブチラール樹脂(電化工業#1,00
0 )S部f100部のエチレングリコールジメチルエ
ーテルに溶解した溶液を混合し、電荷発生層塗布液を得
た。この塗布液を表面鏡面仕上げした直径ざ01Nのア
ルミシリンダーに浸漬塗布し電荷発生層を設けた。乾燥
後の膜厚上o、グμmであった。
Example 1 100 parts of ethylene glycol dimethyl ether was added to part IIO of a bisazo compound having the following structure, and a dispersion treatment was carried out using a sand grind mill. This liquid and phenoxy resin (manufactured by Union Carbide, trade name PKHH)
J part, polyvinyl butyral resin (Denka Kogyo #1,00
0) S part f A solution dissolved in 100 parts of ethylene glycol dimethyl ether was mixed to obtain a charge generation layer coating solution. This coating solution was applied by dip coating onto an aluminum cylinder with a diameter of 01 N and whose surface was mirror-finished to provide a charge generation layer. The film thickness after drying was 0.5 μm.

ビスアゾ化合物I この様にして得られた電荷発生層上にN−メチルカルバ
ゾール−3−アルデヒドジフェニルヒドラゾン100部
、ビスフェノールAポリカーボネート樹脂(三菱化成工
業■製、ツバレックス■702!;k ) / 00部
、下記構造のシアン化合物0.5部、ジターシャリブチ
ルヒドロキシトルエン(BHT ) 8:部をへq−ジ
オキサンに溶解した溶液を先に塗布した電荷発生層上に
乾燥膜厚が10pz 、/ 7μm、2!rμ@、30
μm、ダOμmとなる様浸漬塗布した。
Bisazo Compound I 100 parts of N-methylcarbazole-3-aldehyde diphenylhydrazone and 100 parts of bisphenol A polycarbonate resin (manufactured by Mitsubishi Chemical Corporation, Tubarex ■702!;k) / 00 parts were added on the charge generation layer thus obtained. , 0.5 part of a cyanide compound having the following structure, 8 parts of ditertiarybutylhydroxytoluene (BHT) dissolved in q-dioxane was applied onto the charge generation layer, which had a dry film thickness of 10 pz/7 μm. 2! rμ@, 30
It was coated by dipping so that the thickness was 0 μm or 0 μm.

I これらの感光体を夫々/−A、/−B% l−C,/−
D、/−Eとする。/−Bの感光体について入射光波長
3 !r Onmの単色光を用い、初期電位減衰速度を
測定し、又この感光層のキャパシタンスを求め感光体と
しての量子効率及びその電場依存性を求めた。その結果
を図1に示す。一方間時に/−A、/−Dについても同
様に測定を行いほぼ同じ結果を・得ておシ同図に示した
。これらから感光体の量子効率は膜厚によらないこと、
およびこの感光体の量子効率の電場依存性全ベキ乗で近
似すると電場のo、4を乗忙近似でき、電場依存性が小
さいことが判る。
I These photoreceptors are respectively /-A, /-B% l-C, /-
Let D, /-E. For the photoreceptor of /-B, the incident light wavelength is 3! Using monochromatic light of r Onm, the initial potential decay rate was measured, and the capacitance of this photosensitive layer was determined to determine the quantum efficiency as a photoreceptor and its electric field dependence. The results are shown in Figure 1. On the other hand, measurements were made in the same manner for /-A and /-D, and almost the same results were obtained, which are shown in the same figure. From these, it can be seen that the quantum efficiency of the photoreceptor does not depend on the film thickness.
When the electric field dependence of the quantum efficiency of this photoreceptor is approximated by a total power, the electric field o, 4 can be approximated by a multiplicative approximation, and it can be seen that the electric field dependence is small.

次にサンプルi−A、i−B、/−C,/−D。Next, samples i-A, i-B, /-C, /-D.

/−Eの白色光、及び!r !r Onmにおける感度
を半減露光量(初期の表面電位700Vを半分に減衰さ
せるのに必要な露光量)E//2として求めた。これら
の結果及び帯電性、残留電位などの電子写真特性を表/
に示す。
/-E white light, and! r! The sensitivity at r Onm was determined as a half exposure amount (exposure amount required to attenuate the initial surface potential of 700 V by half) E//2. These results and electrophotographic properties such as chargeability and residual potential are listed/
Shown below.

表  / これらの感光体においては、電荷移動層の膜厚を増すこ
とにょυ帯電性の増加の他に感度がむしろ上昇し、残留
電位の上昇などの弊害も余シ目立たないことが判る。膜
厚(横軸〕とSSOnmにおける感度E //lの逆数
との関係を図コに示す。
Table / It can be seen that in these photoreceptors, by increasing the thickness of the charge transfer layer, in addition to an increase in the υ chargeability, the sensitivity also increases, and disadvantages such as an increase in residual potential are not as noticeable. The relationship between the film thickness (horizontal axis) and the reciprocal of the sensitivity E//l in SSOnm is shown in the figure.

次にサンプル/−13および/ −[)について市販の
ブレードクリーニングプロセスを有する複写機(シャー
プ■製、SFに一〇〇)の感光体として使用し、耐久性
のテストヲ行った。その結果を表コに示す。
Next, samples /-13 and /-[) were used as photoreceptors in a commercially available copying machine having a blade cleaning process (manufactured by Sharp ■, 100 in SF), and a durability test was conducted. The results are shown in Table 1.

表  コ Vd は未露光部表面電位、VLは露光部表面電位、V
rは残留電位を夫々示す(以下、同様)。
In the table, Vd is the surface potential of the unexposed area, VL is the surface potential of the exposed area, and V
r indicates a residual potential (the same applies hereinafter).

/−B、/−Dいずれの感光体も1部万枚コピー後約6
μm程度の膜厚減少が見られたが、膜厚の厚い/−[)
においては、わずかに残留電位上昇が見うけられたが、
電位の低下も少なく、画質に全く変化なく十分10万枚
コピー以上の耐刷力を有することが判った。−万、/−
Bサンプルにおいては5万枚コピーまでは画質に大きな
変化はなかったが、除々に濃度低下が目立ち1部万枚コ
ピー後では電位は大巾に低下し画像濃度は低下してしま
った。実用上は5万枚前後の寿命と推定された。
After copying 10,000 copies of both /-B and /-D photoconductors, it is approximately 6
A decrease in film thickness of about μm was observed, but the film thickness was thick/-[)
Although a slight increase in residual potential was observed in
It was found that the potential drop was small and the printing durability was sufficient for more than 100,000 copies without any change in image quality. Ten thousand
In sample B, there was no significant change in image quality until 50,000 copies were copied, but the density gradually decreased, and after 10,000 copies were copied, the potential dropped significantly and the image density decreased. In practical terms, the lifespan was estimated to be around 50,000 sheets.

実施例コ 電荷発生物質として下記の構造を有するアゾ顔料■を用
いた他は実施例1と同様χして感光体サンプルコーA、
コーB% コーC,コーD。
Example 1 Photoconductor sample A was prepared in the same manner as in Example 1, except that azo pigment 2 having the following structure was used as the charge generating substance.
Cor B% Cor C, Cor D.

λ−Eを作成した。電荷移動層の膜厚は夫々/  Iり
  fim   %   7 4  μm   %  
 −2”  I’m   −J  OI’m   4弘
コμmであった。
λ-E was created. The thickness of the charge transport layer is /fim% 74 μm%
-2"I'm -J OI'm 4 hirokoμm.

一−B、コーDについて実施例1と同様の方法で感光体
としての量子効率の測定を行った。その結果を図3に示
す。この感光体の場合更に電場依存性が少く、はとんど
依存性を示さず電場の0.12乗に近似できることが判
る。
The quantum efficiencies of photoreceptors 1-B and 1-D were measured in the same manner as in Example 1. The results are shown in FIG. In the case of this photoreceptor, the electric field dependence is even smaller, and it can be seen that the electric field shows almost no dependence and can be approximated to the electric field to the 0.12th power.

この感光体の電荷移動層膜厚依存性を評価するためサン
プルコーA−コーEの感度など電気特性を評価した。そ
の結果を表JIC示す。
In order to evaluate the charge transfer layer thickness dependence of this photoreceptor, electrical characteristics such as sensitivity of Samples A to E were evaluated. The results are shown in Table JIC.

表  3 これらの感光体においても、特に弊害もなく、電荷移動
層の膜厚を増すと感度は上昇し噂寺高膜厚では著るしく
高感度であることが判る。
Table 3 It can be seen that in these photoreceptors, there were no particular adverse effects, and as the thickness of the charge transfer layer was increased, the sensitivity increased, and the sensitivity was significantly higher at higher thicknesses.

サンプルλ−Dについて実施例1と同様にして耐久性の
テストを行ったがis万枚コピー後で画像上特に変化な
く膜厚を30μmと従来よp高膜厚にすることで高耐刷
力が得られることが判った。このときの電位特性データ
を表ダに示す。
Durability tests were conducted on sample λ-D in the same manner as in Example 1, and there was no particular change in the image after 10,000 copies were made. was found to be obtained. The potential characteristic data at this time is shown in Table DA.

表  ダ 比較例/ 電荷発生物質としてオキシチタニウムフタロシアニンを
用いた他は実施例/と同様にして感光体f 77/l/
 J ”−A (J −B(j  C%  3Dy3−
Eを作成した。電荷移動層の膜厚はそれぞれ10μm 
s  / g μ7FL 1 コ!;fim、JOμy
1゜97μmであった。
Table d Comparative Example/ Photoreceptor f77/l/ in the same manner as in Example/ except that oxytitanium phthalocyanine was used as the charge generating substance.
J ”-A (J-B(j C% 3Dy3-
I created E. The thickness of each charge transfer layer is 10 μm.
s/g μ7FL 1 Ko! ;fim, JOμy
It was 1°97 μm.

この感光体の量子効率を実施例/と同様にして求めた。The quantum efficiency of this photoreceptor was determined in the same manner as in Example.

サンプル3 As 3 pについて求めたデータを図1
IVc示す。この感光体の場合、量子効率の電場依存性
が大きく、Eのベキ乗として約0.9乗に比例すること
が判った。
Figure 1 shows the data obtained for sample 3 As 3 p.
IVc is shown. In the case of this photoreceptor, it was found that the dependence of the quantum efficiency on the electric field is large and is proportional to the power of E to about 0.9.

次にこの系での感光体特性と膜厚の関係を評価すべく、
サンプル3−A−Eの特性を測定した。
Next, in order to evaluate the relationship between photoreceptor characteristics and film thickness in this system,
The properties of samples 3-A-E were measured.

その結果を表5に示す。The results are shown in Table 5.

−ど′ 表  5 この感光体の場合、量子効率の電場依存性が大きく膜厚
を増加するに従い、感度が悪化し、特に画像を作るとき
実質的な感度の指標となる5分の/減衰露光量(表中の
E //!; )が増大し、又残留電位の上昇が目立つ
など、電荷移動層の膜厚を一!5μm以上にすることは
著るしく特性を悪化するため、実用化は困難であること
が判った。
Table 5 In the case of this photoreceptor, the dependence of the quantum efficiency on the electric field is large, and as the film thickness increases, the sensitivity deteriorates, and especially when creating an image, the 5-minute/attenuation exposure, which is an indicator of the actual sensitivity. The charge transfer layer thickness (E //!; in the table) increases, and the residual potential increases significantly. It has been found that increasing the thickness to 5 μm or more significantly deteriorates the characteristics, making it difficult to put it into practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は実施例/の感光体の量子効率とその電場依存性を
示す図であシ、図二は実施例/の感光体における膜厚(
横軸りと感度E //、2の逆数(縦軸)との関係を示
す図である。また、図3、図ダは夫々実施例コ、比較例
/の感光体の量子効率とその電場依存性を示す図である
。 出 願 人  三菱化成工業株式会社 代 理 人  弁理士 長谷用  − ほか7名 11JI 電場(味/n) z3 t 橿 (痴) 図4 電 場 (降)
FIG. 1 is a diagram showing the quantum efficiency and its electric field dependence of the photoreceptor of Example/, and FIG. 2 is a diagram showing the film thickness (
It is a diagram showing the relationship between the horizontal axis and the reciprocal of sensitivity E//2 (vertical axis). 3 and 3 are diagrams showing the quantum efficiency and its electric field dependence of the photoreceptors of Example 1 and Comparative Example, respectively. Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Patent attorney: Mr. Hase - 7 others 11JI Electric field (taste/n) z3 t Kashi (Chi) Figure 4 Electric field (falling)

Claims (1)

【特許請求の範囲】[Claims] (1)導電性支持体の上に有機電荷発生物質を含有する
電荷発生層と有機電荷移動物質を含有する電荷移動層と
を積層してなる積層型有機電子写真感光体において、該
感光体が感光体としての量子効率ηと電場Eとの関係を
下記式(1)で表わした場合にnが0.5以下であり、
かつ前記電荷移動層の膜厚が25μm以上であることを
特徴とする電子写真感光体。 η=η_0E^n・・・・・・・(1) (但し、ηは感光体としての量子効率、Eは電場、η_
0は定数を示す。)
(1) A laminated organic electrophotographic photoreceptor formed by laminating a charge generation layer containing an organic charge generation substance and a charge transfer layer containing an organic charge transfer substance on a conductive support, in which the photoreceptor is When the relationship between the quantum efficiency η as a photoreceptor and the electric field E is expressed by the following formula (1), n is 0.5 or less,
An electrophotographic photoreceptor, wherein the charge transfer layer has a thickness of 25 μm or more. η=η_0E^n・・・・・・(1) (However, η is the quantum efficiency as a photoreceptor, E is the electric field, η_
0 indicates a constant. )
JP63096144A 1988-04-19 1988-04-19 Electrophotographic photoreceptor Expired - Lifetime JP2838891B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63096144A JP2838891B2 (en) 1988-04-19 1988-04-19 Electrophotographic photoreceptor
EP19890106919 EP0340523B1 (en) 1988-04-19 1989-04-18 Electrophotographic photoreceptor
DE1989618151 DE68918151T2 (en) 1988-04-19 1989-04-18 Electrophotographic photoreceptor.
US07/865,706 US5173384A (en) 1988-04-19 1992-04-08 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096144A JP2838891B2 (en) 1988-04-19 1988-04-19 Electrophotographic photoreceptor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30191697A Division JP3226160B2 (en) 1997-11-04 1997-11-04 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01267551A true JPH01267551A (en) 1989-10-25
JP2838891B2 JP2838891B2 (en) 1998-12-16

Family

ID=14157187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096144A Expired - Lifetime JP2838891B2 (en) 1988-04-19 1988-04-19 Electrophotographic photoreceptor

Country Status (3)

Country Link
EP (1) EP0340523B1 (en)
JP (1) JP2838891B2 (en)
DE (1) DE68918151T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311353A (en) * 1989-06-08 1991-01-18 Canon Inc Electrophotographic sensitive body
JP2002099103A (en) * 2000-09-26 2002-04-05 Kyocera Mita Corp Electrophotographic photoreceptor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895129B1 (en) * 1997-07-31 2003-03-19 Kyocera Corporation Image formation method using electrophotography

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198043A (en) * 1982-05-14 1983-11-17 Ricoh Co Ltd Electrophotographic receptor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1337222A (en) * 1971-02-24 1973-11-14 Xerox Corp Electrophotographic member comprising photoinjecting bis-benzimi dazole pigments
JPS5642236A (en) * 1979-09-14 1981-04-20 Hitachi Ltd Composite type electrophotographic plate
US4582772A (en) * 1983-02-15 1986-04-15 Xerox Corporation Layered photoconductive imaging devices
JPS59180562A (en) * 1983-03-31 1984-10-13 Toshiba Corp Electrophotographic sensitive body
US4780385A (en) * 1987-04-21 1988-10-25 Xerox Corporation Electrophotographic imaging member containing zirconium in base layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198043A (en) * 1982-05-14 1983-11-17 Ricoh Co Ltd Electrophotographic receptor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311353A (en) * 1989-06-08 1991-01-18 Canon Inc Electrophotographic sensitive body
JP2002099103A (en) * 2000-09-26 2002-04-05 Kyocera Mita Corp Electrophotographic photoreceptor

Also Published As

Publication number Publication date
EP0340523B1 (en) 1994-09-14
DE68918151T2 (en) 1995-05-04
EP0340523A2 (en) 1989-11-08
EP0340523A3 (en) 1991-10-23
DE68918151D1 (en) 1994-10-20
JP2838891B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US8673524B2 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP0609511B1 (en) Electrophotographic photosensitive member and electrophotographic apparatus employing the same
JP3118129B2 (en) Electrophotographic photoreceptor, apparatus unit using the electrophotographic photoreceptor, and electrophotographic apparatus
JPH01267551A (en) Electrophotographic sensitive body
US5173384A (en) Electrophotographic photoreceptor
JP3560798B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JPH09288367A (en) Electrophotographic photoreceptor
JP2506694B2 (en) Electrophotographic photoreceptor
JP2917426B2 (en) Photoconductor
JP3226160B2 (en) Electrophotographic photoreceptor
JP2005049470A (en) Electrophotographic photoreceptor
JP2006267197A (en) Electrophotographic photoreceptor and image forming apparatus using the same, and process cartridge
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3010808B2 (en) Electrophotographic photoreceptor
JPH1172934A (en) Electrophotographic photoreceptor and electrophotographic device
JPH05232718A (en) Electrophotographic sensitive member
JP2746300B2 (en) Electrophotographic photoreceptor
JPH10268529A (en) Electrophotographic photoreceptor and electrophotographic device using the same
JPH06266135A (en) Single layer type electrophotographic sensitive body
JP2005043632A (en) Electrophotographic photoreceptor
JP2765061B2 (en) Electrophotographic photoreceptor
JP2010026429A (en) Electrophotographic photoreceptor and image forming device
JPH0314173B2 (en)
JPH01257967A (en) Electrophotographic sensitive body
JPH0962022A (en) Electrophotographic photoreceptor and image forming method