JPH01266489A - Liquid film descending type heat exchanger - Google Patents
Liquid film descending type heat exchangerInfo
- Publication number
- JPH01266489A JPH01266489A JP9456388A JP9456388A JPH01266489A JP H01266489 A JPH01266489 A JP H01266489A JP 9456388 A JP9456388 A JP 9456388A JP 9456388 A JP9456388 A JP 9456388A JP H01266489 A JPH01266489 A JP H01266489A
- Authority
- JP
- Japan
- Prior art keywords
- heat medium
- heat
- water vapor
- heat transfer
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims description 28
- 239000007789 gas Substances 0.000 claims abstract description 14
- 239000011261 inert gas Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000009833 condensation Methods 0.000 claims description 10
- 230000005494 condensation Effects 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 58
- 229910001868 water Inorganic materials 0.000 abstract description 27
- 239000012530 fluid Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000013529 heat transfer fluid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 210000004303 peritoneum Anatomy 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は溶液の濃縮等に用いられる液膜下降式熱交換器
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a descending liquid film heat exchanger used for concentrating solutions and the like.
従来の技術を第2図ないし第4図によシ説明する。第2
図は従来の液膜下降式熱交換器−例の縦断面図、第3図
はその機能を説明するために第2図の■部を拡大した図
、第4図は周辺機器の配置を示す系統図である。The conventional technology will be explained with reference to FIGS. 2 to 4. Second
The figure is a vertical cross-sectional view of a conventional descending liquid film heat exchanger - Figure 3 is an enlarged view of the part ■ in Figure 2 to explain its function, and Figure 4 shows the arrangement of peripheral equipment. It is a system diagram.
まず第2図において、01は胴、02は上部管板、03
は下部管板である。、04は複数本の鉛直な伝熱管であ
シ、上部管板02の上方の室と下部管板03の下方の室
とを連通している。05は熱媒としての水蒸気の入口ノ
ズル、06は凝縮水と未凝縮水蒸気との汽水混合流体の
出口ノズルである。012は上部鏡、013は被加熱溶
液入口ノズル、014は同被加熱溶液入ロノズル013
から流入した溶液が加熱されることにより発生した気体
(済媒蒸気)が流出する溶媒蒸気出口ノズルである。0
15は下部鏡、016は加熱により気体が脱出した後の
液体<m線溶液)の出口ノズルである。07は複数枚の
バッフル板である。First, in Figure 2, 01 is the body, 02 is the upper tube plate, 03
is the lower tube plate. , 04 are a plurality of vertical heat exchanger tubes, which communicate the chamber above the upper tube sheet 02 and the chamber below the lower tube sheet 03. 05 is an inlet nozzle for water vapor as a heating medium, and 06 is an outlet nozzle for a brackish water mixed fluid of condensed water and uncondensed water vapor. 012 is the upper mirror, 013 is the heated solution inlet nozzle, and 014 is the heated solution inlet nozzle 013.
This is a solvent vapor outlet nozzle through which gas (resolved medium vapor) generated by heating the solution flowing in from the solvent vapor outlet nozzle flows out. 0
15 is a lower mirror, and 016 is an exit nozzle for liquid after gas has escaped due to heating (liquid<m-line solution). 07 is a plurality of baffle plates.
次に第3図において、被加熱溶液入口ノズル013から
流入した溶液は上部管板02の上面に水平方向に拡がり
、その液面が伝熱管04の上縁04aの高さを越えると
、管内へ流入する。伝熱管04の内面には液膜が形成さ
れ1重力によシ下方へ流下して行く。一方、伝熱管04
の外表面には熱媒としては水蒸気が存在しておシ、この
熱媒の保有する熱(水蒸気の凝縮潜熱が主体)は管壁を
介して管内の液膜に与えられ、液膜から気体(例えば水
溶液の場合は水蒸気)が蒸発して放出される。この気体
は溶媒蒸気出口ノズル014から流出する。伝熱管04
内の液膜は上方から下方へ移動して行き、濃縮溶液出口
ノズル016から流出するが、溶媒蒸気の放出によυ管
の上方と下方では液の組成や濃度が変化して行り、(沸
点の上昇が生じる)
第4図において、熱媒入口ノズル05からは熱媒とし【
飽和水蒸気が供給されるが、胴01内の圧力すなわち温
度は液膜の条件で異なる。汽水混合流休出ロノズヌ06
から流出した凝縮水と未凝縮水蒸気との汽水混合流体は
汽水分離器021で凝縮水を分離し、未凝縮水蒸気は廃
却されるか他用途に転用される。Next, in FIG. 3, the solution flowing from the heated solution inlet nozzle 013 spreads horizontally on the upper surface of the upper tube plate 02, and when the liquid level exceeds the height of the upper edge 04a of the heat transfer tube 04, it flows into the tube. Inflow. A liquid film is formed on the inner surface of the heat transfer tube 04 and flows downward due to one gravity. On the other hand, heat exchanger tube 04
Water vapor exists as a heating medium on the outer surface of the pipe, and the heat held by this heating medium (mainly the latent heat of condensation of water vapor) is given to the liquid film inside the pipe via the pipe wall, and the liquid film transfers the gas to the liquid film. (For example, water vapor in the case of an aqueous solution) is evaporated and released. This gas exits from the solvent vapor outlet nozzle 014. Heat exchanger tube 04
The liquid film inside moves from the top to the bottom and flows out from the concentrated solution outlet nozzle 016, but the composition and concentration of the liquid changes in the upper and lower parts of the υ tube due to the release of solvent vapor. In Figure 4, the heating medium is discharged from the heating medium inlet nozzle 05.
Although saturated steam is supplied, the pressure or temperature inside the shell 01 varies depending on the conditions of the liquid film. Brackish water mixed flow suspension Ronoznu 06
A brackish water mixture of condensed water and uncondensed steam flowing out from the brackish water separator 021 separates the condensed water, and the uncondensed steam is disposed of or diverted to other uses.
ル06へ胴01内を水蒸気が移動する際の圧力損失は極
く小さく、胴肉は実質的に等圧と考えて良い。このよう
に1等圧の飽和水蒸気の凝縮熱によシ管04の外表面に
熱を与えるのであるが、水蒸気温度は実質的に同一であ
り、かつ熱伝達係数も大きい。すなわち伝熱管の上部か
ら下部まではy同一給熱条件となる。The pressure loss when water vapor moves inside the shell 01 to the shell 06 is extremely small, and the shell meat can be considered to have substantially equal pressure. In this way, heat is applied to the outer surface of the pipe 04 by the heat of condensation of the saturated steam at one constant pressure, and the steam temperature is substantially the same and the heat transfer coefficient is also large. In other words, the heat supply conditions are the same from the top to the bottom of the heat exchanger tube.
一方、伝熱管04内の液膜の条件は、管の上部と下部と
で異なり同一でない。管内の溶媒蒸気(例えば水蒸気)
の圧力は管内の上部も下部も同一であるから、e、膜か
らの水の蒸発(溶質濃度上昇)などによる飽和温度の上
昇(沸点上昇)が起シ、シたがって腹膜からの気体の蒸
発速度は管04の上部では大きく。On the other hand, the conditions of the liquid film inside the heat transfer tube 04 differ between the upper and lower portions of the tube and are not the same. Solvent vapor in the tube (e.g. water vapor)
Since the pressure in the upper and lower parts of the tube is the same, e, the evaporation of water from the membrane (increase in solute concentration) causes an increase in the saturation temperature (increase in the boiling point), and therefore the evaporation of gas from the peritoneum. The velocity is large at the top of tube 04.
下部では小さくなるのである。It gets smaller at the bottom.
熱媒水蒸気の圧力(温度)はII縮溶液出ロノズル01
6から取9出される製品の状態から決定される。したが
って、伝熱管04内の上部では液膜が激しく佛騰して、
液膜流下層の維持が不可能になることがある。すなわち
、伝熱管04の上部で液膜が管内面から剥離すると・剥
離液の大部分は管の中央を落下して行き、管の下部では
腹膜が少量になるか。The pressure (temperature) of the heat medium steam is determined by II condensation solution outlet nozzle 01.
It is determined from the condition of the product to be taken out. Therefore, the liquid film rises violently in the upper part of the heat exchanger tube 04,
Maintaining a liquid film flow bottom layer may become impossible. That is, when the liquid film peels off from the inner surface of the tube at the upper part of the heat transfer tube 04, most of the peeling liquid falls down the center of the tube, leaving only a small amount of peritoneum at the bottom of the tube.
もしくは皆無になる。これはこの糧の装置の性能低下の
大きい要因となる。Or it will all disappear. This is a major factor in the deterioration of the performance of this food device.
■ 胴01内を流動する間に僅かではあるが水蒸気の圧
力が低下する。したがって汽水分離器021で分離され
た水蒸気の圧力は、熱媒入口ノズル05の水蒸気の圧力
よりも若干低く。(2) While flowing inside the shell 01, the pressure of the water vapor decreases, albeit slightly. Therefore, the pressure of the steam separated by the steam separator 021 is slightly lower than the pressure of the steam at the heat medium inlet nozzle 05.
両者を混合することができない。すなわち未凝縮水蒸気
の凝縮潜熱の有効利用ができない。The two cannot be mixed. In other words, the latent heat of condensation of uncondensed water vapor cannot be effectively utilized.
本発明は、前記課題を解決する手段として、複数の鉛直
な伝熱管の外面な熱媒蒸気の凝縮潜熱で加熱することに
より、同伝熱管の内面な液膜として流下する溶液の溶媒
を蒸発させるものにおいて。As a means to solve the above-mentioned problems, the present invention evaporates the solvent of the solution flowing down as a liquid film on the inner surfaces of the plurality of vertical heat transfer tubes by heating the outer surfaces of the plurality of vertical heat transfer tubes with the latent heat of condensation of the heat medium vapor. In things.
上記熱媒蒸気に不活性ガスを混合するとともに。In addition to mixing an inert gas with the heat medium vapor.
その混合気体を上記伝熱管の外面に沿い下から上に向け
て流すようにしたことを特徴とする液膜下降式熱交換器
を提案するものである。The present invention proposes a descending liquid film heat exchanger characterized in that the mixed gas is caused to flow from bottom to top along the outer surface of the heat transfer tube.
本発明は前記のように構成されているので、伝熱管の上
下方向に管外面の熱媒の蒸気分圧(すなわち温度)を変
えることができる。すなわち、管内溶液の溶質濃度が小
さい上部では熱媒蒸気分圧を小さく(熱媒温度を低く)
、溶質濃度が高い下部では熱媒蒸気分圧を大きく(熱媒
温度を高く)できる。Since the present invention is configured as described above, it is possible to change the vapor partial pressure (that is, temperature) of the heat medium on the outer surface of the heat exchanger tube in the vertical direction of the tube. In other words, the heating medium vapor partial pressure is reduced (lower heating medium temperature) in the upper part where the solute concentration of the solution in the tube is small.
, the heat medium vapor partial pressure can be increased (heat medium temperature raised) in the lower part where the solute concentration is high.
また本発明では未凝縮水蒸気の再利用ができる。Furthermore, in the present invention, uncondensed water vapor can be reused.
本発明の一実施例を第1図に示す。この図において、1
は胴、2は上部管板、3は下部管板、4は複数本の伝熱
管である。5は熱媒入口ノズルで。An embodiment of the present invention is shown in FIG. In this figure, 1
2 is an upper tube sheet, 3 is a lower tube sheet, and 4 is a plurality of heat exchanger tubes. 5 is the heat medium inlet nozzle.
胴1の下部に設けられている。8は熱媒出口ノズルで、
胴1の上部に設けられている。9は凝縮水出口ノズルで
、上記熱媒入口ノズル5よシも下方。It is provided at the bottom of the body 1. 8 is a heat medium outlet nozzle;
It is provided on the upper part of the body 1. 9 is a condensed water outlet nozzle, which is also located below the heating medium inlet nozzle 5.
−下部管板3のすぐ上に設けられている。12は上部鏡
、13は被加熱溶液入口ノズル、14は溶媒蒸気出口ノ
ズル、15は下部鏡、16は濃縮溶液出口ノズルである
。また、21は凝縮水受槽。- located directly above the lower tube sheet 3; 12 is an upper mirror, 13 is a heated solution inlet nozzle, 14 is a solvent vapor outlet nozzle, 15 is a lower mirror, and 16 is a concentrated solution outlet nozzle. Also, 21 is a condensed water receiving tank.
22はスチームエゼクタ、23は混合器である。22 is a steam ejector, and 23 is a mixer.
本実施例では、熱媒として水蒸気と不活性ガスとの混合
ガスを用いる。不活性ガスとしては、水蒸気と反応しな
いこと2機器構成材料を腐食しないことが必要で、窒素
ガス、アルゴン、メタン等を用いることができる。In this embodiment, a mixed gas of water vapor and inert gas is used as the heating medium. As the inert gas, nitrogen gas, argon, methane, etc. can be used, as it is necessary that it not react with water vapor and not corrode the constituent materials of the equipment.
上記熱媒は胴1の下部に設げられた熱媒入口ノズル5か
ら流入し、伝熱管4の外面に沿って下から上へ向かって
流れ、胴1の上部に設けられた熱媒出口ノズル8から流
出する。凝縮水は熱媒入口ノズル5よシもさらに下方の
凝縮水出口ノズル9かも流出する。The heat medium flows in from a heat medium inlet nozzle 5 provided at the bottom of the shell 1, flows from bottom to top along the outer surface of the heat transfer tube 4, and flows through a heat medium outlet nozzle provided at the top of the shell 1. It flows out from 8. The condensed water flows out from the heat medium inlet nozzle 5 as well as from the condensed water outlet nozzle 9 located further below.
熱媒出口ノズル8から流出した熱媒は、スチームエゼク
タ−22に供給され、昇圧されて、再び熱媒入口ノズル
5から胴1内に送給される。この場合、エジェクター2
2には作動水蒸気が供給される。The heat medium flowing out from the heat medium outlet nozzle 8 is supplied to the steam ejector 22, is pressurized, and is again fed into the shell 1 from the heat medium inlet nozzle 5. In this case, ejector 2
2 is supplied with working steam.
23は混合器である。必要に応じ不活性ガスを添加する
。また、水蒸気貴調節のために水蒸気を追加添加するこ
ともできる。23 is a mixer. Add inert gas if necessary. Further, water vapor can be additionally added to adjust the water vapor level.
本実施例において、被加熱溶液入口ノズル13から苛性
ソーダ水溶液を供給してこれを濃縮する場合を想定する
と、H20分圧1atmにおける沸騰温度は濃度と共に
変化する。これを第1表に示す。In this embodiment, assuming that a caustic soda aqueous solution is supplied from the heated solution inlet nozzle 13 and concentrated, the boiling temperature at an H20 partial pressure of 1 atm changes with the concentration. This is shown in Table 1.
例えばNaOHの18チ水溶液を加熱して水を蒸発させ
40チまで濃縮する。その際に溶液中の水の蒸発潜熱に
相当する熱量な熱媒中の水蒸気の凝縮潜熱により供給し
ようとする場合、伝熱管4の外面に接する熱媒の条件を
管長方向に異ならせることが好ましい。For example, a 18-inch aqueous solution of NaOH is heated to evaporate water and concentrate to 40-inch solution. In this case, if the heating medium is to be supplied using the latent heat of condensation of water vapor in the heat medium, which has a calorific value equivalent to the latent heat of vaporization of water in the solution, it is preferable to vary the conditions of the heat medium in contact with the outer surface of the heat transfer tube 4 in the tube length direction. .
本実施例では、不活性ガスとして窒素を用いる場合を第
2表に例示するとおシ、全圧力は同一でも水蒸気と不活
性ガスの混合比によって水蒸気の凝縮温度が変化する現
象を利用したものである。This example uses the phenomenon that the condensation temperature of water vapor changes depending on the mixing ratio of water vapor and inert gas, even if the total pressure is the same, as shown in Table 2. be.
第2表
の混合気体は第2表のC1aseA1のように上20/
N2比の大きい条件のものとする。この混合気体は伝熱
管4の外面に接触し、混合気体中の水蒸気の凝縮潜熱に
より伝熱管4内の液体に熱を与えるとともに、同混合気
体自体は保有する水蒸気が凝縮液化した量だけH2o分
圧が低下する。このような現象を連続的に行ないながら
同混合気体は上方へ移動し熱媒出口ノズル8から流出す
る。当然ながら。The gas mixtures in Table 2 are as follows: C1aseA1 in Table 2;
The conditions are such that the N2 ratio is large. This mixed gas comes into contact with the outer surface of the heat exchanger tube 4, and gives heat to the liquid inside the heat exchanger tube 4 due to the latent heat of condensation of the water vapor in the mixed gas, and the mixed gas itself converts into H2O by the amount that the water vapor it possesses is condensed and liquefied. Pressure decreases. While this phenomenon continues, the mixed gas moves upward and flows out from the heat medium outlet nozzle 8. Of course.
凝縮液化した水は伝熱管4の外表面に沿って下方へ流下
し、凝縮水出口ノズル6から取出される。The condensed and liquefied water flows downward along the outer surface of the heat transfer tube 4 and is taken out from the condensed water outlet nozzle 6.
このようにして、伝熱管4の外表面の熱媒の温度条件(
820分圧)を、伝熱管4の下部で大きく。In this way, the temperature condition (
820 partial pressure) is increased at the bottom of the heat exchanger tube 4.
上部で小さくすることができる。It can be made smaller at the top.
窒素のような不活性ガスに水蒸気を混合して熱媒流体と
して用いる場合、伝熱管4外面の境膜は水蒸気が凝縮液
化することによυ1(20分圧が低下して行く。したが
って伝熱管4外面の820分圧は拡散供給量と凝縮液化
量との比で支配される。この拡散供給量は流体の流速(
境膜厚さ)と流体中の820分圧そのものに支配される
ので1本実施例における熱媒流体の全圧力、流f(流速
)、および入口部と出口部との上20/N2比は、要求
条件によシその都度決定する。When water vapor is mixed with an inert gas such as nitrogen and used as a heat transfer fluid, a film on the outer surface of the heat transfer tube 4 is formed as the water vapor condenses and liquefies, resulting in a partial pressure decrease of υ1 (20). 4 The 820 partial pressure at the outer surface is controlled by the ratio of the diffusion supply amount to the condensation and liquefaction amount. This diffusion supply amount is determined by the fluid flow rate (
The total pressure of the heat transfer fluid in this example, the flow f (flow velocity), and the upper 20/N2 ratio of the inlet and outlet are , determined on a case-by-case basis depending on the requirements.
換言すると1本実施例では、熱媒入口ノズル5から流入
した熱媒流体中の水蒸気が保有する熱量の全部を伝熱管
4内の液体に供給するのではない。In other words, in this embodiment, the entire amount of heat held by the water vapor in the heat medium fluid that has flowed in from the heat medium inlet nozzle 5 is not supplied to the liquid in the heat transfer tube 4 .
熱媒出口ノズル8から流出する熱媒流体には未だ多量の
水蒸気が残存している。A large amount of water vapor still remains in the heat medium fluid flowing out from the heat medium outlet nozzle 8.
本実施例では、熱媒出口ノズル8から流出する熱媒中の
水蒸気を再利用して熱損失を小さくするため、これに水
蒸気をさらに添加して熱媒入口ノズル5から再び流入さ
せている。すなわち、昇圧の手段としてスチームエジェ
クター22を用い。In this embodiment, in order to reduce heat loss by reusing the water vapor in the heat medium flowing out from the heat medium outlet nozzle 8, water vapor is further added to the heat medium and the water vapor is caused to flow in from the heat medium inlet nozzle 5 again. That is, the steam ejector 22 is used as a means for boosting the pressure.
エジェクター駆動用の水蒸気をも熱媒として有効利用し
ている。また、熱媒入口ノズル5から流入する熱媒流体
の水蒸気分圧を調節するため、混合器23に水蒸気を追
加する。混合器23においては、乾き度を調節するため
に液状の水を注入(スプレィ)することもできる。The steam used to drive the ejector is also effectively used as a heat medium. Additionally, water vapor is added to the mixer 23 in order to adjust the water vapor partial pressure of the heat medium fluid flowing in from the heat medium inlet nozzle 5 . In the mixer 23, liquid water can also be injected (sprayed) in order to adjust the degree of dryness.
上記実施例では苛性ソーダ水溶液を濃縮する場合につい
て説明したが、伝熱管4内の液中から水以外の物質を除
去する用途にも1本発明は適用できる。Although the above embodiment describes the case of concentrating a caustic soda aqueous solution, the present invention can also be applied to the use of removing substances other than water from the liquid inside the heat transfer tube 4.
本発明においては、熱媒に不活性ガスを混合するととも
に、これを伝熱管外面に沿って下から上に流すことによ
シ、伝熱管の管長方向、すなわち上と下とで熱媒の温度
を変えることができ、熱交換性能を向上させることがで
きる。これは沸点上昇の大きい液体の蒸発濃縮の場合、
特に効果が太きい。In the present invention, by mixing an inert gas with the heating medium and flowing it from bottom to top along the outer surface of the heat transfer tube, the temperature of the heating medium is changed in the longitudinal direction of the heat transfer tube, that is, at the top and bottom. It is possible to improve heat exchange performance. In the case of evaporative concentration of a liquid with a large increase in boiling point,
The effect is particularly strong.
g1図は本発明の実施例を示す図、第2図は従来の液膜
下降式熱交換器の一例の縦断面図、第3図は第2図の■
部を拡大した図、第4図は同じく周辺機器の配置を示す
系統図である。
01.1・・・胴
02.2・・・上部管板
03.3・・・下部管板
04.4・・・伝熱管
05.5・・・熱媒入口ノズル
06 ・・・汽水混合流体出口ノズル07 ・・り
之ツフル板
8 ・・・熱媒出口ノズル
9 ・・・凝縮水出口ノズル
012.12・・・上部鏡
013.13・・・被加熱溶液入口ノズル014.14
・・・溶媒蒸気出口ノズル015.15・・・下部鏡
016.6・・・濃縮溶液出口ノズル
021 ・・・汽水分離器
21 ・・・凝縮水受槽
22 ・・・スチームエゼクタ
23 ・・・混合器
代理人 弁理士 坂 間 暁 外2名第2図Figure g1 is a diagram showing an embodiment of the present invention, Figure 2 is a vertical cross-sectional view of an example of a conventional liquid film descending heat exchanger, and Figure 3 is a diagram showing the example of Figure 2.
FIG. 4, which is an enlarged view of the section, is a system diagram showing the arrangement of peripheral devices. 01.1...Body 02.2...Upper tube plate 03.3...Lower tube plate 04.4...Heat transfer tube 05.5...Heat medium inlet nozzle 06...Brackish water mixed fluid Outlet nozzle 07...Living plate 8...Heat medium outlet nozzle 9...Condensed water outlet nozzle 012.12...Upper mirror 013.13...Heated solution inlet nozzle 014.14
... Solvent vapor outlet nozzle 015.15 ... Lower mirror 016.6 ... Concentrated solution outlet nozzle 021 ... Brackish water separator 21 ... Condensed water receiving tank 22 ... Steam ejector 23 ... Mixing Representative Patent Attorney Akira Sakama and two others Figure 2
Claims (1)
することにより、同伝熱管の内面を液膜として流下する
溶液の溶媒を蒸発させるものにおいて、上記熱媒蒸気に
不活性ガスを混合するとともに、その混合気体を上記伝
熱管の外面に沿い下から上に向けて流すようにしたこと
を特徴とする液膜下降式熱交換器。In a device that evaporates the solvent of the solution flowing down as a liquid film on the inner surface of the heat transfer tube by heating the outer surface of a plurality of vertical heat transfer tubes with the latent heat of condensation of the heat transfer tube, an inert gas is added to the heat transfer tube. A descending liquid film heat exchanger characterized in that the mixed gas is mixed and is caused to flow from bottom to top along the outer surface of the heat transfer tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9456388A JPH01266489A (en) | 1988-04-19 | 1988-04-19 | Liquid film descending type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9456388A JPH01266489A (en) | 1988-04-19 | 1988-04-19 | Liquid film descending type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01266489A true JPH01266489A (en) | 1989-10-24 |
Family
ID=14113786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9456388A Pending JPH01266489A (en) | 1988-04-19 | 1988-04-19 | Liquid film descending type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01266489A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112007830A (en) * | 2020-09-17 | 2020-12-01 | 安徽建筑大学城市建设学院 | Solid needle type water storage device |
-
1988
- 1988-04-19 JP JP9456388A patent/JPH01266489A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112007830A (en) * | 2020-09-17 | 2020-12-01 | 安徽建筑大学城市建设学院 | Solid needle type water storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0226216B1 (en) | Distilling apparatus | |
US4595459A (en) | Desalinization apparatus | |
US6365005B1 (en) | Apparatus and method for vapor compression distillation | |
US3875988A (en) | Multiple effect evaporator apparatus | |
US4372759A (en) | Electrolyte vapor condenser | |
EP0090004A1 (en) | Liquid purification system. | |
US4213830A (en) | Method for the transfer of heat | |
US2764234A (en) | Method and apparatus for concentrating liquids | |
US3300392A (en) | Vacuum distillation including predegasification of distilland | |
KR101265366B1 (en) | cryogenic air separation | |
US4778569A (en) | Method of separation of liquid mixture of solution by porous separating wall | |
JPH01266489A (en) | Liquid film descending type heat exchanger | |
US4608119A (en) | Apparatus for concentrating aqueous solutions | |
JP4867722B2 (en) | Liquid concentrator | |
JPS5595091A (en) | Heat-transfer element for plate type heat-exchanger | |
JPH10263301A (en) | Liquid thickening | |
JPH10148417A (en) | Water based rectification apparatus | |
JPS62233686A (en) | Heat transfer device | |
JPH067780Y2 (en) | Liquid mixture separator | |
JPS58219901A (en) | Diffusion by evaporation | |
CN201648028U (en) | Low temperature evaporation system | |
CA1197171A (en) | Method and apparatus for concentrating aqueous solutions | |
JPS5811549B2 (en) | Multiple effect absorption refrigerator | |
JPH11128602A (en) | Spray evaporator | |
JP3684192B2 (en) | Deaerator |