JP2005049470A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2005049470A
JP2005049470A JP2003204016A JP2003204016A JP2005049470A JP 2005049470 A JP2005049470 A JP 2005049470A JP 2003204016 A JP2003204016 A JP 2003204016A JP 2003204016 A JP2003204016 A JP 2003204016A JP 2005049470 A JP2005049470 A JP 2005049470A
Authority
JP
Japan
Prior art keywords
agent
charge
weight
layer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003204016A
Other languages
Japanese (ja)
Inventor
Juichi Honma
寿一 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2003204016A priority Critical patent/JP2005049470A/en
Publication of JP2005049470A publication Critical patent/JP2005049470A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a good organic photoreceptor by which the stability of electric characteristics is improved at the time of initial use and repetitive use and which does not produce an exposure memory image. <P>SOLUTION: The function separated and laminated organic photoreceptor provided directly or through an under coating layer with a charge generating layer containing a charge generating agent and a charge transfer layer containing a charge transfer agent on a conductive support contains the hole transfer agent expressed by general formula (1) and a specific electron transfer agent in the charge transfer layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、レーザープリンタ、静電式複写機、普通紙ファクシミリ装置、およびこれらの機能を併せ持つ複合装置などの画像形成装置に使用される電子写真感光体に関するものである。
【0002】
【従来の技術】上記画像形成装置においては、光照射によって電荷を発生する電荷発生剤、発生した電荷を輸送する電荷輸送剤、およびこれらの物質が分散される層を構成する結着樹脂等からなる、いわゆる有機感光体が広く使用されている。有機感光体としては、大別して、電荷発生剤と電荷輸送剤とを同一の層中に含有させた単層型の感光層を備えたものと、電荷発生剤を含む電荷発生層と、電荷輸送剤を含む電荷輸送層とを積層した積層型の感光層を備えた感光体が一般的であるが、初期および繰り返し使用される場合にも電気的特性を満足させる感光層の設計が容易な積層型の感光体を用いる場合が多い。
【0003】
一方、電子写真方式を利用した画像形成装置は、感光体を帯電し(主帯電工程)、画像露光して静電潜像を形成し(露光工程)、この静電潜像を現像バイアス電圧が印加された状態でトナー現像し(現像工程)、形成されるトナー像を転写紙に転写し(転写工程)、定着して画像形成を行う。また、感光体上の残留トナーはウレタンブレード等によりクリーニングされ(クリーニング工程)、感光体上の残留電荷はLED等により消去される(除電工程)。また、前記電子写真方式を利用した画像形成装置には、デジタル及びアナログ複写機、ファクシミリ、レーザービームプリンタ等があり、特に帯電工程で感光体に印加される帯電電圧と同極性のトナーを使用して現像する反転現像方式は、デジタル画像形成装置に広く使用されている。
【0004】
前記画像形成装置で、感光体を繰り返し使用する場合に発生する電気的劣化は、電子写真感光体特性に対し、繰り返し使用した場合の暗部電位(Vo)の低下や露光電位(VL)の上昇として現れる他、光が照射された部分にキャリアーが滞留し光が照射していない部分と電位差を生じ、画像中では当該部分が黒くなる(露光メモリー画像)という問題が発生する。
【0005】
【問題を解決しようとする課題】以上の諸特性を満足させるために先行技術として例えば特許文献1には電荷発生層にジスアゾ顔料を有し電荷輸送層にフルオレン化合物を含有する方法が開示されており、また特許文献2には電荷発生層にクロロガリウムフタロシアニン化合物及びヒドロキシガリウムフタロシアニン化合物の少なくとも1種を含有し電荷輸送層に特定の電荷輸送物質を含有することで露光メモリーを改良する方法が開示されている。
【0006】
【特許文献1】
特開平07−43920号公報
【0007】
【特許文献2】
特開2000−89493
しかしながら、使用される電子写真プロセスの構成によっては、上記開示されている特定の電荷輸送剤を用いても、未だ露光メモリー特性が不充分であった。さらに、この露光メモリーの問題は、前記したように電子写真感光体が電子写真プロセスにおいて繰り返し使用された場合に発生するだけでなく、コピー機、プリンターの製造時に電子写真感光体に照射される光、または、市場においてコピー機・プリンターのメンテナンス時に電子写真感光体を外部に取り出したときに照射される光によっても引き起こされる場合があり、電子写真感光体の特性上軽視できない技術的課題であった。
【0008】
【問題を解決するための手段】本発明者らは、高感度、低残留電位、高移動度で高耐久性の電子写真感光体を提供する特定の正孔輸送剤を使用し、且つ特定の電子輸送剤を電荷輸送層に含有させることにより、前記正孔輸送剤により発現される高感度、低残留電位、高移動度、高耐久等の種々の長所を損なうことなく、さらに露光メモリー特性を改善できることを見い出し本発明を完成した。
【0009】
すなわち、本発明の要旨は、導電性支持体上に直接または下引き層を介して、電荷発生剤を含有する電荷発生層と電荷輸送剤を含有する電荷輸送層を設けた積層型電子写真感光体において、前記電荷輸送層には下記一般式(1)で示される正孔輸送剤の少なくとも1種と下記一般式(2)で示される電子輸送剤の少なくとも1種を含有することを特徴とする機能分離積層型電子写真感光体、に存する。
【0010】
また、上記電荷輸送層中の前記正孔輸送剤量に対する前記電子輸送剤量の重量比が正孔輸送剤100重量部に対して10重量部以上40重量部以下であることが望ましい。
【0011】
【化3】

Figure 2005049470
【0012】
上記式中、R、R、RおよびRは同一または異なって、アルキル基、アルコキシ基、アリール基、アラルキル基原子を示す。m,n,pおよびqは同一または異なって0〜3の整数を示す。但し、RおよびRが同一の基であるとき、mおよびnは異なる整数を示す。また、RおよびRが同一の基であるとき、pおよびqは異なる整数を示す。RおよびRは同一または異なって、水素原子またはアルキル基を示す。
【0013】
【化4】
Figure 2005049470
【0014】
上記式中、Rは水素原子、アルキル基、アルコキシ基、であり、R 及びR の各々は置換または未置換のアルキル基、アルコキシ基またはアリール基であって、これらは互いに異なっており、R は水素原子、或いは置換または未置換のアルキル基、アルコキシ基またはアリール基である、で表されるナフタレンテトラカルボン酸ジイミド誘導体。
【0015】
【本発明の実施の形態】以下、本発明につき詳細に説明する。本発明の電子写真感光体は、導電性支持体上に直接または下引き層を介して電荷発生剤を含有する電荷発生層と、特定の構造を有する正孔輸送剤を含有する電荷輸送層を有し、前記電荷輸送層には少なくとも特定の構造を有する電子輸送剤を含有することで高感度、低残留電位、高移動度、高耐久、かつ露光メモリー特性に優れる積層型電子写真感光体が得られる。導電性支持体上または中間層上の層構成は、電荷発生層の上に電荷輸送層を積層した構成でも、電荷輸送層の上に電荷発生層を積層した構成でもよい。
【0016】
前記一般式(1)で示される化合物の具体例を(HT−1)〜(HT−12)に夫々示すが、本発明においてはこれらに限定されるものではない。
【0017】
【化5】
Figure 2005049470
【0018】
【化6】
Figure 2005049470
【0019】
前記一般式(2)で示される化合物の具体例を(ET―1)〜(ET―8)に夫々示すが、本発明においてはこれらに限定されるものではない。
【0020】
【化7】
Figure 2005049470
【0021】
<導電性支持体>導電性支持体としては公知の電子写真感光体に採用されているものがいずれも使用できる。具体的には例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料からなるドラム、シートあるいはこれらの金属箔のラミネート物、蒸着物、あるいは表面にアルミニウム、銅、パラジウム、酸化すず、酸化インジウム等の導電性層を設けたポリエステルフィルム、紙等の絶縁性支持体が挙げられる。更に、金属粉末、カーボンブラック、ヨウ化銅、高分子電解質等の導電性物質を適当なバインダーとともに塗布して導電処理したプラスチックフィルム、プラスチックドラム、紙、紙管等が挙げられる。また、金属粉末、カーボンブラック、炭素繊維等の導電性物質を含有し、導電性となったプラスチックのシートやドラムが挙げられる。又、酸化スズ、酸化インジウム等の導電性金属酸化物で導電処理したプラスチックフィルムやベルトが挙げられる。なかでもアルミニウム等の金属のエンドレスパイプが好ましい支持体である。
【0022】
<中間層>本発明においては、導電性支持体と感光層との間には通常使用されるような公知の中間層が設けられていてもよい。
中間層としては、例えばアルミニウム陽極酸化被膜、酸化アルミニウム、水酸化アルミニウム等の無機層、ポリビニルアルコール、ポリビニルピリジン、ポリビニルピロリドン、ポリエチレンオキシド、ポリアクリル酸類、セルロース類、ポリグルタミン酸、カゼイン、ゼラチン、デンプン類の水溶性樹脂、フェノール樹脂、アルキド樹脂、メラミン樹脂、ポリビニルホルマール等の樹脂を用いる有機層が使用される。有機層をバリアー層として用いる場合には単独あるいはチタニア、アルミナ、シリカ、酸化ジルコニウム、酸化チタン等の金属酸化物あるいは銅、銀、アルミニウム等の金属微粉末を分散させて用いてもよい。有機層の場合は、前述の樹脂を単独或いは前述金属酸化物・金属微粉末とともに溶媒に溶解あるいは分散し、前述の導電性支持体の上にワイヤーバー、ドクターブレード、フィルムアプリケータ、浸積、スプレーなどの塗布方法により塗工し乾燥させることにより形成することができる。これらのバリアー層の膜厚は適宜設定できるが、0.05〜20μm、好ましくは0.1〜10μmの範囲で用いることが好ましい。
【0023】
積層型の中間層において、導電性に影響を与えない程度に別途、薄膜の樹脂層を設けることができる。この場合、使用する樹脂としては、ポリビニルアルコール、ポリビニルピリジン、ポリビニルピロリドン、ポリエチレンオキシド、ポリアクリル酸類、メチルセルロース、エチルセルロース、ポリグルタミン酸、カゼイン、ゼラチン、デンプン等の水溶性樹脂、ポリアミド樹脂、フェノール樹脂、ポリビニルホルマール、アルキド樹脂等の樹脂があげられる。
【0024】
<電荷発生層>前述した中間層の上には、電荷発生剤を含有する電荷発生層が形成される。電荷発生剤としては、例えばセレン、セレン−テルル、セレン‐ヒ素、硫化カドミウム、α‐シリコンなどの無機光導電材料の粉末、無金属フタロシアニン、チタニルフタロシアニン系顔料、アゾ系顔料、ビスアゾ顔料、ペリレン系顔料、アンサンスロン系顔料、インジゴ系顔料、トリフェニルメタン系顔料、スチレン系顔料、トルイジン系顔料、ピラゾリン系顔料、キナクリドン系顔料、ジチオケトピロロピロール系顔料などの、従来公知の種々の顔料が挙げられる。
【0025】
特に半導体レーザー等の赤外光を利用した、レーザービームプリンタや普通紙ファクシミリ装置等のデジタル光学系の画像形成装置には、700nm以上の波長領域に感度を有する感光体が必要となるため、電荷発生剤として、前記例示のうちフタロシアニン系顔料が好適に使用され、電荷発生剤は、感光層が所望の波長域に感度を有するように、1種単独で、あるいは2種以上を組合わせて使用することができる。
【0026】
電荷発生層のバインダー樹脂としては、ポリエステル、ポリビニルアセテート、ポリカーボネート、ポリビニルアセトアセタール、ポリビニルプロピオナール、ポリビニルブチラール、フェノキシ、エポキシ、ウレタン、セルロースエステル、セルロースエーテルなどの各種バインダー樹脂で結着した形の分散層で使用してもよい。更に、バインダー樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、ビニルアルコール、エチルビニルエーテル等のビニル化合物の重合体および共重合体、ポリアミド、けい素樹脂等が挙げられる。
【0027】
電荷発生剤はバインダー樹脂100重量部に対して、電荷発生剤を5〜1000重量部、特に30〜500重量部の割合で含有させるのが好ましい。
【0028】
<電荷輸送層>
電荷輸送層は主として(HT−1)〜(HT−12)で示される正孔輸送剤と(ET―1)〜(ET−8)で示される電子輸送剤および樹脂バインダーにより構成される。
【0029】
また、電荷輸送層に含有させる電子輸送剤の含有量は、電荷輸送層に含有している正孔輸送剤100重量部に対して10重量部以上40重量部以下の割合で含有させることができる。
【0030】
本発明において、電荷輸送層中の正孔輸送剤は一般式(1)で表される正孔輸送剤1種のみを用いるほか、2種以上を混合してもよい。第2の正孔輸送剤は一般式(1)で表される第1の正孔輸送剤に対して5から100重量部、好ましくは30から100重量部がよく、電荷輸送層に含有される正孔輸送剤の合計量は結着樹脂100重量部に対して10から500重量部、好ましくは30から100重量部の割合で含有させるのが好ましい。
【0031】
電荷輸送層に含有される第2の正孔輸送剤としては、従来公知の種々の正孔輸送性化合物のものが使用可能である。特にベンジジン系化合物、フェニレンジアミン系化合物、ナフチレンジアミン系化合物、フェナントリレンジアミン系化合物、オキサジアゾール系化合物、スチリル系化合物、カルバゾール系化合物、ピラゾリン系化合物、ヒドラゾン系化合物、トリフェニルアミン系化合物、インドール系化合物、オキサゾール系化合物、イソオキサゾール系化合物、チアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピラゾール系化合物、トリアゾール系化合物、ブタジエン系化合物、ピレン−ヒドラゾン系化合物、アクロレイン系化合物、カルバゾール−ヒドラゾン系化合物、キノリン−ヒドラゾン系化合物、スチルベン系化合物、スチルベン−ヒドラゾン系化合物、およびジフェニレンジアミン系化合物などが好適に使用される。
特に、電荷輸送層に第2の正孔輸送剤を含有させる場合は、第2の正孔輸送剤として第1の正孔輸送剤とは異なる一般式(1)で表される正孔輸送剤を用いるのが好ましい。
【0032】
本発明において、電荷輸送層中の電子輸送剤は一般式(2)で表される電子輸送剤1種のみを用いるほか、第1の電子輸送剤とは異なる、一般式(2)で表される電子輸送剤を第1の電子輸送剤と組み合わせて用いることができる。
【0033】
第2の電子輸送剤は一般式(2)で表される第1の電子輸送剤100重量部に対して5〜100重量部、好ましくは30〜50重量部がよく、電荷輸送層に含有される電子輸送剤の合計量は結着樹脂100重量部に対して1から200重量部、好ましくは5から45重量部の割合で含有させるのが好ましい。
【0034】
電荷輸送層のバインダー樹脂としては、例えばポリエステル、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニルなどのビニル重合体、及びその共重合体、ポリカーボネイト、ポリエステル、ポリエステルカーボネート、ポリスルホン、ポリイミド、フェノキシ、エポキシ、シリコーン樹脂など重合体、及びその共重合体でもよく、又これらの部分的架橋硬化物も使用できる。さらに、前記バインダー樹脂の2種以上をブレンドして用いてもよい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100重量部に対して30〜90重量部、好ましくは40〜70重量部の範囲で使用される。また電荷輸送層には、必要に応じて酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。電荷輸送層の膜厚は10〜60μm、好ましくは10〜45μm、さらに好ましくは25〜40μmの厚みで使用されるのがよい。
【0035】
電荷輸送層の成形方法としては、層に含有させる物質を溶剤に溶解又は分散させて得られた塗布液をワイヤーバー、ドクターブレード、フィルムアプリケータ、浸積、スプレーなどの公知の塗布方法により塗工し乾燥させることにより形成することができる。
【0036】
本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンター、レーザー製版、ファクシミリ等の電子写真応用分野にも広く利用することができる。
本発明の電子写真感光体を使用する複写機・プリンター等の電子写真装置は、少なくとも帯電、露光、現像、転写の各プロセスを含むが、どのプロセスも通常用いられる方法のいずれを用いても良い。
【0037】
帯電方法(帯電器)としては、例えばコロナ放電を利用したコロトロンあるいはスコロトロン帯電、導電性ローラーあるいはブラシ、フィルムなどによる接触帯電などいずれを用いても良い。このうち、コロナ放電を利用した帯電方法では暗部電位を一定に保つためにスコロトロン帯電が用いられることが多い。本発明において、露光は、通常、波長500nm以上のものを用い、具体的には、He−Ne等のレーザー光、あるいは、ランプ、蛍光灯等が用いられるが、レーザー光を用いることがより好ましい。
【0038】
現像方法としては、磁性あるいは非磁性の一成分現像剤、二成分現像剤などを接触あるいは非接触させて現像する一般的な方法が用いられる。転写方法としては、コロナ放電によるもの、転写ローラーあるいは転写ベルトを用いた方法等いずれでもよい。転写は、紙やOHP用フィルム等に対して直接行っても良いし、一旦中間転写体(ベルト状あるいはドラム状)に転写したのちに、紙やOHP用フィルム上に転写しても良い。
【0039】
通常、転写の後、現像剤を紙などに定着させる定着プロセスが用いられ、定着手段としては一般的に用いられる熱定着、圧力定着などを用いることができる。
これらのプロセスのほかに、通常用いられるクリーニング、除電等のプロセスを有しても良い。
【0040】
【実施例】以下に実施例を用いて本発明の具体的態様を更に詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。
<実施例1>
《中間層の形成》結着樹脂としてフェノール樹脂(大日本インキ社製のTD447)60重量部、電子輸送剤(ET−1)20重量部および分散媒としてメタノール100重量部を、ボールミル(φ1のジルコニアビーズ)にて24時間混合、分散させて中間層用の塗布液を作製した。次いで、φ30のアルミニウム素管(支持基体)上にテフロンブレードを用いて中間層の塗布液を塗布し、150℃で30分間乾燥させて、平均膜厚が10μmの中間層を形成し、実施例1の電子写真感光体の中間体を作製した。
《電荷発生層の形成》まず、顔料としてのY型チタニルフタロシアニン1重量部を、分散媒としてのエチルセロソルブ39重量部に添加し、超音波分散機を用いて1次分散させた。この分散液にさらに、結着樹脂としてのポリビニルブチラール(積水化学工業製のBM−1)1重量部を、9重量部のエチルセロソルブに溶解させた液を添加して、再び超音波分散機を用いて2次分散させて、積層型感光層のうち電荷発生層用の塗布液を作製した。次にこの塗布液を前記中間体上にテフロンブレードを用いて塗布し、110℃で5分間乾燥させて、膜厚0.5μmの電荷発生層を形成した。
《電荷輸送層の形成》次いで、正孔輸送剤のスチルベン化合物(HT―1)80重量部と電子輸送剤であるジフェノキノン誘導体(ET―1)20重量部(正孔輸送剤に対して25重量%)と、結着樹脂であるZ型ポリカーボネート(帝人化成製のパンライトTS2050)100重量部とを、800重量部のテトラヒドロフランと共に混合、分散させて、電荷輸送層用の塗布液を得た。そしてこの塗布液を、上記電荷発生層上にテフロンブレードを用いて塗布し、110℃で30分間乾燥させて、膜厚30μmの電荷輸送層を形成して、実施例1の積層型電子写真感光体を作製した。
<実施例2>実施例1において、電荷輸送層の電子輸送剤量を10重量部(正孔輸送剤に対して12.5重量%)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<実施例3>実施例1において、電荷輸送層の電子輸送剤量を30重量部(正孔輸送剤に対して37.5重量%)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<実施例4>実施例1において、電荷輸送層の電子輸送剤を(ET−2)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<実施例5>実施例1において、電荷輸送層の電子輸送剤を(ET−3)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<実施例6>実施例1において、電荷輸送層の正孔輸送剤を(HT−2)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<実施例7>実施例1において、電荷輸送層の正孔輸送剤を(HT−3)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<実施例8>実施例1において、電荷輸送層の正孔輸送剤を(HT−11)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<実施例9>実施例1において、電荷輸送層の正孔輸送剤を(HT−12)としたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<比較例1>実施例1において、電荷輸送層の電子輸送剤(ET−1)20重量部を除いたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<比較例2>実施例1において、電荷輸送層の電子輸送剤(ET−1)20重量部を除き、正孔輸送剤(HT−13)を20重量部追加したこと以外は実施例1と同様にして積層型電子感光体を作成した。
【0041】
【化8】
Figure 2005049470
【0042】
<比較例3>実施例1において、電荷輸送層の電子輸送剤(ET−1)20重量部を除き、正孔輸送剤(HT−14)を20重量部追加したこと以外は実施例1と同様にして積層型電子感光体を作成した。
【0043】
【化9】
Figure 2005049470
【0044】
<比較例4>実施例1において、電荷輸送層の電子輸送剤(ET−1)の代わりに、電子輸送剤(ET−8)を加えたこと以外は実施例1と同様にして積層型電子感光体を作成した。
【0045】
【化10】
Figure 2005049470
【0046】
<比較例5>実施例1において、電荷輸送層の電子輸送剤(ET−1)の代わりに、電子輸送剤(ET−9)を加えたこと以外は実施例1と同様にして積層型電子感光体を作成した。
【0047】
【化11】
Figure 2005049470
【0048】
<比較例6>実施例1において、電荷輸送層の正孔輸送剤(HT−1)の代わりに正孔輸送剤(HT―13)を加えたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<比較例7>実施例1において、電荷輸送層の正孔輸送剤(HT−1)の代わりに正孔輸送剤(HT―14)を加えたこと以外は実施例1と同様にして積層型電子感光体を作成した。
<比較例8>実施例1において、電荷輸送層の電子輸送剤(ET−1)を40重量部(正孔輸送剤に対して50重量%)にしたこと以外は実施例1と同様にして積層型電子写真感光体を作成した。
【0049】
上記のようにして得た感光層を有する電子写真感光体をCanon社製レーザープリンターLBP―450に搭載し、1000枚プリント前後の下記の各特性を評価した結果を表1に示した。
【0050】
【表1】
Figure 2005049470
【0051】
<帯電及び感度>電子写真感光体をCanon社製レーザープリンターLBP―450に搭載し、未露光時の表面電位、及び露光時の表面電位を現像位置で測定した。
<露光メモリー>電子写真感光体をCanon社製レーザープリンターLBP―450に搭載しドラム1周目に黒ベタ部を印字し、ドラム2周目以降グレー画像を印字し、ドラム2周目以降に相当するグレー部にドラム1周目の黒ベタ部が露光メモリー画像として発生しているか否かを目視により判断した。露光メモリーの発生を判断するには図1に示すような原稿を使用した。図1に黒ベタ部の感光体表面電位の低下により、露光部分のメモリー画像がグレー部に発生した画像を示す。露光メモリーの判断基準はメモリー画像が全く発生しなかったものを○とし、わずかに発生しているが実使用上問題ないものを△とし、明らかに発生しているものを×とした。
【0052】
表1より正孔輸送剤(HT―1)、(HT―2)、(HT―3)、(HT―11)、(HT―12)を80重量部と電子輸送剤(ET―1)、(ET―2)、(ET―3)を30重量部以内(正孔輸送剤に対して37.5重量%以内)で使用した場合は帯電及び露光後電位が良好なだけでなく、初期及びランニング1000枚後も露光メモリー画像が発生しなかった。また正孔輸送剤を(HT―1)を80重量部含有しているが、電子輸送剤を含有していない比較例1では感度や帯電特性は良いが露光メモリー画像が発生し、電子輸送剤を含有せず一般式(1)で表される正孔輸送剤とその他の正孔輸送剤(HT−13)または(HT−14)を加えた比較例2および比較例3は、比較例2では感度や帯電特性は良いが露光メモリー画像が発生し、比較例3では、初期感度も悪かった。
また、一般式(2)で表される電子輸送剤の変わりに(ET−8)、(ET−9)を加えた比較例4、5も露光メモリー画像が発生した。一般式(1)で表される正孔輸送剤の変わりに(HT−13)
と(ET−1)を加えた比較例6も同様に露光メモリー画像が発生し、(HT−14)と(ET−1)を加えた比較例7は露光メモリーはわずかに発生しただけであったが、初期感度が悪かった。
また正孔輸送剤(HT―1)を80重量部と電子輸送剤(ET―1)を40部加えた比較例8は、初期に露光メモリー画像がわずかに発生しただけであったが、ランニング1000枚後は露光メモリー画像が明らかに発生し、電子輸送剤40部(正孔輸送剤に対して50重量%以内)では電子輸送剤の量が多すぎることが分かる。
【0053】
以上より一般式(1)で示した正孔輸送剤と一般式(2)で示した電子輸送剤を電荷輸送中に含み、その電荷輸送剤の含有量が正孔輸送剤に対して10重量部以上40重量部以下の場合、帯電、露光後電位を満足した上で、露光メモリーの発生を抑え良好な画像を得ることができた。
【0054】
【発明の効果】本発明によれば、特定の構造を有する正孔輸送剤と特定の構造を有する電子輸送剤を電荷輸送中に含有することにより、初期、繰り返し使用時における電気特性が安定で、かつ露光メモリー画像が発生しない機能分離積層型感光体を提供することが可能となった。
【図面の簡単な説明】
【図1】露光メモリー画像評価用原稿と露光メモリー画像を示す図である。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member used in an image forming apparatus such as a laser printer, an electrostatic copying machine, a plain paper facsimile apparatus, and a composite apparatus having these functions. .
[0002]
2. Description of the Related Art In the above-mentioned image forming apparatus, a charge generating agent that generates charges by light irradiation, a charge transfer agent that transports the generated charges, and a binder resin that constitutes a layer in which these substances are dispersed are used. So-called organic photoreceptors are widely used. Organic photoconductors can be broadly classified as those having a single-layer type photosensitive layer containing a charge generating agent and a charge transporting agent in the same layer, a charge generating layer containing the charge generating agent, and a charge transporting agent. Photoreceptors having a laminate type photosensitive layer laminated with a charge transport layer containing an agent are generally used, but it is easy to design a photosensitive layer that satisfies the electrical characteristics even when used initially and repeatedly. Many types of photoconductors are used.
[0003]
On the other hand, an image forming apparatus using an electrophotographic method charges a photosensitive member (main charging step), exposes an image to form an electrostatic latent image (exposure step), and develops the electrostatic latent image with a developing bias voltage. The toner is developed in the applied state (development process), and the formed toner image is transferred to transfer paper (transfer process) and fixed to perform image formation. The residual toner on the photoconductor is cleaned by a urethane blade or the like (cleaning process), and the residual charge on the photoconductor is erased by an LED or the like (static elimination process). In addition, image forming apparatuses using the electrophotographic method include digital and analog copying machines, facsimiles, laser beam printers, and the like, and in particular, use toner having the same polarity as the charging voltage applied to the photoreceptor in the charging process. The reversal development method in which development is performed in this manner is widely used in digital image forming apparatuses.
[0004]
In the image forming apparatus, the electrical deterioration that occurs when the photoreceptor is used repeatedly is a decrease in dark portion potential (Vo) or an increase in exposure potential (VL) when the photoreceptor is used repeatedly with respect to the characteristics of the electrophotographic photoreceptor. In addition to appearing, there is a problem that the carrier stays in the portion irradiated with light and generates a potential difference from the portion not irradiated with light, and the portion becomes black in the image (exposure memory image).
[0005]
[Problem to be Solved by the Problem] In order to satisfy the above-mentioned various characteristics, as a prior art, for example, Patent Document 1 discloses a method in which a charge generation layer contains a disazo pigment and a charge transport layer contains a fluorene compound. Further, Patent Document 2 discloses a method for improving exposure memory by containing at least one of a chlorogallium phthalocyanine compound and a hydroxygallium phthalocyanine compound in a charge generation layer and a specific charge transport material in the charge transport layer. Has been.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 07-43920
[Patent Document 2]
JP 2000-89493 A
However, depending on the configuration of the electrophotographic process used, the exposure memory characteristics are still insufficient even when the specific charge transporting agent disclosed above is used. Further, the problem of the exposure memory is not only caused when the electrophotographic photosensitive member is repeatedly used in the electrophotographic process as described above, but also the light irradiated to the electrophotographic photosensitive member during the manufacture of a copying machine or a printer. Also, it may be caused by the light emitted when the electrophotographic photosensitive member is taken out during maintenance of the copier / printer in the market, and it is a technical problem that cannot be ignored due to the characteristics of the electrophotographic photosensitive member. .
[0008]
[Means for Solving the Problems] The present inventors use a specific hole transport agent that provides an electrophotographic photosensitive member having high sensitivity, low residual potential, high mobility, and high durability. By incorporating an electron transport agent in the charge transport layer, exposure memory characteristics can be further improved without losing various advantages such as high sensitivity, low residual potential, high mobility, and high durability that are exhibited by the hole transport agent. The present invention has been completed by finding that it can be improved.
[0009]
That is, the gist of the present invention is that a laminated electrophotographic photosensitive member in which a charge generating layer containing a charge generating agent and a charge transporting layer containing a charge transporting agent are provided on a conductive support directly or via an undercoat layer. In the body, the charge transport layer contains at least one hole transport agent represented by the following general formula (1) and at least one electron transport agent represented by the following general formula (2). A functionally separated laminated electrophotographic photosensitive member.
[0010]
The weight ratio of the amount of the electron transport agent to the amount of the hole transport agent in the charge transport layer is preferably 10 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the hole transport agent.
[0011]
[Chemical 3]
Figure 2005049470
[0012]
In the above formula, R 1 , R 2 , R 5 and R 6 are the same or different and each represents an alkyl group, alkoxy group, aryl group or aralkyl group atom. m, n, p and q are the same or different and represent an integer of 0 to 3. However, when R 1 and R 2 are the same group, m and n represent different integers. When R 5 and R 6 are the same group, p and q represent different integers. R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group.
[0013]
[Formula 4]
Figure 2005049470
[0014]
In the above formula, R is a hydrogen atom, an alkyl group, or an alkoxy group, and each of R 1 and R 2 is a substituted or unsubstituted alkyl group, an alkoxy group, or an aryl group, which are different from each other, A naphthalenetetracarboxylic acid diimide derivative represented by R 3 is a hydrogen atom, or a substituted or unsubstituted alkyl group, alkoxy group or aryl group.
[0015]
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below. The electrophotographic photoreceptor of the present invention comprises a charge generation layer containing a charge generation agent on a conductive support directly or via an undercoat layer, and a charge transport layer containing a hole transport agent having a specific structure. A multilayer electrophotographic photoreceptor having high sensitivity, low residual potential, high mobility, high durability, and excellent exposure memory characteristics by containing an electron transport agent having at least a specific structure in the charge transport layer. can get. The layer structure on the conductive support or the intermediate layer may be a structure in which a charge transport layer is laminated on a charge generation layer or a structure in which a charge generation layer is laminated on a charge transport layer.
[0016]
Specific examples of the compound represented by the general formula (1) are shown in (HT-1) to (HT-12), respectively, but the invention is not limited thereto.
[0017]
[Chemical formula 5]
Figure 2005049470
[0018]
[Chemical 6]
Figure 2005049470
[0019]
Specific examples of the compound represented by the general formula (2) are shown in (ET-1) to (ET-8), respectively, but the invention is not limited thereto.
[0020]
[Chemical 7]
Figure 2005049470
[0021]
<Conductive Support> As the conductive support, any of those employed in known electrophotographic photoreceptors can be used. Specifically, for example, drums, sheets made of metal materials such as aluminum, aluminum alloy, stainless steel, copper, nickel, etc., laminates of these metal foils, deposits, or aluminum, copper, palladium, tin oxide, oxidation on the surface Examples thereof include a polyester film provided with a conductive layer such as indium, and an insulating support such as paper. Furthermore, a plastic film, a plastic drum, paper, a paper tube, and the like obtained by applying a conductive material such as metal powder, carbon black, copper iodide, and a polymer electrolyte together with an appropriate binder to conduct a conductive treatment may be used. Further, a plastic sheet or drum containing a conductive material such as metal powder, carbon black, or carbon fiber and becoming conductive can be used. Moreover, the plastic film and belt which carried out the electroconductive process with electroconductive metal oxides, such as a tin oxide and an indium oxide, are mentioned. Among these, an endless pipe made of metal such as aluminum is a preferable support.
[0022]
<Intermediate layer> In the present invention, a known intermediate layer which is usually used may be provided between the conductive support and the photosensitive layer.
Examples of the intermediate layer include an aluminum anodic oxide coating, an inorganic layer such as aluminum oxide and aluminum hydroxide, polyvinyl alcohol, polyvinyl pyridine, polyvinyl pyrrolidone, polyethylene oxide, polyacrylic acids, celluloses, polyglutamic acid, casein, gelatin, and starches. An organic layer using a resin such as a water-soluble resin, a phenol resin, an alkyd resin, a melamine resin, or polyvinyl formal is used. When the organic layer is used as a barrier layer, a metal oxide such as titania, alumina, silica, zirconium oxide or titanium oxide, or a metal fine powder such as copper, silver or aluminum may be dispersed. In the case of an organic layer, the above resin is dissolved or dispersed in a solvent alone or together with the above metal oxide / metal fine powder, and a wire bar, doctor blade, film applicator, immersion, It can be formed by coating and drying by a coating method such as spraying. The thickness of these barrier layers can be set as appropriate, but it is preferably 0.05 to 20 μm, preferably 0.1 to 10 μm.
[0023]
In the laminated intermediate layer, a thin resin layer can be separately provided to such an extent that the conductivity is not affected. In this case, the resins used include water-soluble resins such as polyvinyl alcohol, polyvinyl pyridine, polyvinyl pyrrolidone, polyethylene oxide, polyacrylic acids, methyl cellulose, ethyl cellulose, polyglutamic acid, casein, gelatin, starch, polyamide resins, phenol resins, polyvinyl Examples thereof include resins such as formal and alkyd resins.
[0024]
<Charge generation layer> On the above-described intermediate layer, a charge generation layer containing a charge generation agent is formed. Examples of the charge generator include powders of inorganic photoconductive materials such as selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, α-silicon, metal-free phthalocyanine, titanyl phthalocyanine pigment, azo pigment, bisazo pigment, perylene Various conventionally known pigments such as pigments, ansanthrone pigments, indigo pigments, triphenylmethane pigments, styrene pigments, toluidine pigments, pyrazoline pigments, quinacridone pigments, dithioketopyrrolopyrrole pigments, etc. It is done.
[0025]
In particular, a digital optical image forming apparatus such as a laser beam printer or a plain paper facsimile apparatus using infrared light such as a semiconductor laser needs a photosensitive member having sensitivity in a wavelength region of 700 nm or more. As the generator, phthalocyanine pigments among the above examples are preferably used, and the charge generator is used singly or in combination of two or more so that the photosensitive layer has sensitivity in a desired wavelength region. can do.
[0026]
As a binder resin for the charge generation layer, dispersion in a form bound with various binder resins such as polyester, polyvinyl acetate, polycarbonate, polyvinyl acetoacetal, polyvinyl propional, polyvinyl butyral, phenoxy, epoxy, urethane, cellulose ester, and cellulose ether. May be used in layers. Further, examples of the binder resin include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinyl alcohol, and ethyl vinyl ether, polyamide, and silicon resin.
[0027]
The charge generator is preferably contained in a proportion of 5 to 1000 parts by weight, particularly 30 to 500 parts by weight, per 100 parts by weight of the binder resin.
[0028]
<Charge transport layer>
The charge transport layer is mainly composed of a hole transport agent represented by (HT-1) to (HT-12), an electron transport agent represented by (ET-1) to (ET-8), and a resin binder.
[0029]
Further, the content of the electron transport agent contained in the charge transport layer can be contained in a proportion of 10 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the hole transport agent contained in the charge transport layer. .
[0030]
In the present invention, as the hole transport agent in the charge transport layer, only one kind of hole transport agent represented by the general formula (1) may be used, or two or more kinds may be mixed. The second hole transport agent is contained in the charge transport layer in an amount of 5 to 100 parts by weight, preferably 30 to 100 parts by weight, based on the first hole transport agent represented by the general formula (1). The total amount of the hole transporting agent is preferably 10 to 500 parts by weight, preferably 30 to 100 parts by weight with respect to 100 parts by weight of the binder resin.
[0031]
As the second hole transporting agent contained in the charge transporting layer, various conventionally known hole transporting compounds can be used. Especially benzidine compounds, phenylenediamine compounds, naphthylenediamine compounds, phenanthrylenediamine compounds, oxadiazole compounds, styryl compounds, carbazole compounds, pyrazoline compounds, hydrazone compounds, triphenylamine compounds , Indole compounds, oxazole compounds, isoxazole compounds, thiazole compounds, thiadiazole compounds, imidazole compounds, pyrazole compounds, triazole compounds, butadiene compounds, pyrene-hydrazone compounds, acrolein compounds, carbazole- Hydrazone compounds, quinoline-hydrazone compounds, stilbene compounds, stilbene-hydrazone compounds, diphenylenediamine compounds, and the like are preferably used.
In particular, when the charge transport layer contains a second hole transport agent, the hole transport agent represented by the general formula (1) different from the first hole transport agent as the second hole transport agent. Is preferably used.
[0032]
In the present invention, the electron transport agent in the charge transport layer is represented by the general formula (2), which is different from the first electron transport agent, in addition to using only one electron transport agent represented by the general formula (2). Can be used in combination with the first electron transport agent.
[0033]
The amount of the second electron transport agent is 5 to 100 parts by weight, preferably 30 to 50 parts by weight, based on 100 parts by weight of the first electron transport agent represented by the general formula (2), and is contained in the charge transport layer. The total amount of the electron transporting agent is preferably 1 to 200 parts by weight, preferably 5 to 45 parts by weight, based on 100 parts by weight of the binder resin.
[0034]
Examples of the binder resin for the charge transporting layer include vinyl polymers such as polyester, polymethyl methacrylate, polystyrene, and polyvinyl chloride, and copolymers thereof, polycarbonate, polyester, polyester carbonate, polysulfone, polyimide, phenoxy, epoxy, and silicone resin. Such a polymer and a copolymer thereof may also be used, and these partially crosslinked cured products can also be used. Furthermore, you may blend and use 2 or more types of the said binder resin. The ratio of the binder resin to the charge transport material is 30 to 90 parts by weight, preferably 40 to 70 parts by weight, with respect to 100 parts by weight of the binder resin. The charge transport layer may contain various additives such as an antioxidant and a sensitizer as necessary. The charge transport layer may be used in a thickness of 10 to 60 μm, preferably 10 to 45 μm, more preferably 25 to 40 μm.
[0035]
As a method for forming the charge transport layer, a coating solution obtained by dissolving or dispersing a substance to be contained in a layer in a solvent is applied by a known coating method such as a wire bar, a doctor blade, a film applicator, dipping or spraying. It can be formed by working and drying.
[0036]
The electrophotographic photosensitive member of the present invention can be used not only in electrophotographic copying machines but also widely in electrophotographic application fields such as laser beam printers, CRT printers, LED printers, liquid crystal printers, laser plate making, and facsimiles. .
An electrophotographic apparatus such as a copying machine or a printer using the electrophotographic photosensitive member of the present invention includes at least each process of charging, exposure, development, and transfer, and any process that is usually used may be used. .
[0037]
As a charging method (charger), for example, corotron or scorotron charging using corona discharge, contact charging with a conductive roller, brush, film or the like may be used. Of these, scorotron charging is often used in charging methods using corona discharge in order to keep the dark potential constant. In the present invention, exposure is usually performed with a wavelength of 500 nm or more. Specifically, laser light such as He—Ne, or a lamp, a fluorescent lamp, or the like is used, but it is more preferable to use laser light. .
[0038]
As a developing method, a general method of developing by bringing a magnetic or non-magnetic one-component developer or two-component developer into contact or non-contact is used. As a transfer method, any method using a corona discharge, a method using a transfer roller or a transfer belt may be used. The transfer may be performed directly on paper, an OHP film, or the like, or may be transferred to an intermediate transfer body (belt shape or drum shape) and then transferred onto paper or an OHP film.
[0039]
Usually, after the transfer, a fixing process for fixing the developer onto paper or the like is used, and as the fixing means, commonly used thermal fixing, pressure fixing, or the like can be used.
In addition to these processes, processes such as normally used cleaning and static elimination may be provided.
[0040]
EXAMPLES Specific embodiments of the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples unless it exceeds the gist.
<Example 1>
<< Formation of Intermediate Layer >> 60 parts by weight of a phenol resin (TD447 manufactured by Dainippon Ink Co., Ltd.) as a binder resin, 20 parts by weight of an electron transfer agent (ET-1) and 100 parts by weight of methanol as a dispersion medium, A coating solution for the intermediate layer was prepared by mixing and dispersing with zirconia beads) for 24 hours. Next, an intermediate layer coating solution was applied onto a φ30 aluminum tube (support base) using a Teflon blade and dried at 150 ° C. for 30 minutes to form an intermediate layer having an average film thickness of 10 μm. An intermediate of the electrophotographic photosensitive member 1 was produced.
<< Formation of Charge Generation Layer >> First, 1 part by weight of Y-type titanyl phthalocyanine as a pigment was added to 39 parts by weight of ethyl cellosolve as a dispersion medium, and primary dispersion was performed using an ultrasonic disperser. Furthermore, a solution prepared by dissolving 1 part by weight of polyvinyl butyral (BM-1 manufactured by Sekisui Chemical Co., Ltd.) as a binder resin in 9 parts by weight of ethyl cellosolve was added to this dispersion, and the ultrasonic disperser was again used. Then, it was secondarily dispersed to prepare a coating solution for the charge generation layer in the laminated photosensitive layer. Next, this coating solution was applied onto the intermediate using a Teflon blade and dried at 110 ° C. for 5 minutes to form a charge generation layer having a thickness of 0.5 μm.
<< Formation of Charge Transport Layer >> Next, 80 parts by weight of a stilbene compound (HT-1) as a hole transport agent and 20 parts by weight of a diphenoquinone derivative (ET-1) as an electron transport agent (25% by weight with respect to the hole transport agent) %) And 100 parts by weight of Z-type polycarbonate (Panlite TS2050 manufactured by Teijin Chemicals) as a binder resin were mixed and dispersed together with 800 parts by weight of tetrahydrofuran to obtain a coating solution for a charge transport layer. The coating solution is applied onto the charge generation layer using a Teflon blade and dried at 110 ° C. for 30 minutes to form a charge transport layer having a thickness of 30 μm. The body was made.
<Example 2> In Example 1, the stacked type was the same as Example 1 except that the amount of the electron transport agent in the charge transport layer was 10 parts by weight (12.5% by weight with respect to the hole transport agent). An electrophotographic photoreceptor was prepared.
<Example 3> In Example 1, the same procedure as in Example 1 except that the amount of the electron transport agent in the charge transport layer was 30 parts by weight (37.5% by weight with respect to the hole transport agent). An electrophotographic photoreceptor was prepared.
<Example 4> A multilayer electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that (ET-2) was used as the electron transport agent for the charge transport layer.
<Example 5> A multilayer electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that (ET-3) was used as the electron transport agent for the charge transport layer.
<Example 6> A multilayer electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that (HT-2) was used as the hole transport agent in the charge transport layer.
<Example 7> A multilayer electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that (HT-3) was used as the hole transporting agent in the charge transporting layer.
<Example 8> A multilayer electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that (HT-11) was used as the hole transporting agent in the charge transporting layer.
<Example 9> A multilayer electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that (HT-12) was used as the hole transporting agent in the charge transporting layer.
<Comparative Example 1> A multilayer electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that 20 parts by weight of the electron transport agent (ET-1) in the charge transport layer was omitted.
<Comparative Example 2> Example 1 is the same as Example 1 except that 20 parts by weight of the hole transporting agent (HT-13) is added except for 20 parts by weight of the electron transporting agent (ET-1) in the charge transporting layer. In the same manner, a multi-layer electrophotographic photoreceptor was prepared.
[0041]
[Chemical 8]
Figure 2005049470
[0042]
<Comparative Example 3> Example 1 is the same as Example 1 except that 20 parts by weight of the hole transporting agent (HT-14) is added except for 20 parts by weight of the electron transporting agent (ET-1) in the charge transporting layer. In the same manner, a multi-layer electrophotographic photoreceptor was prepared.
[0043]
[Chemical 9]
Figure 2005049470
[0044]
<Comparative Example 4> In Example 1, a stacked electron was produced in the same manner as in Example 1 except that an electron transfer agent (ET-8) was added instead of the electron transfer agent (ET-1) of the charge transport layer. A photoconductor was prepared.
[0045]
Embedded image
Figure 2005049470
[0046]
<Comparative Example 5> In Example 1, a stacked electron was produced in the same manner as in Example 1 except that an electron transfer agent (ET-9) was added instead of the electron transfer agent (ET-1) of the charge transport layer. A photoconductor was prepared.
[0047]
Embedded image
Figure 2005049470
[0048]
<Comparative Example 6> In Example 1, a laminated type was used in the same manner as in Example 1 except that the hole transport agent (HT-13) was added instead of the hole transport agent (HT-1) in the charge transport layer. An electrophotographic photoreceptor was prepared.
<Comparative Example 7> In Example 1, a laminated type was used in the same manner as in Example 1 except that a hole transport agent (HT-14) was added instead of the hole transport agent (HT-1) in the charge transport layer. An electrophotographic photoreceptor was prepared.
<Comparative Example 8> The same procedure as in Example 1 was conducted except that the electron transporting agent (ET-1) in the charge transporting layer was 40 parts by weight (50% by weight with respect to the hole transporting agent). A laminated electrophotographic photosensitive member was prepared.
[0049]
Table 1 shows the results obtained by mounting the electrophotographic photosensitive member having the photosensitive layer obtained as described above on a Canon laser printer LBP-450 and evaluating the following characteristics before and after printing 1,000 sheets.
[0050]
[Table 1]
Figure 2005049470
[0051]
<Charging and Sensitivity> The electrophotographic photosensitive member was mounted on a Canon laser printer LBP-450, and the surface potential at the time of non-exposure and the surface potential at the time of exposure were measured at the development position.
<Exposure memory> An electrophotographic photosensitive member is mounted on a Canon laser printer LBP-450, a black solid part is printed on the first drum, a gray image is printed on the second and subsequent drums, and the second and subsequent drums are equivalent. It was visually determined whether or not a black solid portion of the first round of the drum was generated as an exposure memory image in the gray portion. A document as shown in FIG. 1 was used to determine the occurrence of exposure memory. FIG. 1 shows an image in which a memory image of an exposed portion is generated in a gray portion due to a decrease in the photoreceptor surface potential of the solid black portion. The criterion for determining the exposure memory was ○ when no memory image was generated, △ when it was slightly generated but no problem in practical use, and × when it was clearly generated.
[0052]
From Table 1, 80 parts by weight of the hole transport agent (HT-1), (HT-2), (HT-3), (HT-11), (HT-12) and the electron transport agent (ET-1), When (ET-2) and (ET-3) are used within 30 parts by weight (within 37.5% by weight with respect to the hole transport agent), not only the charging and post-exposure potential are good, An exposure memory image was not generated even after 1000 sheets of running. In Comparative Example 1, which contains 80 parts by weight of the hole transporting agent (HT-1) but does not contain the electron transporting agent, although the sensitivity and charging characteristics are good, an exposure memory image is generated, and the electron transporting agent is produced. Comparative Example 2 and Comparative Example 3 in which Comparative Example 2 and Comparative Example 3 in which the hole transporting agent represented by the general formula (1) and the other hole transporting agent (HT-13) or (HT-14) were added were not used. Then, although the sensitivity and charging characteristics were good, an exposure memory image was generated. In Comparative Example 3, the initial sensitivity was also poor.
Further, exposure memory images were also generated in Comparative Examples 4 and 5 in which (ET-8) and (ET-9) were added in place of the electron transfer agent represented by the general formula (2). Instead of the hole transport agent represented by the general formula (1) (HT-13)
In Comparative Example 6 to which (ET-1) and (ET-1) were added, an exposure memory image was similarly generated, and in Comparative Example 7 to which (HT-14) and (ET-1) were added, only a slight amount of exposure memory was generated. However, the initial sensitivity was poor.
In Comparative Example 8 in which 80 parts by weight of the hole transporting agent (HT-1) and 40 parts of the electron transporting agent (ET-1) were added, only a slight exposure memory image was generated at the initial stage. After 1000 sheets, an exposure memory image is clearly generated, and it can be seen that the amount of the electron transfer agent is too large at 40 parts of the electron transfer agent (within 50% by weight with respect to the hole transfer agent).
[0053]
As described above, the hole transport agent represented by the general formula (1) and the electron transport agent represented by the general formula (2) are included in the charge transport, and the content of the charge transport agent is 10% by weight with respect to the hole transport agent. In the case of not less than 40 parts by weight and not more than 40 parts by weight, a satisfactory image could be obtained while satisfying charging and post-exposure potential and suppressing the occurrence of exposure memory.
[0054]
According to the present invention, by including a hole transporting agent having a specific structure and an electron transporting agent having a specific structure during charge transport, the electrical characteristics during initial and repeated use are stable. In addition, it is possible to provide a function-separated laminated photoconductor that does not generate an exposure memory image.
[Brief description of the drawings]
FIG. 1 is a diagram showing an exposure memory image evaluation document and an exposure memory image.

Claims (2)

導電性支持体上に直接または下引き層を介して、電荷発生剤を含有する電荷発生層と電荷輸送剤を含有する電荷輸送層を設けた積層型電子写真感光体において、前記電荷輸送層には正孔輸送剤として下記一般式(1)で示される化合物の少なくとも1種と電子輸送剤として下記一般式(2)で示される化合物の少なくとも1種を含有することを特徴とする機能分離積層型電子写真感光体。
Figure 2005049470
上記式中、R、R、RおよびRは同一または異なって、アルキル基、アルコキシ基、アリール基、アラルキル基を示す。m,n,pおよびqは同一または異なって0〜3の整数を示す。但し、RおよびRが同一の基であるとき、mおよびnは異なる整数を示す。また、RおよびRが同一の基であるとき、pおよびqは異なる整数を示す。RおよびRは同一または異なって、水素原子またはアルキル基を示す。
Figure 2005049470
上記式中、Rは水素原子、アルキル基、アルコキシ基、であり、R 及びR の各々は置換または未置換のアルキル基、アルコキシ基またはアリール基であって、これらは互いに異なっており、R は水素原子、或いは置換または未置換のアルキル基、アルコキシ基またはアリール基である、で表されるナフタレンテトラカルボン酸ジイミド誘導体。
In a laminated electrophotographic photosensitive member in which a charge generating layer containing a charge generating agent and a charge transporting layer containing a charge transporting agent are provided directly or via an undercoat layer on a conductive support, The functional separation laminate comprising at least one compound represented by the following general formula (1) as a hole transporting agent and at least one compound represented by the following general formula (2) as an electron transporting agent Type electrophotographic photoreceptor.
Figure 2005049470
In the above formula, R 1 , R 2 , R 5 and R 6 are the same or different and each represents an alkyl group, an alkoxy group, an aryl group or an aralkyl group. m, n, p and q are the same or different and represent an integer of 0 to 3. However, when R 1 and R 2 are the same group, m and n represent different integers. When R 5 and R 6 are the same group, p and q represent different integers. R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group.
Figure 2005049470
In the above formula, R is a hydrogen atom, an alkyl group, or an alkoxy group, and each of R 1 and R 2 is a substituted or unsubstituted alkyl group, an alkoxy group, or an aryl group, which are different from each other, A naphthalenetetracarboxylic acid diimide derivative represented by R 3 is a hydrogen atom, or a substituted or unsubstituted alkyl group, alkoxy group or aryl group.
上記電荷輸送層中の前記正孔輸送剤量に対する前記電子輸送剤量の重量比が正孔輸送剤100重量部に対して10重量部以上40重量部以下であることを特徴とする請求項1記載の機能分離積層型電子写真感光体。The weight ratio of the amount of the electron transport agent to the amount of the hole transport agent in the charge transport layer is 10 to 40 parts by weight with respect to 100 parts by weight of the hole transport agent. The function-separated laminated electrophotographic photosensitive member as described.
JP2003204016A 2003-07-30 2003-07-30 Electrophotographic photoreceptor Pending JP2005049470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204016A JP2005049470A (en) 2003-07-30 2003-07-30 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204016A JP2005049470A (en) 2003-07-30 2003-07-30 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2005049470A true JP2005049470A (en) 2005-02-24

Family

ID=34263178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204016A Pending JP2005049470A (en) 2003-07-30 2003-07-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2005049470A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003740A (en) * 2005-06-23 2007-01-11 Nippon Synthetic Chem Ind Co Ltd:The Photosensitive resin composition and photoresist film using same
JP2007322518A (en) * 2006-05-30 2007-12-13 Kyocera Mita Corp Multilayer electrophotographic photoreceptor and image forming apparatus
JP2010164639A (en) * 2009-01-13 2010-07-29 Ricoh Co Ltd Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the same
JP2013246364A (en) * 2012-05-28 2013-12-09 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, electrophotographic cartridge, and image forming apparatus
JP2016126102A (en) * 2014-12-26 2016-07-11 三菱化学株式会社 Xerographic photoreceptor, xerographic photoreceptor cartridge and image forming apparatus
JP2017097065A (en) * 2015-11-19 2017-06-01 富士電機株式会社 Electrophotographic photoreceptor and electrophotographic apparatus provided with the same, and packaging body of electrophotographic photoreceptor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003740A (en) * 2005-06-23 2007-01-11 Nippon Synthetic Chem Ind Co Ltd:The Photosensitive resin composition and photoresist film using same
JP2007322518A (en) * 2006-05-30 2007-12-13 Kyocera Mita Corp Multilayer electrophotographic photoreceptor and image forming apparatus
JP4657150B2 (en) * 2006-05-30 2011-03-23 京セラミタ株式会社 Multilayer electrophotographic photosensitive member and image forming apparatus
US8765337B2 (en) 2006-05-30 2014-07-01 Kyocera Mita Corporation Multilayer type electrophotographic photoconductor and image forming apparatus
JP2010164639A (en) * 2009-01-13 2010-07-29 Ricoh Co Ltd Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the same
JP2013246364A (en) * 2012-05-28 2013-12-09 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, electrophotographic cartridge, and image forming apparatus
JP2016126102A (en) * 2014-12-26 2016-07-11 三菱化学株式会社 Xerographic photoreceptor, xerographic photoreceptor cartridge and image forming apparatus
JP2017097065A (en) * 2015-11-19 2017-06-01 富士電機株式会社 Electrophotographic photoreceptor and electrophotographic apparatus provided with the same, and packaging body of electrophotographic photoreceptor
CN106814559A (en) * 2015-11-19 2017-06-09 富士电机株式会社 The bundling body of Electrophtography photosensor, electro-photography apparatus and Electrophtography photosensor
CN106814559B (en) * 2015-11-19 2021-09-28 富士电机株式会社 Electrophotographic photoreceptor, electrophotographic apparatus, and package of electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JP6333629B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP2013257416A (en) Electrophotographic photoreceptor, and image forming apparatus and process cartridge comprising the same
JP2010107923A (en) Electrophotographic photoconductor and electrophotographic apparatus
JP2007147824A (en) Electrophotographic photoreceptor and image forming apparatus
JP2016148766A (en) Electrophotographic photoreceptor, inspection method of the same, and image forming apparatus including electrophotographic photoreceptor
JP2005049470A (en) Electrophotographic photoreceptor
JP2002341570A (en) Electrophotographic sensitive body
JP2008083105A (en) Electrophotographic photoreceptor, process cartridge for image forming apparatus, and image forming apparatus
JP3987040B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP5719886B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3758246B2 (en) Electrophotographic method and electrophotographic photosensitive member used in the method
JP2005043632A (en) Electrophotographic photoreceptor
JPH10123855A (en) Electrophotographic device and image forming method
JP2003302779A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, image forming method, image forming device and process cartridge
JPH10123802A (en) Electrophotographic device, and image forming method
JP3910005B2 (en) Electrophotographic photoreceptor
JP3952071B2 (en) Electrophotographic equipment
JP2005024747A (en) Electrophotographic photoreceptor
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JPH0836301A (en) Electrophotographic copying method for reversal developing
JPH10123856A (en) Electrophotographic device and image forming method
JPH10123905A (en) Electrophotographic device and image forming method
JP2003228183A (en) Electrophotographic photoreceptor and image forming apparatus
JP2005182006A (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and cartridge
JP2016053634A (en) Electrophotographic photoreceptor, manufacturing inspection method of the same and image formation device including electrophotographic photoreceptor