JPH01266074A - Method for controlling rear wheel of four-wheel steering vehicle - Google Patents

Method for controlling rear wheel of four-wheel steering vehicle

Info

Publication number
JPH01266074A
JPH01266074A JP9485488A JP9485488A JPH01266074A JP H01266074 A JPH01266074 A JP H01266074A JP 9485488 A JP9485488 A JP 9485488A JP 9485488 A JP9485488 A JP 9485488A JP H01266074 A JPH01266074 A JP H01266074A
Authority
JP
Japan
Prior art keywords
trailer
vehicle
steering
rear wheel
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9485488A
Other languages
Japanese (ja)
Inventor
Kazuhiro Fukamachi
深町 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP9485488A priority Critical patent/JPH01266074A/en
Publication of JPH01266074A publication Critical patent/JPH01266074A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1581Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by comprising an electrical interconnecting system between the steering control means of the different axles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To improve driving stability in the captioned method in which rear-wheel steering angle control proportionate to rear-wheel slide-slip angle is performed by carrying out rear-wheel steering angle control based on a steering coefficient which is operated according to a defined formula at the time of hauling a trailer. CONSTITUTION:At the the of traveling of a four-wheel steering vehicle which can haul a trailer T, a rear wheel steering angle deltar is operated based on a rear-wheel slide-slip angle betar and a defined steering coefficient kr to carry out the steering control of rear wheels 12 according to the operated value. When the traction of the trailer T is detected by a traction sensor 7, a trailer-hauling-time steering coefficient krt is operated from the formula I to carry out rear-wheel steering angle control using this steering coefficient krt. In the formula, in the hauling vehicle, m1= vehicle mass, l= wheel base, l1= distance from front wheels to center of gravity of vehicle, l2= distance from rear wheels to center of gravity of vehicle, lh= distance from center of gravity of vehicle to trailer linking point, K1= front wheel cornering power, and K2= rear wheel cornering power. In the trailer, m2= vehicle mass, lt= wheel base, l3= distance from trailer linking point to center of gravity of vehicle, and l4= distance from center of gravity of vehicle to trailer wheels.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、4輪操舵車両の後輪制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rear wheel control method for a four-wheel steering vehicle.

従来の技術 前後輪を操舵可能とし高速に行時には前輪と同位相に後
輪を操舵して車両の操安性を向上させる4輪操舵の技術
は、特開昭55−91457号公報以来数多く発表され
ている。
Conventional technology Four-wheel steering technology, which enables steering of the front and rear wheels and improves vehicle steering by steering the rear wheels in the same phase as the front wheels when traveling at high speeds, has been published numerous times since Japanese Patent Laid-Open No. 55-91457. has been done.

発明が解決しようとする課題 近年レジャー用にて、車両例えば乗用車の後部にキャン
ピングカー等のトレーラを連結して走行すると言うケー
スが増えつつある。
Problems to be Solved by the Invention In recent years, there has been an increasing number of cases in which a trailer such as a camper car is connected to the rear of a vehicle, for example, a passenger car, for leisure purposes.

一般に車両自体としては操安性を向上させるためにステ
ア特性をアンダステアに設定されているのが普通である
が、トレーラ連結点を後輪中心より後方に配近せざるを
得ない車両特に乗用車においては、トレーラ牽引時スタ
ビリテイファクタがトレーラ非牽引時にくらべて小とな
るのでステア特性はオーバステア側に変化し、このため
トレーラ牽引車両では高速走行時操安性が低下すると言
う問題を有している。
In general, the steering characteristics of the vehicle itself are normally set to understeer in order to improve handling stability, but in vehicles, especially passenger cars, where the trailer connection point must be placed behind the center of the rear wheels. Since the stability factor when towing a trailer is smaller than when towing a trailer, the steering characteristics change to the side of oversteer, and as a result, vehicles towing trailers have a problem in that the steering stability at high speeds decreases. .

本発明は前記したような4輪操舵車両において、トレー
ラ牽引時の後輪操舵制御方法を提供し、その後輪操舵制
御方法によって上記のようなトレーラ牽引時の操安性低
下と言う従来の問題を解決しようとするものである。
The present invention provides a rear wheel steering control method when towing a trailer in the four-wheel steering vehicle as described above, and the conventional problem of reduced steering stability when towing a trailer is solved by the rear wheel steering control method. This is what we are trying to solve.

課題を解決するための手段 本発明は、転舵係数をkrとし後輪横すべり角に比例し
た後輪舵角制御を行う4輪操舵車両において、トレーラ
牽引時の転舵係数krtを、(但し式の記号については
第2図の記号説明表参照のこと) なる式で求め、トレーラ牽引時はこの転舵係数krtに
て後輪横すべり角に比例した後輪舵角制御を行うことを
特徴とするものである。
Means for Solving the Problems The present invention provides a four-wheel steering vehicle in which the steering coefficient is kr and rear wheel steering angle control is performed in proportion to the rear wheel sideslip angle. For the symbols, refer to the symbol explanation table in Figure 2).When towing a trailer, the steering coefficient krt is used to control the rear wheel steering angle in proportion to the rear wheel sideslip angle. It is something.

作用 前述したようにトレーラ牽引時は非牽引時に比しステア
特性がオーバステア方向に変化しアンダステア傾向が弱
まるので、トレーラ牽引時に非牽引時と同等の操舵を行
うと舵を切り過ぎた状態となりスピンにつながる虞れが
あるが、上記のようなトレーラ牽引時の後輪の転舵係数
制御を行うことにより、トレーラ牽引時のステア特性は
非牽引時のステア特性と同じになり、トレーラ牽引時の
運転操作を容易とし安全性の向上をはかることができる
ものである。
As mentioned above, when towing a trailer, the steering characteristics change to oversteer and the understeer tendency weakens compared to when not towing, so if you try to steer the same way when towing a trailer as when not towing, the steering will be turned too far and the vehicle will spin. However, by controlling the steering coefficient of the rear wheels when towing a trailer as described above, the steering characteristics when towing a trailer are the same as those when not towing, and the steering characteristics when towing a trailer are It is easy to operate and can improve safety.

実施例 以下本発明の実施例を付図を参照して説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図はトレーラの牽引車両における4輪操舵機構の一
例を示す図であり、1はステアリングハンドル、2は従
来より公知の例えばラックピニオン形式等の前輪操舵機
構、3は前輪である。
FIG. 1 is a diagram showing an example of a four-wheel steering mechanism in a trailer towing vehicle, where 1 is a steering handle, 2 is a conventionally known front wheel steering mechanism such as a rack and pinion type, and 3 is a front wheel.

4は後輪12に発生する横力(コーナリングフォース)
を検出する横力センサであり、該横力センサ4が検出し
た後輪横力CF2の信号と車速センサ5が検出した車速
Vの信号は共にコントロールユニット6に入力される。
4 is the lateral force (cornering force) generated on the rear wheel 12
The signal of the rear wheel lateral force CF2 detected by the lateral force sensor 4 and the signal of the vehicle speed V detected by the vehicle speed sensor 5 are both input to the control unit 6.

7はトレーラ牽引状態か否かを検出しその検出信号をコ
ントロールユニット6にインプットするトレーラ牽引セ
ンサであり、該トレーラ牽引センサ7としては図示のよ
うにトレーラを連結したとき必ず結合されるストップラ
ンプコネクタを使用するのが最も確実で且つ簡便である
が、運転者が手動で切換操作する手動スイッチを用いて
も良い。
7 is a trailer traction sensor that detects whether or not the trailer is being towed and inputs the detection signal to the control unit 6; the trailer traction sensor 7 is a stop lamp connector that is always connected when the trailer is connected as shown in the figure; It is most reliable and simple to use a manual switch, but a manual switch that is manually operated by the driver may also be used.

コントロールユニット6は、上記横力センサ4からの後
輪横力CF2の信号から後輪横すべり角βTを求め(β
、 = C−F2なる式で容易にに2 求められる。但しに2は後輪のコーナリングパワである
)、δr =−kr・δrなる式(但しkrは転舵係数
であり、該転舵係数krは車速Vの関数として設定され
る)にて後輪舵角δrを演算し、後輪操舵用アクチュエ
ータ例えば電動モータ8に出力信号を発してこれを作動
させ、電磁クラッチ9.減速機構10.リンク機構等よ
りなる後輪操舵機構11を介して後輪12を転舵作動さ
せ、後輪舵角を検出する後輪舵角センサ13の後輪舵角
信号及びモータ回転速度を検出するモータ回転速度セン
サ14の回転速度信号によるフィードバック制御により
後輪12を上記コントロールユニットが求めた舵角81
通りに転舵させるようになっている。
The control unit 6 determines the rear wheel sideslip angle βT from the signal of the rear wheel lateral force CF2 from the lateral force sensor 4 (β
2 can be easily obtained using the formula: , = C-F2. (2 is the cornering power of the rear wheels), and δr = -kr・δr (where kr is the steering coefficient, and the steering coefficient kr is set as a function of the vehicle speed V). The steering angle δr is calculated, and an output signal is issued to the rear wheel steering actuator, such as the electric motor 8, to operate it, and the electromagnetic clutch 9. Reduction mechanism 10. The rear wheels 12 are steered through a rear wheel steering mechanism 11 consisting of a link mechanism, etc., and the rear wheel steering angle sensor 13 detects the rear wheel steering angle, and the motor rotation detects the rear wheel steering angle signal and motor rotation speed. The steering angle 81 of the rear wheel 12 determined by the control unit is determined by feedback control based on the rotational speed signal of the speed sensor 14.
It is designed to be steered onto the street.

上記後輪の横力を検出する横力センサ4としては、図示
のように後輪操舵用アクチュエータとして電動モータ8
を用いたものでは、例えば減速機構lOの出力軸のトル
クを検出するトルクセンサを用い該トルクから後輪横力
を検出するのが簡便であるが、後輪操舵用アクチュエー
夕として油圧式シリンダを用いる場合は該油圧式シリン
ダの左右油圧室の油圧差を検出する油圧差検出手段にて
後輪横力を検出する等、後輪操舵袋この具体的構造に応
じて種々の手段を採用できる。
As the lateral force sensor 4 for detecting the lateral force on the rear wheels, an electric motor 8 is used as an actuator for steering the rear wheels, as shown in the figure.
For example, it is convenient to use a torque sensor that detects the torque of the output shaft of the reduction mechanism IO and detect the rear wheel lateral force from this torque, but it is also convenient to use a hydraulic cylinder as the rear wheel steering actuator. When used, various means can be adopted depending on the specific structure of the rear wheel steering bag, such as detecting the rear wheel lateral force using a hydraulic pressure difference detection means for detecting the hydraulic pressure difference between the left and right hydraulic chambers of the hydraulic cylinder.

上記のように後輪槽すベリ角βrに比例した後輪舵角δ
rで後輪操舵制御を行う4輪操舵車両において、トレー
ラ非牽引時のスタビリテイファクタkrは、前輪のみの
2輪操舵車両のスタビリテイファクタをAとして、 kr=A+kr−”ム=7二ら0+に、yntlr  
−−−−−−(。
As mentioned above, the rear wheel steering angle δ is proportional to the rear wheel steering angle βr.
In a four-wheel steering vehicle that performs rear wheel steering control with r, the stability factor kr when the trailer is not towed is calculated as follows, where A is the stability factor of a two-wheel steering vehicle with only front wheels, kr=A+kr-''mu=72, etc. to 0+, yntlr
−−−−−−(.

zkxL’    zK+ K71’       2
 K2pであり、又トレーラ牽引時のスタビリテイファ
クタkrtは転舵係数をkrtとして。
zkxL' zK+ K71' 2
K2p, and the stability factor krt when towing a trailer is the steering coefficient krt.

で表わされる(上記(1)、(2)式中の各記号は第2
図のトレーラ牽引車両の2輪モデル図及び記号説明表を
参照のこと)。
(Each symbol in the above formulas (1) and (2) is the second
(Please refer to the two-wheel model diagram and symbol explanation table of the trailer towing vehicle in the figure).

上記(1);(2)式より、トレーラ連結点を後輪の後
方に位nさせざるを得ない車両(例えば東用東等)の場
合には、At =krtであるとkr>krtとなって
、トレーラ牽引時には非牽引時に比しオーバステアに近
づく方向にステア特性が変わり、トレーラ牽引時にトレ
ーラ非牽引時と同じように操舵すると舵の切り過ぎとな
って車両スピンにつながるおそれが生じる。
From the above equations (1) and (2), in the case of a vehicle where the trailer connection point must be located behind the rear wheels (for example, Toyo East, etc.), if At = krt, then kr > krt. Therefore, when towing a trailer, the steering characteristics change in a direction approaching oversteer compared to when not towing, and if the steering is performed when towing a trailer in the same way as when not towing a trailer, the steering may be turned too much and cause the vehicle to spin.

そこで本発明では、後輪槽すべり角に比例した後輪舵角
制御を行う4輪操舵車両において、トレーラ非牽引時の
転舵係数krに対しトレーラ牽引時の後輪の転舵係1a
krtを下記に示す式により演算にて求め、トレーラ矛
引時後輪舵角δ「をδr−−krt・δfにて制御する
ことにより、トレーラ牽引時と非牽引時の定常的ステア
特性を同じにし、これによりトレーラ牽引時の迂転操作
の容易化と安全性の向上をはかったものである。
Therefore, in the present invention, in a four-wheel steering vehicle that performs rear wheel steering angle control proportional to the rear wheel tank slip angle, the steering coefficient 1a of the rear wheels when towing a trailer is
krt is calculated using the formula shown below, and by controlling the rear wheel steering angle δ' when the trailer is pulled by δr--krt・δf, the steady steering characteristics are the same when towing the trailer and when not towing the trailer. This makes it easier to turn around when towing a trailer and improves safety.

即ち、後輪槽すべり角βrに比例した後輪舵角δ「で後
輪操舵制御を行う4輪操舵車両において、トレーラ非牽
引時のステア特性は(但しδfは前輪舵角、δfoはV
:Oのときの初期前輪舵角) でアリ、トレーラ牽引時のステア特性は(但しδftは
トレーラ牽引時の前輪舵角)で表わされる。
That is, in a four-wheel steering vehicle that performs rear wheel steering control with a rear wheel steering angle δ which is proportional to the rear wheel tank slip angle βr, the steering characteristic when not towing a trailer is (where δf is the front wheel steering angle and δfo is V
:Initial front wheel steering angle when the vehicle is O) The steering characteristic when towing a trailer is expressed as (where δft is the front wheel steering angle when towing a trailer).

ここでトレーラ非牽引時と牽引時のステア特性が変化し
ないためには、(3)式と(0式とをイクオールとして kr = Alt 〜−−−−−−−−−−−−−−−
−一σ)であれば良く、前記(1) 、(2)式を用い
て(5)式を解くと、 従って、トレーラ牽引時には(6)式によってkrtを
求め、この転舵係数fjLrtにより後輪槽すべり角に
比例した後輪舵角制御を行うことによって、トレーラ牽
引時も非牽引時と変わらない定常的ステア特性とするこ
とができる。
Here, in order to keep the steering characteristics unchanged between when the trailer is not towed and when the trailer is towed, it is necessary to make equation (3) and equation (0 equal) kr = Alt 〜−−−−−−−−−−−−−−−
-1 σ), and by solving equation (5) using equations (1) and (2) above, we can find krt using equation (6) when towing a trailer, and use this steering coefficient fjLrt to calculate the steering coefficient fjLrt. By controlling the rear wheel steering angle in proportion to the wheel tank slip angle, steady steering characteristics can be achieved even when a trailer is being towed, which is the same as when not towing.

上記(6)式において、各記号は第2図の記号説明表に
記載しているように、牽引車両及びトレーラの各車両諸
元として定まっている数値であり、コントロールユニッ
ト6内に車両諸元記憶袋こと転舵係数演算装置を設ける
ことにより容易に演算できるものである。
In the above formula (6), each symbol is a numerical value determined as each vehicle specification of the towing vehicle and trailer, as described in the symbol explanation table in FIG. This can be easily calculated by providing a steering coefficient calculation device, also known as a memory bag.

即ち、第3図に示すように、牽引車と被牽引車の各車両
諸元を入力袋Haより入力し、記憶装置b + cに記
憶させておくことにより、牽引、非牽引切換装置f即ち
トレーラ牽引センサ7からトレーラ牽引信号が入力され
たとき、転舵係数演算袋fidが、車速検出装δe即ち
車速センサ5から入力される車速Vの情報より決定され
るトレーラ非牽引時の転舵係数krと、記憶袋δ(b)
 、(C)に記憶している車両諸元とに基づき前記(6
)式にてトレーラ牽引時の転舵係数krtを求め、後輪
槽すべり角βrの発生時後輪操舵手段制御装!!1gが
上記演算にて求めた転舵係数krtと上記βrとからβ
rに比例した後輪舵角δrを求めて後輪操舵袋ηhのア
クチュエータ即ち例えば電動モータ8を作動させるべき
出力信号を発し後輪舵角制御を行うことによって、前述
したようにトレーラ牽引時も非牽引時と変わらない定常
的ステア特性とすることができ、トレーラ牽引時の操安
性の著しい向上をはかり得るものである。
That is, as shown in FIG. 3, by inputting the vehicle specifications of the towing vehicle and the towed vehicle through the input bag Ha and storing them in the storage device b+c, the towing/non-towing switching device f, i.e. When a trailer traction signal is input from the trailer traction sensor 7, the steering coefficient calculation bag fid calculates the steering coefficient when the trailer is not towed, which is determined from the information on the vehicle speed V input from the vehicle speed detection device δe, that is, the vehicle speed sensor 5. kr and memory bag δ(b)
, and the vehicle specifications stored in (C).
) to find the steering coefficient krt when towing a trailer, and when the rear wheel tank slip angle βr occurs, the rear wheel steering means control system! ! 1g is β from the steering coefficient krt obtained by the above calculation and the above βr.
By determining the rear wheel steering angle δr proportional to r and issuing an output signal to operate the actuator of the rear wheel steering bag ηh, that is, for example, the electric motor 8, to control the rear wheel steering angle, even when towing a trailer, as described above. It is possible to achieve steady steering characteristics that are the same as when the vehicle is not being towed, and it is possible to significantly improve maneuverability when towing a trailer.

尚本発明は第1図に示す後輪操舵装置に限らず、後軸横
すべり角βrに対し後輪舵角δrを比例的に制御する任
意構成の後輪操舵装置に適用可能である。
The present invention is not limited to the rear wheel steering device shown in FIG. 1, but can be applied to any rear wheel steering device that controls the rear wheel steering angle δr proportionally to the rear axle side slip angle βr.

以下補足説明として、後軸横すべり角に比例して後輪舵
角制御を行う連結車両(4輪操舵車両+トレーラ)にお
ける前記(1)式及び(2)式(スタビリテイファクタ
kr、krt)の誘導について、752図の2輪モデル
を参照して説明する。
As a supplementary explanation, the equations (1) and (2) (stability factors kr, krt) in a coupled vehicle (four-wheel steered vehicle + trailer) that performs rear wheel steering angle control in proportion to the rear axle sideslip angle will be explained below. Guidance will be explained with reference to the two-wheeled model shown in Fig. 752.

尚トレーラ連結点は当然1個であるが。Of course, there is only one trailer connection point.

第2図においては説明しやすくするために牽引車両後部
の連結点とトレーラ前部の連結点とをX軸上に前後に別
々に表わしている。
In FIG. 2, for ease of explanation, the connection point at the rear of the towing vehicle and the connection point at the front of the trailer are shown separately in the front and rear on the X-axis.

まず、次のモデルについて考える。トレーラ連結点にお
けるモーメントの伝達は無いものとし、各車輪にはコー
ナリングフォースのみ作用すると仮定する。更に前後輪
転舵角δf、δr、重心点検すべり角β、β′、各車輪
の横すべり角βr、βr、βt、連結点折れ曲り角φは
いずれも微小として cos O中l、5ino中θ、tanOキ0とする。
First, consider the following model. It is assumed that there is no moment transmission at the trailer connection point, and that only cornering force acts on each wheel. In addition, the front and rear wheel steering angles δf, δr, center of gravity inspection slip angles β, β', sideslip angles βr, βr, βt of each wheel, and bending angle φ at the connection point are all assumed to be small, and are calculated as follows: cos O medium 1, 5ino medium θ, tanO Set to 0.

また定常走行9=0とする。Further, it is assumed that steady running 9=0.

ここではx、x’軸方向の運動を無視して良いから車両
の横方向とヨーイング方向についてそれぞれつり合いを
考える。
Here, we can ignore the motion in the x and x' axis directions, so we will consider the balance in the lateral direction and yawing direction of the vehicle, respectively.

牽引車部において。In the towing vehicle section.

y軸方向の力のつり合いは、 ?yIIV(βすC7J) = 2 CFlす20Fz
士F −−−−−−−(ll)z@bまわりのモーメン
トのつり合いは。
What is the balance of forces in the y-axis direction? yIIV(βC7J) = 2 CF120Fz
What is the balance of moments around (ll) z@b?

I、φ ”’21tCE+   21zCFz−ノ4F
  −−−−−−=<tz)トレーラ部において、 y′軸方向の力のつり合いは、 m2Vて7+ψ′ノ=2C7:s−F’−−−−一−−
−−−−(15)Z′軸まわりのモーメントのつり合い
は、IA”=−;yノ4c/:B−ノ:iF’−−−−
−−−−−−−−64)連結点では次の拘束条件が成り
立つ。
I, φ ”'21tCE+ 21zCFz-ノ4F
−−−−−−=<tz) In the trailer section, the balance of forces in the y′ axis direction is m2V = 7 + ψ′ = 2C7: s−F′−−−−1−−
-----(15) The balance of moments around the Z' axis is IA"=-;yノ4c/:B-ノ:iF'----
−−−−−−−64) The following constraint condition holds at the connection point.

v’=v+ムφφ→V   −−−−=−os>V泗′
す15Φ′−V(β十qつ−ノAφ −−−−−−−−
−−−(l(1)φ=φ−ψ′−−一−−一−−−−一
−−−一一−−−・−(/7)F′呻F −−−〜−−
−−−−−−−−−−−−−−−−−−−(18)前軸
横すべり角 後軸横すべり角 トレーラ軸横すべり角 さらにコーナリングフォースCFl、CF2゜CF3は
コーナリングパワをそれぞれKl、に2゜F3とすると
v'=v+muφφ→V −−−−=−os>V泗′
15Φ'-V (β10q-noAφ ----------
−−−(l(1)φ=φ−ψ′−−1−−1−−−−1−−−11−−−・−(/7) F′ groanF −−−〜−−
−−−−−−−−−−−−−−−−−−−(18) Front axle sideslip angle Rear axis sideslip angle Trailer axis sideslip angle In addition, the cornering forces CFl and CF2°CF3 are the cornering power Kl, respectively. Assuming 2°F3.

ノ、φ C”F+=  K+β、=−に啄(β千−7−4)−−
−−−−−−−−−−<n)ノ、φ CF2=  Kzβ、=−に2(β−7−Σ丁片−−−
−−−−−−・(23)7!4ψ′−m− CF5=−に9β4=  Ky(β−vラ  −−−−
−−−−(J4)(11)、(13)、(18)式より
F、F’を消去すると。
ノ、φ C"F+= K+β,=-に啄(β1000−7−4)−−
−−−−−−−−−−<n)ノ, φ CF2= Kzβ, =−to 2(β−7−Σpiece−−
−−−−−・(23) 7!4ψ′−m− CF5=− to 9β4= Ky(β−vra −−−−
-----(J4) When F and F' are eliminated from equations (11), (13), and (18).

771、しく戸十φ)士ynzV’(p’+φ′ノー2
 ((Fl +CFx i CFs)= 0上式に(2
2)〜(24)式を代入して湾rv(βすψ)す〃すV
?β′すφつ=zK、、Sチ す2に、μ さらに、(15)〜(17)式を代入して整理すると、
+711./、φ子午φ+2に、ψ−2kt54+2k
Jr −−=−(y)(11)、(14)、(18)式
よりF、F’を消去すると、I2φ′+mzlav(p
 +tjす+2−k(Fi−2b(CFttCFz)=
0上式に(22)〜(24)式を代入して■2φ’十7
yl+IうV(β+ψ)−2に、ノ。(ρ′−J入り算
)+z13 /(K、−1−y、)p +$ 、、 1
=21aK+s5  +213に2& さらに、(15)〜(17)式を代入して整理すると、
−1,Vρ+2((K+”KJ)Iy−に函Ip鵡φ−
1,’P−−;−ψ−2<、ノ。ヤ;27JkLLS+
↑2ノ3kJr −−−Cz6)(12)、(13)、
(18)式よりF、F’を消去すると。
771.
((Fl + CFx i CFs) = 0 In the above formula, (2
2) Substituting equations (24) to obtain the bay rv(βsψ)V
? β'sφ = zK, , S = 2, μ Further, substituting equations (15) to (17) and rearranging, we get
+711. /, φ meridian φ+2, ψ−2kt54+2k
Jr −−=−(y) By eliminating F and F′ from equations (11), (14), and (18), I2φ′+mzlav(p
+tjsu+2-k(Fi-2b(CFttCFz)=
0Substituting equations (22) to (24) into the above equation, ■2φ'17
yl+I to V(β+ψ)-2, no. (ρ′-J addition)+z13/(K,-1-y,)p+$,, 1
=21aK+s5 +213 to 2& Furthermore, substituting equations (15) to (17) and rearranging, we get
−1, Vρ+2((K+”KJ)Iy− to box Ip錡φ−
1,'P--;-ψ-2<, ノ. Ya;27JkLLS+
↑2ノ3kJr ---Cz6) (12), (13),
If F and F' are eliminated from equation (18).

I、←77721kV′(S″すψつ−24(Ftす2
ツユcr、す2ソ−CFヨー0上式に(21)〜(20
式を代入して 11φ−m−JJ、V′(/3′+φつ+2 (K+ 
Il−KxlJβ+2′”0φ−2kddp工Lす V               V′=2に、]ts
4  2kzllSr さらに、(15)〜(17)式を代入して整理すると、
m2ノkVp +2(−に+1++に2A+ks!’)
73−IL”=xl/U Cノリ停+19.−鴨縛一竺
ヰ1φ 十m、 1.7.t+ ”t 14 Zt≠←z*yh
ttp −−2に+ノJ4+2kylz5Y以上、(2
5)、(2G) 、(27)式が車体座標系における連
結車両(牽引車両+トレーラ)の連動方程式である。
I, ←77721kV'(S" ψtsu-24(Ftsu2
Tsuyu cr, su2 so-CF yaw 0 in the above formula (21) ~ (20
Substituting the formula, 11φ−m−JJ,V′(/3′+φ+2(K+
Il-KxlJβ+2'"0φ-2kddp Lsu V V'=2, ]ts
4 2kzllSr Furthermore, by substituting and rearranging equations (15) to (17), we get
m2 no kVp +2 (-+1++ to 2A+ks!')
73-IL”=xl/U C nori stop+19.-Kamobaku Ichikuヰ1φ 10m, 1.7.t+”t 14 Zt≠←z*yh
ttp −−2+ノJ4+2kylz5Y or more, (2
Equations 5), (2G), and (27) are interlocking equations for the connected vehicle (towing vehicle + trailer) in the vehicle body coordinate system.

次に定常円旋回とステア特性について考える。Next, consider steady circular turning and steering characteristics.

定常円旋回においては、 β=0   ・・・重心点の横すべり角一定ψ;0  
 ・・・ヨー角速度一定 d、示=0 ・・・相対角一定 である、 (25)〜(27)式に代入してマトリック
スで表現すると次のようになる。
In steady circular turning, β=0...Constant sideslip angle of center of gravity ψ; 0
... Yaw angular velocity constant d, indicated = 0 ... Relative angle constant. Substituting into equations (25) to (27) and expressing it in a matrix gives the following.

旋回半径をRとすると、 ■(耐勾−ギー−−−−−−−−−−−−−(3o)こ
こで定常円旋回では4=Oだから ψ” R−−−=−−−−−−−−−(31)次に牽引
車両後輪を転舵係数krとして、5y= Igr−ρr
=−h、(β−すφ−tar)−(32)但し、Oく箆
rく1(同相操舵) で制御するものとすると、(29)式は−−−(3F) ここで(33)式を Δ・γ= ’f5s とおくと。
If the turning radius is R, then ■(Grade resistance-------(3o)) Here, in steady circular turning, 4=O, so ψ" R----=-- ------- (31) Next, assuming the steering coefficient kr of the rear wheels of the towing vehicle, 5y=Igr-ρr
=-h, (β-sφ-tar)-(32) However, if it is assumed to be controlled by Okurku1 (in-phase steering), equation (29) becomes---(3F) where (33 ) equation as Δ・γ='f5s.

−−−(3+) (33)式を蚕について解くと、 ここで(31) 、 (34)式を代入してδfについ
て整理すると、 ・−−−−Qf) 但し Sea = ′L(y中O)とする。
−−−(3+) Solving equation (33) for silkworms, substituting equations (31) and (34) and rearranging for δf, ・−−−Qf) However, Sea = ′L (in y O).

(35)式から後輪槽すベリ角比例式4輪操舵車6Qの
トレーラ牽引時のスタビリテイファクタkrtは。
From equation (35), the stability factor krt of the 6Q four-wheel steering vehicle with a proportional angle of rear wheel tank when towing a trailer is obtained.

−−−=−C36) トレーラ牽引時の転舵係数をkrtとおくと。---=-C36) Let krt be the steering coefficient when towing a trailer.

(35)式は前記(4)式となり、 (3B)式は前記
(2)式となる。
Equation (35) becomes equation (4) above, and equation (3B) becomes equation (2) above.

後輪横すべり色比例式4輪操舵車両弔休(トレーラ非牽
引状態)では、トレーラに関する項を削除して、同様の
方法から((35)式、 (3G)式でm2=0とおい
ても良い、)、 スタビリテイファクタkrは。
In the case of a four-wheel steering vehicle with rear wheel sideslip color proportional type (without trailer being towed), it is also possible to delete the term related to the trailer and set m2 = 0 in equations (35) and (3G) using the same method. ), the stability factor kr is.

(37)式は前記(3)式となり、(38)式は前記(
1)式となる。
Equation (37) becomes equation (3) above, and equation (38) becomes equation (
1) Equation becomes.

上記のようにしてスタビリテイファクタkr及びkrt
を導くことができる。
Stability factors kr and krt are determined as described above.
can lead to.

発明の効果 以上のように本発明によれば、後輪横すべり角に比例し
た後輪舵角制御を行う4輪操舵車両において、トレーラ
を牽引する場合に牽引時の定常的ステア特性が非牽引時
の定常的ステア特性となるように後輪舵角制御を行うこ
とにより、トレーラ牽引時も非牽引時と同じハンドル操
作にて充分安全なる走行を行うことができ、操縦安定性
の著しい向上をはかり得るもので、実用上多大の効果を
もたらし得るものである。
Effects of the Invention As described above, according to the present invention, in a four-wheel steering vehicle that performs rear wheel steering angle control proportional to the rear wheel sideslip angle, when towing a trailer, the steady steering characteristic when towing is different from the steady steering characteristic when not being towed. By controlling the rear wheel steering angle so that the vehicle has a steady steering characteristic, it is possible to drive safely even when towing a trailer with the same steering wheel operation as when not towing, thereby significantly improving steering stability. This is something that can bring about great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

:51図は本発明方法を適用すべき4輪操舵車両の後輪
操舵装置の一例を示すト面説明図、第2図はトレーラ牽
引4輪操舵車両の2輪モデル図、第3図は本発明におけ
る後輪舵角制御回路例を示すブロック図である。 l・・・ステアリングハンドル、3・・・前輪、4・・
・後輪横力センサ、5・・・車速センサ、6・・・コン
トロールユニット、7・・・トレーラ牽引センサ、8・
・・電動モータ、11・・・後輪操舵機構、12・・・
後輪、13・・・後輪舵角センサ。 以   上
: Figure 51 is a top explanatory view showing an example of a rear wheel steering device of a four-wheel steering vehicle to which the method of the present invention is applied, Figure 2 is a two-wheel model diagram of a four-wheel steering vehicle towing a trailer, and Figure 3 is a main It is a block diagram showing an example of a rear wheel steering angle control circuit in the invention. l...Steering handle, 3...Front wheel, 4...
・Rear wheel lateral force sensor, 5... Vehicle speed sensor, 6... Control unit, 7... Trailer traction sensor, 8...
...Electric motor, 11...Rear wheel steering mechanism, 12...
Rear wheel, 13... Rear wheel steering angle sensor. that's all

Claims (1)

【特許請求の範囲】  転舵係数をkrとし後輪横すべり角に比例した後輪舵
角にて後輪操舵制御を行う4輪操舵車両において、上記
転舵係数krに対しトレーラ牽引時の転舵係数krtを
下記式にて求め、トレーラ牽引時には該後輪転舵係数k
rtにて後輪横すべり角に比例した後輪舵角制御を行う
ことを特徴とする4輪操舵車両の後輪制御方法。 記 krt=(m_1l_1ltkr+m_2l_4(l_
1+lh)+m_2l_4(lh−l_2)(K_2/
K_1)/m_1l_1lt+m_2l_4(l_1+
lh))但し、牽引車両において、 m_1は車両質量、 lはホイールベース、 l_1は前輪から車両重心までの距離、 l_2は後輪から車両重心までの距離、 lhは車両重心からトレーラ連結点までの距離、 K_1は前輪コーナリングパワ、 K_2は後輪コーナリングパワ。 トレーラにおいて、 m_2は車両質量、 ltはホイールベース、 l_3はトレーラ連結点から車両重心までの距離、 l_4は車両重心からトレーラ輪までの距離。
[Scope of Claims] In a four-wheel steering vehicle in which the steering coefficient is set to kr and rear wheel steering is controlled using a rear wheel steering angle proportional to the rear wheel sideslip angle, the steering coefficient when towing a trailer is determined based on the steering coefficient kr. The coefficient krt is calculated using the following formula, and when towing a trailer, the rear wheel steering coefficient k
1. A rear wheel control method for a four-wheel steering vehicle, comprising performing rear wheel steering angle control proportional to a rear wheel sideslip angle at rt. krt=(m_1l_1ltkr+m_2l_4(l_
1+lh)+m_2l_4(lh-l_2)(K_2/
K_1)/m_1l_1lt+m_2l_4(l_1+
lh)) However, for the towing vehicle, m_1 is the vehicle mass, l is the wheelbase, l_1 is the distance from the front wheels to the vehicle center of gravity, l_2 is the distance from the rear wheels to the vehicle center of gravity, and lh is the distance from the vehicle center of gravity to the trailer attachment point. distance, K_1 is front wheel cornering power, K_2 is rear wheel cornering power. For the trailer, m_2 is the vehicle mass, lt is the wheelbase, l_3 is the distance from the trailer connection point to the vehicle center of gravity, and l_4 is the distance from the vehicle center of gravity to the trailer wheels.
JP9485488A 1988-04-18 1988-04-18 Method for controlling rear wheel of four-wheel steering vehicle Pending JPH01266074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9485488A JPH01266074A (en) 1988-04-18 1988-04-18 Method for controlling rear wheel of four-wheel steering vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9485488A JPH01266074A (en) 1988-04-18 1988-04-18 Method for controlling rear wheel of four-wheel steering vehicle

Publications (1)

Publication Number Publication Date
JPH01266074A true JPH01266074A (en) 1989-10-24

Family

ID=14121620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9485488A Pending JPH01266074A (en) 1988-04-18 1988-04-18 Method for controlling rear wheel of four-wheel steering vehicle

Country Status (1)

Country Link
JP (1) JPH01266074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190848A (en) * 1989-05-09 1993-03-02 Eastman Kodak Company Photographic β-ketoamide and photographic elements containing them
WO2014168016A1 (en) * 2013-04-11 2014-10-16 日産自動車株式会社 Vehicle control device and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190848A (en) * 1989-05-09 1993-03-02 Eastman Kodak Company Photographic β-ketoamide and photographic elements containing them
WO2014168016A1 (en) * 2013-04-11 2014-10-16 日産自動車株式会社 Vehicle control device and control method

Similar Documents

Publication Publication Date Title
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
US6668225B2 (en) Trailer control system
CN111108035A (en) Method and system for controlling lane keeping of vehicle
US20020107627A1 (en) Trailer and simulator
Huh et al. Handling and driving characteristics for six-wheeled vehicles
CN104619530A (en) Steering and control systems for a three-wheeled vehicle
CN107627900A (en) A kind of electric automobile dual wheel rims motor differential moment controlling system and control method
CN112319602B (en) 6X4 electric automobile chassis system capable of realizing all-wheel steering and steering control method
JPH01266074A (en) Method for controlling rear wheel of four-wheel steering vehicle
Notsu et al. Investigation into turning behavior of semi-trailer with additional trailer-wheel steering--a control method for trailer-wheel steering to minimize trailer rear-overhang swing in short turns
JP2524708B2 (en) Torque distribution control device for four-wheel drive vehicle
JP4970102B2 (en) Vehicle deceleration control device
JP2699082B2 (en) Rear wheel control method for four-wheel steering vehicle
JP2651593B2 (en) Rear wheel control method for four-wheel steering vehicle
KR100885893B1 (en) All-Wheel steering control method for articulated vehicles
Piyabongkarn et al. On the use of torque-biasing devices for vehicle stability control
JPH04126675A (en) Rear-wheels steering device for semi-trailer
Patil et al. Four Wheel Steering Mechanism
JP2548346B2 (en) Vehicle speed calculator
KR19980057161A (en) Steering to Ensure Neutral Steer
Lee et al. Feasibility study for a vehicle-trailer backing up control
JPS61241276A (en) Four wheel steering device for automobile
JP2023060738A (en) Testing device for automobile
JPH0698938B2 (en) Safety device for four-wheel steering type traveling vehicle
JP2681480B2 (en) Control method of variable steering gear ratio steering device