JPH01267305A - Control method for compound power plant - Google Patents

Control method for compound power plant

Info

Publication number
JPH01267305A
JPH01267305A JP9343388A JP9343388A JPH01267305A JP H01267305 A JPH01267305 A JP H01267305A JP 9343388 A JP9343388 A JP 9343388A JP 9343388 A JP9343388 A JP 9343388A JP H01267305 A JPH01267305 A JP H01267305A
Authority
JP
Japan
Prior art keywords
steam
pressure
temperature
turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9343388A
Other languages
Japanese (ja)
Inventor
Eiji Yanai
矢内 英司
Yoichi Hattori
洋市 服部
Nobuo Nagasaki
伸男 長崎
Yoshiki Noguchi
芳樹 野口
Tsugio Hashimoto
橋本 継男
Naoto Koizumi
直人 小泉
Shinichi Hoizumi
保泉 真一
Kazusada Hoshino
星野 和貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP9343388A priority Critical patent/JPH01267305A/en
Publication of JPH01267305A publication Critical patent/JPH01267305A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor

Abstract

PURPOSE:To aim at improvement in plant thermal efficiency and prevention against erosion due to wetness by measuring pressure and temperature in a mid-step end at a steam turbine for their arithmetic processing, and performing control and performance monitoring over the plant thermal efficiency, the wetness of steam turbine exhaust or the like. CONSTITUTION:A fuel flow signal 11, a gas turbine load signal 13 and a gas turbine exhaust gas temperature signal 12 are operated each by a gas turbine controller 14. On the basis of these signals 11-13, a gas turbine fuel flow control valve 5 and an inlet guide vane 2 are controlled. On the other hand, on the basis of each detection signal out of a temperature gage 42 and a pressure gage 43, high pressure main steam pressure 45, temperature 46 and low pressure main steam pressure or the like are operated by a steam turbine computing element 48, and this operated result is inputted into the gas turbine controller 14. In addition, at this gas turbine controller 14, a control signal between the inlet guide vane 2 and each of high-low pressure main steam pressure control valves 23, 24 is operated according to a deviation with a signal out of the steam turbine computing element 48.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービン・排熱回収ボイラ、及び、蒸気
タービンから構成される複合発電プラントに係り、特に
、蒸気タービン途中の段落の蒸気圧力・温度を運転制御
及び運転管理に用いる複合発電プラントの制御方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a combined power generation plant consisting of a gas turbine, an exhaust heat recovery boiler, and a steam turbine. -Relates to a control method for a combined power generation plant that uses temperature for operation control and operation management.

〔従来の技術〕[Conventional technology]

従来の一軸型複合発電プラントでは、蒸気タービン入口
の主蒸気圧力・温度は計測されているが。
In conventional single-shaft combined cycle power plants, the main steam pressure and temperature at the steam turbine inlet are measured.

監視に用いるだけで、制御はされていなかった。It was only used for monitoring and was not controlled.

主蒸気圧力、温度は、排熱回収ボイラの加熱源であるガ
スタービンの排ガス特性によって決まってしまっており
、最適効率を考えた主蒸気圧力・温度の制御は行なわれ
ていない。
The main steam pressure and temperature are determined by the exhaust gas characteristics of the gas turbine, which is the heating source of the waste heat recovery boiler, and the main steam pressure and temperature are not controlled in consideration of optimal efficiency.

・本発明に近い例として、主蒸気温度が急激に上昇した
とき、または、過度に上昇したときに主蒸気温度の信号
により、ガスタービン排ガス温度を修正する例が特開昭
58−107805号公報に開示されているが、蒸気タ
ービンの最適運転条件を考慮した制御はなされていなか
った。
・As an example similar to the present invention, an example of correcting the gas turbine exhaust gas temperature using a main steam temperature signal when the main steam temperature rises rapidly or excessively is disclosed in Japanese Patent Application Laid-Open No. 58-107805. However, control was not performed in consideration of the optimum operating conditions of the steam turbine.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ボイラと蒸気タービンから構成される火力発電プラント
は、給水加熱器での給水の加熱に蒸気を使用するため、
蒸気を蒸気タービンより抽気して使用している。このた
め、抽気管に圧力計、及び、温度計を設置して、抽気の
圧力・温度を計測し、この圧力・温度から蒸気タービン
段落途中の圧力・温度を推算することが可能であった。
Thermal power plants, which consist of a boiler and a steam turbine, use steam to heat the feed water in the feed water heater.
Steam is extracted from a steam turbine and used. Therefore, it was possible to install a pressure gauge and a thermometer in the bleed air pipe, measure the pressure and temperature of the bleed air, and estimate the pressure and temperature in the middle of the steam turbine stage from this pressure and temperature.

これに対し、複合発電プラントでは給水加熱器が設置さ
れず、従って、蒸気タービンからの油気もないため、蒸
気タービン段落途中の圧力・温度は計測されていなかっ
た。従って、蒸気タービンのi−s線は実測では確認で
きないという問題があった。
On the other hand, in combined cycle power plants, no feedwater heaters are installed, and therefore there is no oil from the steam turbine, so pressure and temperature in the middle of the steam turbine stage are not measured. Therefore, there was a problem in that the i-s line of the steam turbine could not be confirmed by actual measurement.

蒸気タービン内を流れる蒸気は、蒸気タービン入口では
過熱蒸気であるが、膨張して仕事をするとともに圧力・
温度が低下し、低圧段落では湿り蒸気となる。湿り蒸気
は、蒸気タービンの翼にエロージョンを発生させる可能
性があるため、一般に、蒸気タービン最終段における蒸
気の湿り度を13%前後に制限している。蒸気タービン
の蒸気条件を選定する際には、定格負荷から部分負荷ま
ですべての運転範囲において、蒸気タービン最終段の蒸
気湿り度が湿り度制限値内にはいるように計画している
。しかし、蒸気タービン最終段の湿り度は、1−Saを
実測で確認できないこと、及び、湿り度を制御すること
ができないことから、蒸気条件の選定時には、湿り度が
制限値に対しておなりの余裕をもつように選定されてい
る。プラント熱効率的には、蒸気タービン最終段の湿り
度が大きい蒸気条件の方がよいため、湿り度の余裕を大
きくとるとプラント熱効率が低下するという問題があっ
た。
The steam flowing inside the steam turbine is superheated steam at the steam turbine inlet, but it expands and does work, and also increases pressure and
The temperature decreases and becomes wet steam in the low pressure stage. Since wet steam may cause erosion in the blades of the steam turbine, the wetness of the steam in the final stage of the steam turbine is generally limited to around 13%. When selecting the steam conditions for the steam turbine, it is planned that the steam humidity at the final stage of the steam turbine will be within the humidity limit value in all operating ranges from rated load to partial load. However, since it is not possible to confirm the humidity of the final stage of the steam turbine by actual measurement of 1-Sa, and it is not possible to control the humidity, when selecting the steam conditions, it is necessary to make sure that the humidity is below the limit value. It is selected to have a margin of . In terms of plant thermal efficiency, steam conditions with high humidity at the final stage of the steam turbine are better; therefore, if a large humidity margin is taken, the plant thermal efficiency decreases.

混圧型蒸気タービンは、主蒸気の他に低圧蒸気を蒸気ソ
ービンの途中の段落に混入させるタイプの蒸気タービン
であるが、蒸気タービン段落内を ”流れる蒸気と混入
させる低圧蒸気の温度差はある制限値内におさえる必要
がある。こ−の混入点の蒸気の温度差が大きくなると、
蒸気タービンのケーシング・ロータの変形、振動が生じ
る問題がある。
A mixed-pressure steam turbine is a type of steam turbine that mixes low-pressure steam in addition to main steam into a stage in the middle of the steam turbine, but there is a certain limit on the temperature difference between the steam flowing in the steam turbine stage and the low-pressure steam mixed. It is necessary to keep the temperature within this value.If the temperature difference of the steam at this point of entry increases,
There is a problem of deformation and vibration of the casing and rotor of the steam turbine.

このため、混入点の温度差が制限値を超えないよう蒸気
条件を選定しているが、従来混入点の温度差は制御され
ていないので、蒸気条件を選定する際に混入点の温度差
に余裕を大きくとり、プラント熱効率が低下するという
問題があった。
For this reason, steam conditions are selected so that the temperature difference at the mixing point does not exceed the limit value, but since the temperature difference at the mixing point is not conventionally controlled, when selecting steam conditions, the temperature difference at the mixing point is There was a problem in that a large margin was required, resulting in a decrease in plant thermal efficiency.

本発明の目的は、蒸気タービンの制限(排気湿り度、混
入点温度差等)範囲内で、プラント熱効率が最適となる
ように運転制御する方法、及び、経年劣化等運転管理を
行う方法を提供することにある。
The purpose of the present invention is to provide a method for controlling operation so that plant thermal efficiency is optimized within the limits of steam turbines (exhaust humidity, temperature difference at mixing point, etc.) and a method for managing operation such as aging deterioration. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、蒸気タービン途中の段落の圧力・温度を計
測してi−s線を演算し、プラント熱効率が蒸気タービ
ンの制限範囲内で最適となるよう、主蒸気圧力・主蒸気
温度・低圧蒸気圧力を制御することにより達成される。
The above purpose is to measure the pressure and temperature in the middle stage of the steam turbine, calculate the i-s line, and calculate the main steam pressure, main steam temperature, and low pressure steam so that the plant thermal efficiency is optimized within the steam turbine limit range. This is achieved by controlling the pressure.

〔作用〕[Effect]

単圧型蒸気タービンでは、低圧段落で、かつ、蒸気状態
が湿りとならない段落に圧力計・温度計を設置する。混
圧型蒸気タービンでは、低圧蒸気が混入する位置の直前
の上流側の段落に圧力計・温度計1設置する。
In single-pressure steam turbines, pressure gauges and temperature gauges are installed in the low-pressure stage and in the stage where the steam does not become wet. In a mixed pressure steam turbine, a pressure gauge/temperature gauge 1 is installed in the upstream stage immediately before the location where low pressure steam is mixed.

タービン段落内の圧力・温度の他に、主蒸気圧力・主蒸
気温度・低圧蒸気圧力を計測し、これらのデータを電計
機で演算処理して、蒸気タービンミーs線・排気湿り度
・低圧蒸気温入点温度差等を算出する。これらの処理デ
ータと、あらかじめシミュレートして設定した最適i−
s線・最適蒸気圧力・温度、及び、排気湿り度制限値・
混入点温度差制限値から、最適な主蒸気圧力・主蒸気温
度・低圧蒸気圧力を設定して、この設定条件に近づくよ
うガスタービンの入口案内翼(IGV)  ・主蒸気圧
力調整弁・低圧蒸気圧力調整弁を制御する。
In addition to the pressure and temperature in the turbine stage, main steam pressure, main steam temperature, and low pressure steam pressure are measured, and these data are processed by an electronic meter to determine the steam turbine Meas line, exhaust humidity, and low pressure. Calculate the steam heating point temperature difference, etc. These processed data and the optimal i-
S-line, optimum steam pressure, temperature, and exhaust humidity limit value,
The optimum main steam pressure, main steam temperature, and low-pressure steam pressure are set from the mixing point temperature difference limit value, and the gas turbine inlet guide vane (IGV), main steam pressure regulating valve, and low-pressure steam are adjusted to approach these set conditions. Control the pressure regulating valve.

〔実施例〕〔Example〕

以下、本発明の一実施例について第11図により説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

ガスタービン装置、排熱回収ボイラ装置、蒸気タービン
装置より主に構成される複合発電プラントの概略系統を
第11図に示しである。
FIG. 11 shows a schematic system of a combined power generation plant mainly consisting of a gas turbine device, an exhaust heat recovery boiler device, and a steam turbine device.

ガス・タービン圧縮機1の入口に設置されたガスタービ
ン入口案内翼2によって流量を制御される空気3は、ガ
スタービン圧縮機1で圧縮され高圧の空気となり、燃焼
器4へ送られる。燃焼器4へ送られた高圧の空気は、燃
料流量調整弁5によって流量制御される燃料6と混合し
、燃焼器4で燃焼し高温・高圧のガスとなる。
Air 3 whose flow rate is controlled by a gas turbine inlet guide vane 2 installed at the inlet of the gas turbine compressor 1 is compressed by the gas turbine compressor 1 to become high-pressure air, and is sent to the combustor 4. The high-pressure air sent to the combustor 4 mixes with fuel 6 whose flow rate is controlled by a fuel flow rate regulating valve 5, and is combusted in the combustor 4 to become a high-temperature, high-pressure gas.

高温・高圧の燃焼ガスはガスタービン7で膨張して仕事
をする。さらに、ガスタービン7はガスタービン発電機
8を駆動して電気出力を得る。
The high-temperature, high-pressure combustion gas expands in the gas turbine 7 and performs work. Further, the gas turbine 7 drives a gas turbine generator 8 to obtain electrical output.

ガスタービン7で仕事をし終えたガスタービン排ガス9
は、その後流側に設置された排熱回収ボイラ20へ送ら
れ、ガスタービン排ガス9の保有する熱エネルギ(顕熱
)を回収すべく、水及び蒸気との熱交換が行なわれ、低
温の排ガス10となってついには大気へ放出される。
Gas turbine exhaust gas 9 after finishing work with gas turbine 7
is sent to the exhaust heat recovery boiler 20 installed on the downstream side, where it undergoes heat exchange with water and steam in order to recover the thermal energy (sensible heat) possessed by the gas turbine exhaust gas 9, and the low-temperature exhaust gas 10 and is finally released into the atmosphere.

一方、排気回収ボイラ20へ供給される給水19はガス
タービン排ガス9の顕熱を熱回収して、高温高圧の高圧
主蒸気(過熱蒸気)、及び、比較的低温低圧の低圧主蒸
気(飽和蒸気)となって蒸気タービンへ送られることに
なる。
On the other hand, the feed water 19 supplied to the exhaust recovery boiler 20 recovers the sensible heat of the gas turbine exhaust gas 9 and produces high temperature and high pressure high pressure main steam (superheated steam), relatively low temperature and low pressure low pressure main steam (saturated steam) ) and is sent to the steam turbine.

蒸気タービンは、高圧蒸気タービンと低圧蒸気タービン
から構成され混圧蒸気タービンと称する。
A steam turbine is composed of a high pressure steam turbine and a low pressure steam turbine and is called a mixed pressure steam turbine.

排熱回収ボイラ2oより発生した高圧主蒸気21は、ま
ず、高圧蒸気タービン23へ流入し、低圧蒸気タービン
24側へ、順次、仕事をし、比較的低温低圧の状態とな
って低圧蒸気タービン24へ導かれる。
The high-pressure main steam 21 generated from the exhaust heat recovery boiler 2o first flows into the high-pressure steam turbine 23, and sequentially performs work toward the low-pressure steam turbine 24 side, becoming a relatively low-temperature and low-pressure state. be led to.

排熱回収ボイラ20より発生したもう一方の低圧主蒸気
22は、低圧蒸気タービン24へ流入して高圧蒸気ター
ビンの排気と合流する。
The other low-pressure main steam 22 generated from the exhaust heat recovery boiler 20 flows into the low-pressure steam turbine 24 and joins with the exhaust gas of the high-pressure steam turbine.

合流した蒸気は、低圧蒸気タービン24で、順次、仕事
をして、ついには低温低圧の蒸気25となって復水器2
7へ送られる。
The combined steam sequentially performs work in the low-pressure steam turbine 24, and finally becomes low-temperature, low-pressure steam 25 and flows into the condenser 2.
Sent to 7.

高圧蒸気タービン23と低圧蒸気タービン24は、さら
に、蒸気タービン発電機26を駆動してそこで電気出力
を得る。
The high pressure steam turbine 23 and the low pressure steam turbine 24 further drive a steam turbine generator 26 for electrical output.

低圧蒸気タービン24で仕事をし終えた蒸気25は復水
器27で海水28と熱交換され、凝縮して復水となり、
復水器27内にためられる。さらに、その復水は復水器
27の出口に設置された給水ポンプ30でくみ出され、
昇圧されて、排熱回収ボイラ20への給水19として送
水される。
The steam 25 that has completed its work in the low-pressure steam turbine 24 exchanges heat with seawater 28 in the condenser 27, condenses and becomes condensed water.
It is stored in the condenser 27. Furthermore, the condensate is pumped out by a water supply pump 30 installed at the outlet of the condenser 27,
The pressure is increased and the water is sent as water supply 19 to the exhaust heat recovery boiler 20 .

次に、本発明の第一の実施例である蒸気タービンの性能
を管理する方法についで、第11図及び第12図をもっ
て説明する。
Next, a method for managing the performance of a steam turbine, which is a first embodiment of the present invention, will be explained with reference to FIGS. 11 and 12.

第12図は、第11図における高圧蒸気タービン23と
低圧蒸気タービン24の内部構造を詳細に示したもので
ある。
FIG. 12 shows in detail the internal structures of the high pressure steam turbine 23 and the low pressure steam turbine 24 in FIG. 11.

排熱回収ボイラ2oより発生した高圧主蒸気21は、高
圧蒸気タービン23の入口に設けられた高圧蒸気制御弁
31を通り高圧蒸気タービンボウル部33へ導かれる。
High-pressure main steam 21 generated from the exhaust heat recovery boiler 2o passes through a high-pressure steam control valve 31 provided at the inlet of the high-pressure steam turbine 23 and is guided to the high-pressure steam turbine bowl portion 33.

そこで−様に拡散した蒸気は高圧蒸気タービンの全周の
各段落(動翼部)35に渡り膨張を繰り返して仕事をし
て駆動力を得る。蒸気の流れを破線37で示す。
There, the steam diffused in a similar manner expands repeatedly in each stage (rotor blade section) 35 around the entire circumference of the high-pressure steam turbine to perform work and obtain driving force. The flow of steam is shown by dashed line 37.

一方の低圧主蒸気22は、低圧蒸気タービン24の入口
に設けられた低圧蒸気制御弁32を通り、低圧蒸気ター
ビンボウル部34へ導入されるが、ここで、高圧蒸気タ
ービン23で仕事をし終えた蒸気と混じり合い、−様に
拡散されて低圧蒸気38は低圧蒸気タービンの全周の各
段落(動翼部)36にわたって膨張を繰り返し、仕事を
して駆動力を得る。
One low-pressure main steam 22 passes through a low-pressure steam control valve 32 provided at the inlet of the low-pressure steam turbine 24 and is introduced into the low-pressure steam turbine bowl section 34, where it finishes its work in the high-pressure steam turbine 23. The low-pressure steam 38 is mixed with steam and diffused in a negative manner, and the low-pressure steam 38 repeatedly expands in each stage (rotor blade section) 36 around the entire circumference of the low-pressure steam turbine, performs work, and obtains driving force.

尚、高圧蒸気37は、高温高圧の過熱状態で高圧蒸気タ
ービン23へ導入されるが、低圧蒸気タービンボウル部
34人口では、比較的低温低圧の過熱状態の蒸気となる
。さらに、この低圧蒸気タービンボウル部34では、高
圧蒸気と多少温度レベルの異なる飽和状態の蒸気である
低圧主蒸気22と混じり、低圧蒸気タービン24へ導入
される。このときの蒸気は君子過熱領域にある。
The high-pressure steam 37 is introduced into the high-pressure steam turbine 23 in a superheated state of high temperature and high pressure, but in the low-pressure steam turbine bowl portion 34 it becomes superheated steam of relatively low temperature and low pressure. Further, in the low pressure steam turbine bowl portion 34, the steam is mixed with low pressure main steam 22, which is saturated steam at a slightly different temperature level from the high pressure steam, and introduced into the low pressure steam turbine 24. The steam at this time is in the superheated region.

ところで、低圧蒸気38は低圧蒸気タービン24で順次
仕事をするにつれ、次第に、圧力が下がり蒸気がドレン
化する湿りの状態へ移行する。
By the way, as the low-pressure steam 38 sequentially performs work in the low-pressure steam turbine 24, the pressure gradually decreases and the steam shifts to a wet state where it becomes drain.

充分に仕事をし終えた低圧蒸気38は、ついには真空状
態にある復水器27へ排気25として回収される0本発
明の一実施例である蒸気タービンの性能を管理するには
、以上述べた蒸気タービン内部の蒸気の状態を把埠する
必要がある。そのため、代表となる蒸気状態を測定する
計器位置を、蒸気の状態変化が一率で、かつ、終点近く
となる高圧蒸気タービンの動翼最終段落位置41に定め
る。
The low-pressure steam 38 that has completed its work is finally recovered as exhaust gas 25 to the condenser 27 in a vacuum state. In order to manage the performance of the steam turbine, which is an embodiment of the present invention, the above-mentioned steps are necessary. It is necessary to monitor the state of steam inside the steam turbine. Therefore, the instrument position for measuring the representative steam state is determined at the rotor blade final stage position 41 of the high-pressure steam turbine, where the steam state changes at a constant rate and is near the end point.

一般に、ボイラと蒸気タービンから構成される火力発電
プラントでは、給水加熱器が数多く設置されて給水の加
熱に蒸気タービンから抽気された蒸気を使用している。
Generally, in a thermal power plant consisting of a boiler and a steam turbine, a large number of feed water heaters are installed and steam extracted from the steam turbine is used to heat the feed water.

このため、油気管を利用して温度計42及び温度計43
を設置し、油気温度・圧力を計測して、この温度・圧力
より熱容量その他を求め、蒸気タービン段落途中の温度
・圧力を推算することができた。
For this reason, the thermometer 42 and the thermometer 43 are
was installed, measured the oil temperature and pressure, determined the heat capacity, etc. from this temperature and pressure, and was able to estimate the temperature and pressure in the middle of the steam turbine stage.

これに対して、複合発電プラントでは給水加熱器が設置
されていないため、蒸気タービンからの油気も無い。よ
って、測定点は直接蒸気タービン段落途中に限られる。
In contrast, combined cycle power plants do not have feedwater heaters installed, so there is no oil from the steam turbine. Therefore, the measurement points are limited directly to the middle of the steam turbine stage.

本測定位置41は、蒸気タービン膨張途中の蒸気は全運
転状態で過熱領域であること、かつ、膨張のできるだけ
終了点近くが好ましい。過熱領域であることの理由は、
温度と圧力でその状態が限定され、その他の飽和蒸気は
条件が多少変化すると湿り蒸気になりやすく、湿り蒸気
に限っては温度はその圧力で決まるが、状態量は湿り度
(%)が正確に測定出来ないと求まらない。また、湿り
度を正確に測定することは現状では非常に困戴である。
The main measurement position 41 is preferably such that the steam in the middle of expansion of the steam turbine is in a superheated region under all operating conditions, and is as close as possible to the end point of expansion. The reason for being in the overheating area is
Its state is limited by temperature and pressure, and other saturated steam tends to become wet steam if the conditions change slightly.As for wet steam, the temperature is determined by its pressure, but the state quantity is precisely the humidity (%). It cannot be determined unless it can be measured. Furthermore, it is currently very difficult to accurately measure the humidity.

以上、混圧蒸気タービンでの温度計、及び、圧力計の設
置位置を限定したが、一般的な車圧蒸気タービンでの設
置も前述のように、全運転範囲で過熱領域である必要が
ある。
The installation positions of the thermometer and pressure gauge in a mixed-pressure steam turbine have been limited above, but as mentioned above, installation in a general car-pressure steam turbine also needs to be in the overheating region over the entire operating range. .

次に、第12図で示した蒸気タービン内部の蒸気状態変
化を具体的にi−s線図をもって第13図及び第14図
に示す。
Next, the changes in the steam state inside the steam turbine shown in FIG. 12 are specifically shown in FIGS. 13 and 14 using i-s diagrams.

第13図は、複合発電プラントが定格負荷時における蒸
気タービン内部の蒸気の状態変化を示し、横軸にはエン
トロピ、縦軸にはエンタルピを示す。
FIG. 13 shows changes in the state of steam inside the steam turbine when the combined power plant is at rated load, with the horizontal axis showing entropy and the vertical axis showing enthalpy.

高気蒸気37の膨張開始点50陰、高温高圧の57at
a、480℃の状態にあり、第12図では高圧蒸気ター
ビンボウル部33に位置する。一般には、ここから−様
に低圧蒸気タービン排気25の膨張終了点56(本状態
は真空部で0,052ata)まで仕事を行なう。
Expansion starting point of high air steam 37 is 50 Yin, high temperature and high pressure is 57 at
a, the temperature is 480° C., and is located at the high pressure steam turbine bowl portion 33 in FIG. Generally, work is performed from here until the expansion end point 56 of the low pressure steam turbine exhaust 25 (0,052 ata in the vacuum section in this state).

しかし複圧混圧蒸気タービンでは、膨張の途中、飽和の
低圧主蒸気53が、第12図の低圧蒸気タービンボウル
部34で高圧蒸気52と同圧力で混じり合う。低圧主蒸
気53の温度は約160℃であり、高圧蒸気52のそれ
と比べ約50℃低い状態にある。
However, in a double-pressure mixed-pressure steam turbine, during expansion, saturated low-pressure main steam 53 mixes with high-pressure steam 52 at the same pressure in the low-pressure steam turbine bowl portion 34 of FIG. 12. The temperature of the low pressure main steam 53 is about 160°C, which is about 50°C lower than that of the high pressure steam 52.

よって、第12図の低圧蒸気タービンボウル部34にお
ける低圧蒸気タービン膨張開始点は、高圧蒸気52の状
態より温度が約8℃低い53へ移行する。
Therefore, the low pressure steam turbine expansion start point in the low pressure steam turbine bowl portion 34 in FIG. 12 shifts to 53, which is about 8° C. lower in temperature than the state of the high pressure steam 52.

低圧蒸気は54より一様に膨張して1.低圧蒸気タービ
ン排気25の膨張終了点55(真空部0 、052at
a)まで仕事を行なう。
The low pressure steam expands uniformly from 54 and 1. Expansion end point 55 of low pressure steam turbine exhaust 25 (vacuum part 0, 052at
Perform work up to a).

低圧蒸気タービン動翼36の下流側における蒸気の状態
は、湿りの域にあり最下流側である最終段動翼部では最
も湿りが厳しい。つまり、蒸気の一部が水滴と化し、翼
の二ローションが悲恋される。
The state of the steam on the downstream side of the low-pressure steam turbine rotor blades 36 is in a humid region, and the humidity is severest in the final stage rotor blade portion, which is the most downstream side. In other words, some of the steam turns into water droplets, and the two lotions on the wings become sad.

この二ローションの対策として、湿り度13%前後の規
制値が設けられているのが現状である。
As a countermeasure for these two lotions, a regulation value of about 13% humidity is currently set.

第13図において、一般的な蒸気タービンのi−5線(
50〜52〜56)と混圧蒸気タービンとのi−s線(
50〜52〜54〜55)を比較してわかるように、混
圧蒸気タービンでの湿りが厳しく、対策を講じる必要が
あると考えられる。
In Figure 13, the i-5 line (
50-52-56) and the i-s line (
As can be seen by comparing 50 to 52 to 54 to 55), the humidity in the mixed pressure steam turbine is severe, and it is considered necessary to take countermeasures.

尚、蒸気タービンの性能(効率)は、湿り度が高い程、
タービンの熱落差が大きいため良くなる。
In addition, the performance (efficiency) of a steam turbine increases as the humidity increases.
This is better because the turbine has a large heat drop.

この様に、タービンの性能は湿りによる二ローション発
生限界で一部決定づけられる。
Thus, the performance of the turbine is determined in part by the wetting bilotion limit.

第14図は、複合発電プラントの部分負荷時における蒸
気タービン内部の蒸気の状態変化を示し、第13図と同
様、横軸はエントロピ、縦軸はエンタルピを示す。
FIG. 14 shows changes in the state of steam inside the steam turbine during partial load of the combined power plant, and like FIG. 13, the horizontal axis shows entropy and the vertical axis shows enthalpy.

高圧蒸気37の膨張開始点70は、約20ata、33
0℃で、定格負荷のそれと比べると低い状態である。膨
張途中には、飽和の低圧主蒸気73が高圧蒸気72と同
圧力で混じり合い、低圧蒸気となるが本状態74は、約
2.5ata、 133℃と定格負荷のそれと比べて低
く、飽和蒸気に近い状態である。
The expansion starting point 70 of the high pressure steam 37 is approximately 20 ata, 33
The temperature is 0°C, which is lower than that of the rated load. During expansion, saturated low-pressure main steam 73 mixes with high-pressure steam 72 at the same pressure to form low-pressure steam, but this state 74 is about 2.5 ata, 133°C, which is lower than that at rated load, and is saturated steam. It is in a state close to that of

また、ここでの高圧蒸気72と低圧主蒸気73との温度
差は、約6℃と小さい。
Further, the temperature difference between the high pressure steam 72 and the low pressure main steam 73 here is as small as about 6°C.

さらに、低圧蒸気膨張開始点74より低圧タービンで一
様に膨張し低圧蒸気タービン排気25の膨張終了点76
(真空部0 、052ata)まで仕事をする。湿り度
は、やはり、12%〜13%であり、一般的な蒸気ター
ビンのi−sg(70〜72−75)と比べても高い。
Furthermore, the low pressure steam expands uniformly in the low pressure turbine from the low pressure steam expansion start point 74, and the expansion end point 76 of the low pressure steam turbine exhaust 25
Work is done until (vacuum part 0, 052ata). The humidity is also 12% to 13%, which is higher than the i-sg (70 to 72-75) of a typical steam turbine.

次に、プラント性能を管理する方法の一部であるプラン
ト効率の最適制御方法について第1図。
Next, FIG. 1 shows an optimal control method for plant efficiency, which is part of a method for managing plant performance.

第2図をもって説明する。This will be explained with reference to FIG.

第1図は1本発明の一実施例である複合発電プランドの
系統図、第2図は、第1図に対応した制御ブロック図を
示す。
FIG. 1 shows a system diagram of a combined power generation plan which is an embodiment of the present invention, and FIG. 2 shows a control block diagram corresponding to FIG.

給電指令に対して負荷設定が行なわれ、ガスタービン実
負荷信号13との偏差をとり、ガスタービン制御装置1
4で目標負荷に対する負荷変化の信号とする。
Load setting is performed in response to the power supply command, the deviation from the gas turbine actual load signal 13 is taken, and the gas turbine control device 1
4 is used as a load change signal with respect to the target load.

また、ガスタービン排ガス温度信号12から関数発生器
で燃焼温度の信号が得られ、ガスタービン排ガス温度1
2の実測信号との偏差をとる。そして、燃料流量信号1
1とガスタービン負荷信号13、及び、ガスタービン排
ガス温度信号12が演算され、燃料流量開度信号により
ガスタービン燃料流量制御弁5の開度を制御してガスタ
ービン入口燃料量、さらには、ガスタービン負荷、つい
には、プラント負荷を制御する。
Further, a combustion temperature signal is obtained from the gas turbine exhaust gas temperature signal 12 by the function generator, and the gas turbine exhaust gas temperature 1
Take the deviation from the actual measured signal of 2. And fuel flow signal 1
1, a gas turbine load signal 13, and a gas turbine exhaust gas temperature signal 12 are calculated, and the opening degree of the gas turbine fuel flow control valve 5 is controlled based on the fuel flow rate opening signal to control the gas turbine inlet fuel amount and further the gas turbine inlet fuel amount. Control the turbine load and ultimately the plant load.

一方、入口案内翼2の制御は、ガスタービン排ガス温度
12の実測信号を代表として、燃料流量12との実測信
号を演算してみ口実内翼2の開度信号でガスタービン入
口空気流量の制御を行ない、ガスタービン負荷制御を最
終的に行なう。次に。
On the other hand, the control of the inlet guide vane 2 is performed by calculating the actual measurement signal of the gas turbine exhaust gas temperature 12 and the fuel flow rate 12 as a representative, and controlling the gas turbine inlet air flow rate using the opening signal of the inner blade 2. Finally, gas turbine load control is performed. next.

蒸気タービン廻りの制御について説明する。蒸気タービ
ン内部の蒸気状態を把握するために、温度計42と圧力
計43からの実測信号を蒸気タービン演算器48で、従
来より設置されている高圧主蒸気圧力45、及び、温度
46、並びに低圧主蒸気圧力46(この蒸気は飽和蒸気
のため、圧力のみで温度他の状態が把握できる)の実測
信号を演算して、ガスタービン制御装置14へ送る。
Control around the steam turbine will be explained. In order to grasp the steam condition inside the steam turbine, the actual measurement signals from the thermometer 42 and the pressure gauge 43 are sent to the steam turbine computing unit 48 to determine the conventionally installed high-pressure main steam pressure 45, temperature 46, and low pressure. An actual measurement signal of the main steam pressure 46 (this steam is saturated steam, so temperature and other conditions can be determined from pressure alone) is calculated and sent to the gas turbine control device 14.

ガスタービン制御装置14では、蒸気タービン制御装置
48からの信号との偏差から、入口案内翼2の制御信号
を得、さらに、蒸気タービン効率を調整すべく、高圧主
蒸気圧力制御弁23と低圧主蒸気圧力制御弁24の開度
信号へフィードバックされる。
The gas turbine controller 14 obtains a control signal for the inlet guide vanes 2 from the deviation from the signal from the steam turbine controller 48, and further controls the high-pressure main steam pressure control valve 23 and the low-pressure main steam pressure control valve 23 in order to adjust the steam turbine efficiency. This is fed back to the opening signal of the steam pressure control valve 24.

ここで、蒸気タービン制御装置48には、予めシミュレ
ーションによって得た最適な効率特性第13図及び第1
4図に示すi−s線)が記憶されており、この特性に近
づけるべく、各信号の偏差を収束させる。
Here, the steam turbine control device 48 has optimal efficiency characteristics shown in FIGS.
(i-s line shown in FIG. 4) is stored, and the deviation of each signal is converged in order to approximate this characteristic.

尚、蒸気タービンは運転時間の経過に伴い性能が経年劣
化し、最適な効率特性からしだいにずれてくるが、本制
御方法では、蒸気タービン段差途中の圧力・温度を計測
して演算し実際のi −s線、及び、蒸気タービン効率
を算出しているため、経年劣化による最適効率特性から
のずれも補正して制御することができる。
Note that the performance of steam turbines deteriorates over time and gradually deviates from the optimum efficiency characteristics as the operating time passes, but in this control method, the pressure and temperature in the middle of the steam turbine step are measured and calculated, and the actual Since the i-s line and the steam turbine efficiency are calculated, it is possible to correct and control deviations from the optimum efficiency characteristics due to aging.

次に、蒸気タービン排気の湿り度への対応策について説
明する。
Next, measures to deal with the humidity of steam turbine exhaust will be explained.

第9図は、ガスタービン負荷に対するガスタービン排ガ
ス温度15.高圧主蒸気温度62及び圧力631示し、
かつ、蒸気タービン排気の湿り特性64を示す。
FIG. 9 shows the gas turbine exhaust gas temperature 15. High pressure main steam temperature 62 and pressure 631 are shown,
and shows the moisture characteristics 64 of the steam turbine exhaust.

ここで、排ガス温度15はガスタービン負荷が、100
%から約80%負荷に下がるにつれて運転制御特性上、
−時的に上昇する。ガスタービンの後流側にある蒸気タ
ービンサイクルの性能向上を図るべく、排ガス温度を上
げるために入口案内翼の開度制御を行っていることが原
因である。
Here, the exhaust gas temperature 15 means that the gas turbine load is 100
As the load decreases from % to approximately 80%, due to the operation control characteristics,
- Increases over time. This is due to the fact that the opening degree of the inlet guide vanes is controlled in order to raise the exhaust gas temperature in order to improve the performance of the steam turbine cycle on the downstream side of the gas turbine.

また、高圧主蒸気温度62は排ガス温度15の特性にゆ
だねられることより、ある温度差をもって同様の温度傾
向となる。
Further, since the high-pressure main steam temperature 62 is dependent on the characteristics of the exhaust gas temperature 15, the temperature tends to be similar with a certain temperature difference.

蒸気タービン排気の湿り64は、第13図及び第14図
で説明のように、高圧主蒸気の条件と蒸気タービンの内
部効率、並びに、低圧主蒸気の条件(混入点)とで主に
求まる要素である。
As explained in FIGS. 13 and 14, the humidity 64 of the steam turbine exhaust is mainly determined by the conditions of the high-pressure main steam, the internal efficiency of the steam turbine, and the conditions of the low-pressure main steam (mixing point). It is.

ガスタービン排ガス温度15、つまり、高圧主蒸気温度
62が最も高くなるガスタービン負荷約80%近傍で、
湿りが最も軽減する特性にある。
At around 80% gas turbine load, the gas turbine exhaust gas temperature 15, that is, the high pressure main steam temperature 62 is at its highest.
It has the characteristics that reduce moisture the most.

蒸気タービンの動翼、特に、最終段翼にとってはエロー
ジョンに対して安全側となる部分である。
The rotor blades of a steam turbine, especially the final stage blades, are safe from erosion.

全体的には、高負荷時、かつ、低負荷時に湿りが厳しく
なる特性にある。
Overall, there is a characteristic that moisture becomes severe at high loads and at low loads.

第2図に、蒸気タービン排気の湿りを軽減する第一の系
統を、第5図には、第2図に対応した制御ブロック図を
示す。
FIG. 2 shows a first system for reducing moisture in the steam turbine exhaust, and FIG. 5 shows a control block diagram corresponding to FIG. 2.

本実施例では、湿りを軽減するために第9図で説明した
ように、ガスタービン排ガス温度を入口案内翼制御によ
って行なう。
In this embodiment, in order to reduce moisture, the temperature of the gas turbine exhaust gas is controlled by the inlet guide vane, as explained in FIG. 9.

まず、高圧主蒸気流量65.圧力45.温度44及び低
圧主蒸気流量66、圧力46の実測信号、さらに、蒸気
タービン内部の混圧前の圧力43と温度44の実測信号
を演算器に導入して、蒸気タービンのi−s線をシミュ
レートし、実排気の湿りを予想する。
First, high pressure main steam flow rate 65. Pressure 45. The I-S line of the steam turbine is simulated by introducing the measured signals of temperature 44, low pressure main steam flow rate 66, and pressure 46, as well as the measured signals of pressure 43 and temperature 44 before the pressure mixture inside the steam turbine into a computing unit. and predict the humidity of the actual exhaust.

湿りの信号は、排気湿り度の制限値との偏差をさらに演
算する。蒸気タービン制御装置48で得た信号は、ガス
タービン制御装置14へ送られて、排ガス温度12の実
測値と演算を重ね、ついには排ガス温度を左右しうる入
口案内翼2の実測開度信号の偏差をとり、排ガス温度制
御値内で入口案内翼の開度を制御する。
The humidity signal is further calculated for deviation from a limit value of exhaust humidity. The signal obtained by the steam turbine control device 48 is sent to the gas turbine control device 14, where it is repeatedly calculated with the actual value of the exhaust gas temperature 12, and is finally used to calculate the actual opening degree signal of the inlet guide vane 2, which can influence the exhaust gas temperature. The deviation is taken and the opening degree of the inlet guide vane is controlled within the exhaust gas temperature control value.

具体的に、蒸気タービン排気の湿りが厳しくなった場合
には、ガスタービン入口案内翼を閉方向に動作させる。
Specifically, when the steam turbine exhaust becomes extremely humid, the gas turbine inlet guide vanes are operated in the closing direction.

すると、ガスタービン入口空気流量が減少して制限値内
で燃焼温度が上昇する。燃焼温度の上昇に伴いガスター
ビン排ガス温度、さらには、高圧主蒸気温度が第9図で
説明のように上昇する。
Then, the gas turbine inlet air flow rate decreases and the combustion temperature increases within the limit value. As the combustion temperature rises, the gas turbine exhaust gas temperature and further the high pressure main steam temperature rise as explained in FIG. 9.

蒸気タービン排気湿りの、高圧主蒸気温度が上がれば軽
減する傾向に作用する。排気湿りを軽減する第二の方法
として、低圧主蒸気圧力を制御する方法を第3図及び第
6図をもって示す。
Steam turbine exhaust humidity tends to decrease as the high-pressure main steam temperature increases. As a second method of reducing exhaust humidity, a method of controlling the low-pressure main steam pressure is shown in FIGS. 3 and 6.

第3図に、蒸気タービン排気の塗りを軽減する系統を、
第6図には、第3図に対応した制御ブロック図を示す。
Figure 3 shows a system for reducing steam turbine exhaust paint.
FIG. 6 shows a control block diagram corresponding to FIG. 3.

まず、高圧主蒸気流量65.温度44及び低圧主蒸気圧
力66、圧力46の実測信号、さらに、蒸気タービン内
部の混圧前の圧力43と温度44の実測信号を演算器に
導入して、蒸気タービンのi−s線をシミュレートし、
実排気の湿りを予想する。
First, high pressure main steam flow rate 65. The I-S line of the steam turbine is simulated by introducing the measured signals of the temperature 44, the low-pressure main steam pressure 66, and the pressure 46, and the measured signals of the pressure 43 and temperature 44 before the pressure mixture inside the steam turbine into a computing unit. To,
Predict the humidity of the actual exhaust.

湿りの信号は、排気湿り度の制限値に対し低値選択され
、その信号と低圧蒸気制御弁の開度実測値との偏差をと
り、低圧蒸気制御弁の開度信号を発生して水弁32を制
御する。
The humidity signal is selected to be a low value relative to the limit value of the exhaust humidity, and the deviation between this signal and the actual measured opening of the low pressure steam control valve is taken to generate an opening signal for the low pressure steam control valve and the water valve is activated. 32.

具体的に、排気湿りが厳しくなった場合の実施例を第1
3図で説明する。
Specifically, the first example deals with the case where the exhaust humidity becomes severe.
This will be explained using Figure 3.

まず、低圧蒸気制御弁24を絞る。すると、低圧主蒸気
圧力が上昇する。本蒸気は飽和蒸気より飽和線61に沿
って53から53′の位置へ移行する。飽和蒸気温度が
上昇する傾向である。一方、蒸気流量は排熱回収ボイラ
20の熱交換特性より逆に減少する傾向となる。
First, the low pressure steam control valve 24 is throttled down. Then, the low-pressure main steam pressure increases. The main steam moves from 53 to 53' along the saturation line 61 from the saturated steam. The saturated steam temperature tends to increase. On the other hand, the steam flow rate tends to decrease due to the heat exchange characteristics of the exhaust heat recovery boiler 20.

ここで、混入点54の位置は、高圧蒸気とこの条件の低
圧蒸気が混じることにより、さらに、温度の高い54′
へと移行する。
Here, the position of the mixing point 54 is further changed to 54' where the temperature is higher due to the mixing of the high pressure steam and the low pressure steam under this condition.
transition to.

結局、低圧蒸気タービン排気の終点55は湿りが軽減さ
れた55′の位置へと移行することになる。
Eventually, the end point 55 of the low pressure steam turbine exhaust will move to a position 55' where the moisture is reduced.

次に、本発明の第四の実施例である混圧点における蒸気
温度差を制御する方法を、第7図で説明する。
Next, a method of controlling the steam temperature difference at the mixed pressure point, which is a fourth embodiment of the present invention, will be explained with reference to FIG.

混圧蒸気タービンでは高圧蒸気タービン出口の蒸気と低
圧主蒸気とが温度差をもって混じり合う。
In a mixed pressure steam turbine, steam at the high pressure steam turbine outlet and low pressure main steam mix with a temperature difference.

この温度差が大きいと、タービンの熱応力が大きくなり
運転中の振動発生、さらに、タービン寿命の低下が懸念
される。
If this temperature difference is large, the thermal stress of the turbine becomes large, causing vibrations during operation, and furthermore, there are concerns that the life of the turbine will be shortened.

一般には、余裕をとりこの温度差を小さくすることが望
ましい、しかし、第13図で説明した様に、蒸気タービ
ンの性能を向上することに相反する。
Generally, it is desirable to provide a margin and reduce this temperature difference, but as explained in FIG. 13, this is contrary to improving the performance of the steam turbine.

第7図において、混圧前蒸気温度42と低圧主蒸気圧力
46(飽和蒸気より圧力から温度は予想される)の実測
信号の偏差をとり、混圧点の温度差制限値と比較低値選
択をする。さらに、本信号と低圧蒸気制御弁実測開度信
号との偏差を水弁32の開度制御に反映する圧力制御さ
れた低圧主蒸気は飽和状態より、混入点の温度差が大き
過ぎる場合には、圧力を上げることにより飽和温度が上
がる。第13図に示す53より53′へ移行する。する
と混入点54は54′へと移行し温度差が縮まる方向に
作用する。
In Fig. 7, the deviation between the measured signals of pre-mixing pressure steam temperature 42 and low-pressure main steam pressure 46 (temperature is expected from the pressure of saturated steam) is taken, and compared with the temperature difference limit value at the mixing pressure point, a low value is selected. do. Furthermore, the pressure-controlled low-pressure main steam that reflects the deviation between this signal and the measured opening signal of the low-pressure steam control valve in the opening control of the water valve 32 is not in a saturated state, but if the temperature difference at the point of entry is too large. , the saturation temperature increases by increasing the pressure. The process moves from 53 shown in FIG. 13 to 53'. Then, the mixing point 54 moves to 54' and acts in the direction of reducing the temperature difference.

最後に、第五の実施例である蒸気タービンの経年劣化へ
の対応について、第10図及び第8図で説明する。
Finally, the fifth embodiment, which deals with aging deterioration of a steam turbine, will be explained with reference to FIGS. 10 and 8.

タービンが経年劣化した場合には、第10図に示すよう
に、劣化前のタービンミーs線(50〜52〜54〜5
5)に対して50〜52′〜67〜68のようにずれる
。タービン排気の湿りに対しては、安全側へと移行する
ものの、タービン性能(効率)が低下してしまう。
When the turbine deteriorates over time, as shown in Figure 10, the turbine Mie S line (50~52~54~5
5) deviates from 50 to 52' to 67 to 68. Although the situation is on the safe side with respect to the humidity of the turbine exhaust, the turbine performance (efficiency) decreases.

高圧主蒸気圧力45.温度44、及び、混圧前圧43.
温度42の実測信号を演算器に取り込んで、タービンの
1−5gをもって設計時における内部効率特性と経年劣
化中の内部効率特性を比較し、日々、監視装置上に表示
、又は、記憶させる。
High pressure main steam pressure 45. Temperature 44 and mixed pressure pre-pressure 43.
The actual measurement signal of the temperature 42 is taken into a computing unit, and the internal efficiency characteristics at the time of design and the internal efficiency characteristics during deterioration over time are compared using 1-5 g of the turbine, and the results are displayed or stored on the monitoring device on a daily basis.

このように、経年劣化やタービンの異常に対していち早
く、正確に運転員に知らせることができ、タービンの保
守管理上、極めて有効な手段となり得る。
In this way, it is possible to quickly and accurately notify operators of aging deterioration or turbine abnormalities, which can be an extremely effective means for turbine maintenance management.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラント熱効率が向上し、蒸気タービ
ン最終段の湿りによる二ローションの防止、及び、混入
点温度差による蒸気タービンロータ・ケーシングの変形
・振動の防止を図ることができる。
According to the present invention, it is possible to improve plant thermal efficiency, prevent double lotion due to moisture in the final stage of the steam turbine, and prevent deformation and vibration of the steam turbine rotor casing due to temperature difference at the mixing point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明の一実施例の系統図、
第4図、第S図、第6図、第7図、第8図は本発明の実
施例を示す制御ブロック図、第9図は温度圧力及び湿り
特性図、第10図は経年劣化時のis線図、第11図は
複合発電設備の系統図、第12図は蒸気タービンの内診
構造の説明図、第13図は定格負荷におけるis腺図、
第14図は部分負荷におけるis線図である。 1・・・ガスタービン圧縮機、2・・・インレットガイ
ドベーン、4・・・燃焼器、5・・・燃料流量制御弁、
7・・・ガスタービン、8・・・ガスタービン発電機。 第1図 第2図 !+響−―−−−―−物−−−骨−―・+―+−−+―
嬶−−―−−−+―・+幡−=”−==m第3図 第4図 第5区 第6図 第7図 第8図 第9図 ρ    2D#    ω   r   腹ガ′ス7
−ピし負荷      (ス)第1O図 二ントロビ 第11図 第12図 第 1汀 二ントロヒ0
FIGS. 1, 2, and 3 are system diagrams of an embodiment of the present invention,
Figure 4, Figure S, Figure 6, Figure 7, and Figure 8 are control block diagrams showing embodiments of the present invention, Figure 9 is a temperature pressure and humidity characteristic diagram, and Figure 10 is a diagram of aging. IS diagram, Fig. 11 is a system diagram of a combined power generation facility, Fig. 12 is an explanatory diagram of the internal examination structure of a steam turbine, Fig. 13 is an IS diagram at rated load,
FIG. 14 is an IS diagram at partial load. DESCRIPTION OF SYMBOLS 1... Gas turbine compressor, 2... Inlet guide vane, 4... Combustor, 5... Fuel flow control valve,
7... Gas turbine, 8... Gas turbine generator. Figure 1 Figure 2! +Sound-------Things---Bones--・+-+--+-
Figure 3 Figure 4 Section 5 Figure 6 Figure 7 Figure 8 Figure 9 ρ 2D# ω r Belly gas 7
- Pishi load (S) Figure 1 O 2 Trophies Figure 11 Figure 12 Figure 1 2 Trohi 0

Claims (1)

【特許請求の範囲】 1、ガスタービンと、前記ガスタービンの排熱回収ボイ
ラと、前記排熱回収ボイラの発生蒸気によつて駆動され
る蒸気タービンとを備えた複合発電プラントにおいて、 前記蒸気タービンの途中の段落の圧力・温度を計測して
演算処理し、プラント熱効率・蒸気タービン排気の湿り
度、低圧蒸気混入点の温度差、経年劣化等の制御及び性
能監視を行なうことを特徴とする複合発電プラントの制
御方法。 2、特許請求の範囲第1項において、 前記蒸気タービンの途中の段落の圧力・温度の計測位置
は、単圧型蒸気タービンでは低圧段落で、かつ、蒸気状
態が湿りにならない段落とし、混圧型蒸気タービンでは
、低圧蒸気が混入する位置の直前の上流の段落とするこ
とを特徴とする複合発電プラントの制御方法。 3、特許請求の範囲第1項において、 プラント負荷に対応してプラントの熱効率が最適となる
主蒸気圧力・主蒸気温度・低圧蒸気圧力及び蒸気、ター
ビン段落内i−s線をあらかじめシミユレートして設定
し、実測の前記主蒸気圧力前記主蒸気温度・前記低圧蒸
気圧力及びタービン段落内蒸気圧力・温度から蒸気ター
ビン段落内i−s線を計算機で演算し、この蒸気タービ
ン段落内i−s線を、前記最適設定値に近づけるよう、
前記主蒸気圧力・前記主蒸気温度・前記低圧蒸気圧力を
制御することを特徴とする複合発電プラントの制御方法
。 4、特許請求の範囲第1項において、 実測の主蒸気圧力・主蒸気温度及びタービン段落内蒸気
圧力・温度から蒸気タービン排気湿り度を演算し、前記
蒸気タービン排気湿り度が制限値を超えないよう前記主
蒸気温度を制御することを特徴とする複合発電プラント
の制御方法。 5、特許請求の範囲第1項において、 実測の主蒸気圧力・主蒸気温度・低圧蒸気圧力及びター
ビン段落内蒸気圧力・温度から蒸気タービン排気湿り度
を演算し、前記蒸気タービン排気湿り度が制限値を超え
ないよう前記低圧蒸気圧力を制御することを特徴とする
複合発電プラントの制御方法。 6、特許請求の範囲第1項において、 低圧蒸気の温度と前記低圧蒸気の混入点の上流側のター
ビン段落内蒸気温度との差が制限値を超えないように、
前記低圧蒸気の圧力を制御することを特徴とする複合発
電プラントの制御方法。 7、特許請求の範囲第1項において、 低圧蒸気温度と前記低圧蒸気の混入点上流側のタービン
段落内蒸気温度との差が制限値を超えないように主蒸気
圧力を制御することを特徴とする複合発電プラントの制
御方法。 8、特許請求の範囲第1項において、 主蒸気圧力・主蒸気温度・前記蒸気タービン途中の段落
の圧力・温度を計測して演算処理により前記タービンの
内部効率を算出し前記蒸気タービン内部効率を計算機内
に記憶しておき、前記蒸気タービン内部効率の経年変化
により前記蒸気タービンの経年劣化を監視することを特
徴とする複合発電プラントの制御方法。
[Scope of Claims] 1. A combined power generation plant comprising a gas turbine, an exhaust heat recovery boiler of the gas turbine, and a steam turbine driven by steam generated by the exhaust heat recovery boiler, comprising: A complex system characterized by measuring and calculating the pressure and temperature in the middle paragraph, and controlling and monitoring performance of plant thermal efficiency, humidity of steam turbine exhaust, temperature difference at the point where low-pressure steam is mixed, aging deterioration, etc. How to control a power plant. 2. In claim 1, the pressure/temperature measurement position in the intermediate stage of the steam turbine is a low-pressure stage in a single-pressure steam turbine and a stage in which the steam condition does not become wet; A method for controlling a combined power generation plant, characterized in that the turbine is placed in the upstream stage immediately before the position where low-pressure steam is mixed. 3. In claim 1, the main steam pressure, main steam temperature, low pressure steam pressure, steam, and I-S line in the turbine stage are simulated in advance so that the thermal efficiency of the plant is optimized according to the plant load. The i-s line in the steam turbine stage is calculated by a computer from the actually measured main steam pressure, the main steam temperature, the low-pressure steam pressure, and the steam pressure and temperature in the turbine stage. to bring it closer to the optimal setting value,
A method for controlling a combined power generation plant, comprising controlling the main steam pressure, the main steam temperature, and the low pressure steam pressure. 4. In claim 1, the steam turbine exhaust humidity is calculated from the actually measured main steam pressure and main steam temperature and the steam pressure and temperature in the turbine stage, and the steam turbine exhaust humidity does not exceed a limit value. A method for controlling a combined power generation plant, the method comprising controlling the main steam temperature in such a manner as to control the main steam temperature. 5. In claim 1, the steam turbine exhaust humidity is calculated from the actually measured main steam pressure, main steam temperature, low pressure steam pressure, and steam pressure and temperature in the turbine stage, and the steam turbine exhaust humidity is limited. A method for controlling a combined power generation plant, characterized in that the low pressure steam pressure is controlled so as not to exceed a value. 6. In claim 1, so that the difference between the temperature of the low-pressure steam and the steam temperature in the turbine stage upstream of the mixing point of the low-pressure steam does not exceed a limit value,
A method for controlling a combined power generation plant, comprising controlling the pressure of the low-pressure steam. 7. Claim 1, characterized in that the main steam pressure is controlled so that the difference between the low pressure steam temperature and the steam temperature in the turbine stage upstream of the mixing point of the low pressure steam does not exceed a limit value. A control method for a combined cycle power plant. 8. In claim 1, the internal efficiency of the turbine is calculated by calculating the internal efficiency of the turbine by measuring the main steam pressure, the main steam temperature, and the pressure and temperature of a stage in the middle of the steam turbine, and calculating the internal efficiency of the steam turbine through arithmetic processing. 1. A method for controlling a combined power generation plant, comprising: storing information in a computer, and monitoring aging deterioration of the steam turbine based on aging changes in the internal efficiency of the steam turbine.
JP9343388A 1988-04-18 1988-04-18 Control method for compound power plant Pending JPH01267305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9343388A JPH01267305A (en) 1988-04-18 1988-04-18 Control method for compound power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9343388A JPH01267305A (en) 1988-04-18 1988-04-18 Control method for compound power plant

Publications (1)

Publication Number Publication Date
JPH01267305A true JPH01267305A (en) 1989-10-25

Family

ID=14082174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9343388A Pending JPH01267305A (en) 1988-04-18 1988-04-18 Control method for compound power plant

Country Status (1)

Country Link
JP (1) JPH01267305A (en)

Similar Documents

Publication Publication Date Title
KR100592143B1 (en) Method of operation of industrial gas turbine for optimal performance
EP2795084B1 (en) Control of the gas composition in a gas turbine power plant with flue gas recirculation
EP2290201B1 (en) System and method for measuring efficiency and leakage in a steam turbine
RU2013116452A (en) METHODS, SYSTEMS, AND DEVICES FOR REPEATED HEATING OF INTERNAL COMBUSTION ENGINES WITH EXHAUST GAS RECIRCULATION
US10082089B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
EP2270317B1 (en) Apparatus for control of gas turbine in uniaxial combined-cycle plant, and method therefor
US10082091B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
US10082087B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
JP2010196473A (en) Electric power plant water supply device, and method for controlling the same
US10082090B2 (en) Systems and methods to improve shut-down purge flow in a gas turbine system
JPH01267305A (en) Control method for compound power plant
CN115263565A (en) Wide-load energy-saving control method for gas turbine
US10954824B2 (en) Systems and methods for controlling drum levels using flow
US11428115B2 (en) Control of rotor stress within turbomachine during startup operation
US11208920B2 (en) Control of power generation system with water level calibration for pressure vessel
JP3073429B2 (en) Steam system disconnection control method for multi-shaft combined plant
CN114088409B (en) Partial load performance test method for gas-steam combined cycle single-shaft unit
Cafaro et al. Performance Monitoring of Gas Turbine Components: A Real Case Study Using a Micro Gas Turbine Test Rig
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPS6239658B2 (en)
JP2014145357A (en) System to improve gas turbine output and hot gas path component life utilizing humid air for nozzle overcooling
JPH0610619A (en) Supply water heating device
JPH0742843B2 (en) Start-up control device for mixed pressure turbine
CN113464223A (en) Thermoelectric decoupling method for coal-fired heat supply unit
JPS62279204A (en) Temperature control method for mixed pressure turbine