JP2699082B2 - Rear wheel control method for four-wheel steering vehicle - Google Patents
Rear wheel control method for four-wheel steering vehicleInfo
- Publication number
- JP2699082B2 JP2699082B2 JP9485388A JP9485388A JP2699082B2 JP 2699082 B2 JP2699082 B2 JP 2699082B2 JP 9485388 A JP9485388 A JP 9485388A JP 9485388 A JP9485388 A JP 9485388A JP 2699082 B2 JP2699082 B2 JP 2699082B2
- Authority
- JP
- Japan
- Prior art keywords
- trailer
- vehicle
- steering
- wheel
- rear wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
- B62D7/1581—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by comprising an electrical interconnecting system between the steering control means of the different axles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、4輪操舵車両の後輪制御方法に関するもの
である。Description: TECHNICAL FIELD The present invention relates to a method for controlling rear wheels of a four-wheel steering vehicle.
従来の技術 前後輪を操舵可能とし高速走行時には前輪と同位相に
後輪を操舵して車両の操安性を向上させる4輪操舵の技
術は、特開昭55−91457号公報以来数多く発表されてい
る。2. Description of the Related Art A number of four-wheel steering technologies have been disclosed since JP-A-55-91457, in which the front and rear wheels are steerable and the rear wheels are steered in phase with the front wheels during high-speed driving to improve the vehicle's steerability. ing.
発明が解決しようとする課題 近年レジャー用にて、車両例えば乗用車の後部にキャ
ンピングカー等のトレーラを連結して走行すると言うケ
ースが増えつつある。Problems to be Solved by the Invention In recent years, cases for leisure use have been increasing in which a vehicle, for example, a trailer such as a camper is connected to a rear part of a passenger car to travel.
一般に車両自体としては操安性を向上させるためにス
テア特性をアンダステアに設定されているのが普通であ
るが、トレーラ連結点を後輪中心より後方に配置せざる
を得ない車両特に乗用車においては、トレーラ牽引時ス
タビリティファクタがトレーラ非牽引時にくらべて小と
なるのでステア特性はオーバステア側に変化し、このた
めトレーラ牽引車両では高速走行時操安性が低下すると
言う問題を有している。Generally, as a vehicle itself, it is usual that the steering characteristic is set to understeer in order to improve stability, but for vehicles that have to arrange the trailer connection point behind the center of the rear wheel, especially for passenger vehicles, However, since the stability factor at the time of trailer pulling is smaller than when the trailer is not towed, the steer characteristics change to the oversteer side, and therefore, there is a problem that the steerability at the time of high-speed running is reduced in a trailer-towed vehicle.
本発明は前記したような4輪操舵車両において、トレ
ーラ牽引時の後輪操舵制御方法を提供し、その後輪操舵
制御方法によって上記のようなトレーラ牽引時の操安性
低下と言う従来の問題を解決しようとするものである。The present invention provides a rear-wheel steering control method for trailer towing in a four-wheel steering vehicle as described above, and then solves the conventional problem of reduced stability during trailer towing as described above by the wheel steering control method. That is what we are trying to solve.
課題を解決するための手段 本発明は、トレーラ非牽引時には転舵係数をkfとし前
輪横すべり角βfに比例した後輪舵角δrにてkf=−δ
r/βfなる式に基づいて後輪舵角制御を行う4輪操舵車
両において、上記トレーラ非牽引時の転舵係数kfに対し
トレーラ牽引時の転舵係数kftを、 (但し式の記号については第2図の記号説明表参照のこ
と) なる式で求め、トレーラ牽引時はこの転舵係数kftにて
前輪横すべり角に比例した後輪舵角制御を行うことを特
徴とするものである。Means for Solving the Problems When the trailer is not towed, the present invention provides kf = −δ at a rear wheel steering angle δr that is proportional to the front wheel side slip angle βf, with the steering coefficient being kf.
In a four-wheel steering vehicle that performs rear wheel steering angle control based on the equation of r / βf, the steering coefficient kft when the trailer is towed is compared with the steering coefficient kf when the trailer is not towed, (However, refer to the symbol explanation table in Fig. 2 for the symbols of the formula.) The following formula is used. When the trailer is towed, the rear wheel steering angle is controlled by this turning coefficient kft in proportion to the front wheel side slip angle. It is assumed that.
作 用 前述したようにトレーラ牽引時は非牽引時に比しステ
ア特性がオーバステア方向に変化しアンダステア傾向が
弱まるので、トレーラ牽引時に非牽引時と同等の操舵を
行うと舵を切り過ぎた状態となりスピンにつながる虞れ
があるが、上記のようなトレーラ牽引時の後輪の転舵係
数制御を行うことにより、トレーラ牽引時のステア特性
は非牽引時のステア特性と同じになり、トレーラ牽引時
の運転操作を容易とし安全性の向上をはかることができ
るものである。Operation As described above, when the trailer is towed, the steer characteristics change in the oversteer direction and the understeer tendency is weakened compared to when the trailer is not towed. However, by performing the steering coefficient control of the rear wheels at the time of trailing as described above, the steering characteristic at the time of trailing becomes the same as the steering characteristic at the time of non-towing, and at the time of trailing, The driving operation can be facilitated and safety can be improved.
実施例 以下本発明の実施例を付図を参照して説明する。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.
第1図はトレーラの牽引車両における4輪操舵機構の
一例を示す図であり、1はステアリングハンドル、2は
従来より公知の例えばラックピニオン形式等の前輪操舵
機構、3は前輪である。FIG. 1 is a view showing an example of a four-wheel steering mechanism in a towing vehicle of a trailer, where 1 is a steering wheel, 2 is a conventionally known front-wheel steering mechanism of, for example, a rack and pinion type, and 3 is a front wheel.
4は前輪3に発生する横力(コーナリング・フォー
ス)を検出する横力センサであり、該横力センサ4が検
出した前輪横力CF1の信号と車速センサ5が検出した車
速Vの信号は共にコントロールユニット6に入力され
る。Reference numeral 4 denotes a lateral force sensor for detecting a lateral force (corner force) generated at the front wheel 3. A signal of the front wheel lateral force CF 1 detected by the lateral force sensor 4 and a signal of the vehicle speed V detected by the vehicle speed sensor 5 are provided. Both are input to the control unit 6.
7はトレーラ牽引状態か否かを検出しその検出信号を
コントロールユニット6にインプットするトレーラ牽引
センサであり、該トレーラ牽引センサ7としては図示の
ようにトレーラを連結したとき必ず結合されるストップ
ランプコネクタを使用するのが最も確実で且つ簡便であ
るが、運転者が手動で切換操作する手動スイッチを用い
ても良い。Reference numeral 7 denotes a trailer traction sensor for detecting whether or not the vehicle is in a trailer traction state and inputting a detection signal to the control unit 6. The trailer traction sensor 7 is a stop lamp connector which is always connected when a trailer is connected as shown in the figure. Is the most reliable and simple to use, but a manual switch manually operated by the driver may be used.
コントロールユニット6は、上記横力センサ4からの
前輪横力CF1の信号から前輪横すべり角βfを求め なる式で容易に求められる。但しK1は前輪のコーナリン
グパワである)、δr=−kf・βfなる式(但しkfは転
舵係数であり、該転舵係数kfは車速Vの関数として設定
される)にて後輪舵角δrを演算し、後輪操舵用アクチ
ュエータ例えば電動モータ8に出力信号を発してこれを
作動させ、電磁クラッチ9,減速機構10,リンク機構等よ
りなる後輪操舵機構11を介して後輪12を転舵作動させ、
後輪舵角を検出する後輪舵角センサ13の後輪舵角信号及
びモータ回転速度を検出するモータ回転速度センサ14の
回転速度信号によるフィードバック制御により後輪12を
上記コントロールユニットが求めた舵角δr通りに転舵
させるようになっている。The control unit 6 calculates the front wheel side slip angle βf from the signal of the front wheel side force CF 1 from the side force sensor 4. It is easily obtained by the following formula. However, K1 is the cornering power of the front wheels), δr = −kf · βf (where kf is a turning coefficient, and the turning coefficient kf is set as a function of the vehicle speed V), and the rear wheel steering angle is obtained. δr is calculated, and an output signal is issued to a rear-wheel steering actuator, for example, an electric motor 8 to operate the same, and the rear wheel 12 is driven through a rear-wheel steering mechanism 11 including an electromagnetic clutch 9, a speed reduction mechanism 10, and a link mechanism. Steering operation,
The control unit determines the rear wheels 12 by feedback control based on a rear wheel steering angle sensor 13 for detecting a rear wheel steering angle and a feedback control by a rotation speed signal of a motor rotation speed sensor 14 for detecting a motor rotation speed. The steering is performed according to the angle δr.
上記前輪の横力を検出する横力センサ4としては、例
えば前輪操舵系統に公知の油圧式パワステアリング装置
を装備した車両であれば、該油圧式パワステアリング装
置のパワシリンダの左右油圧室の油圧差を検出する油圧
差検出手段を用い該油圧差から前輪横力を検出するのが
簡単であるが、その他ステアリングハンドル1の操舵ト
ルクを検出する公知の操舵力検出手段を用いこれから前
輪横力を検出する等、任意の手段が採用され得る。As the lateral force sensor 4 for detecting the lateral force of the front wheels, for example, in a vehicle equipped with a known hydraulic power steering device in the front wheel steering system, the hydraulic pressure difference between the left and right hydraulic chambers of the power cylinder of the hydraulic power steering device is used. It is easy to detect the front wheel lateral force from the hydraulic pressure difference by using the hydraulic pressure difference detecting means for detecting the front wheel lateral force. However, the known front wheel force detecting means for detecting the steering torque of the steering wheel 1 is used to detect the front wheel lateral force therefrom. For example, any means can be adopted.
上記のように前輪横すべり角βfに比例した後輪舵角
δrで後輪操舵制御を行う4輪操舵車両において、トレ
ーラ非牽引時のスタビリティファクタAfは、前輪のみの
2輪操舵車両のスタビリティファクタをAとして、 であり、又トレーラ牽引時のスタビリティファクタAft
は転舵係数をkftとして、 で表わされる(上記(1),(2)式中の各記号は第2
図のトレーラ牽引車両の2輪モデル図及び記号説明表を
参照のこと)。As described above, in a four-wheel steering vehicle that performs rear wheel steering control at a rear wheel steering angle δr proportional to the front wheel side slip angle βf, the stability factor Af when the trailer is not towed is the stability of a two-wheel steering vehicle having only front wheels. Assuming the factor is A, And the stability factor Aft for trailer towing.
Is the steering coefficient kft, (Each symbol in the above equations (1) and (2) is
(Refer to the two-wheel model diagram and the symbol explanation table of the trailer towing vehicle in the figure).
上記(1),(2)式より、一般的にはkf=kftであ
るとAft<Afとなって、トレーラ牽引時には非牽引時に
比しオーバステアに近づく方向にステア特性が変わり、
トレーラ牽引時に非牽引時と同じように操舵すると舵の
切り過ぎとなり車両スピンにつながるおそれが生じる。From the above equations (1) and (2), generally, when kf = kft, Aft <Af, and the steer characteristics change in the direction approaching oversteer when the trailer is towed compared to when the tow is not towed,
When the trailer is towed in the same manner as when the vehicle is not towed, the rudder may be overturned and the vehicle may spin.
そこで本発明では、前輪横すべり角に比例した後輪舵
角制御を行う4輪操舵車両において、トレーラ非牽引時
の転舵係数kfに対しトレーラ牽引時の後輪の転舵係数kf
tを下記に示す式により演算にて求め、トレーラ牽引時
後輪舵角δrをδr=−kft・βfにて制御することに
より、トレーラ牽引時と非牽引時の定常的ステア特性を
同じにし、これによりトレーラ牽引時の運転操作の容易
化と安全性の向上をはかったものである。Therefore, in the present invention, in a four-wheel steering vehicle that performs rear wheel steering angle control in proportion to the front wheel side slip angle, the steering coefficient kf of the rear wheel when the trailer is towed is compared with the steering coefficient kf when the trailer is not towed.
t is calculated by the formula shown below, and the trailing rear wheel steering angle δr is controlled by δr = −kft · βf at the time of trailer pulling, so that the steady steering characteristics at the time of trailer pulling and at the time of non-traction are equalized. As a result, the driving operation at the time of towing the trailer is facilitated and the safety is improved.
即ち、前輪横すべり角βfに比例した後輪舵角δrで
後輪操舵制御を行う4輪操舵車両において、トレーラ非
牽引時のステア特性は (但しδfは前輪舵角,δf0はV≒0のときの初期前輪
舵角) であり、トレーラ牽引時のステア特性は (但しδftはトレーラ牽引時の前輪舵角) で表わされる。That is, in a four-wheel steering vehicle that performs rear wheel steering control at a rear wheel steering angle δr proportional to the front wheel side slip angle βf, the steering characteristic when the trailer is not towed is (Where δf is the front wheel steering angle and δf 0 is the initial front wheel steering angle when V ≒ 0). (However, δft is the steering angle of the front wheels when the trailer is being pulled.)
ここでトレーラ非牽引時と牽引時のステア特性が変化
しないためには、(3)式と(4)式とをイクオールと
して Af=Aft ……(5) であれば良く、前記(1),(2)式を用いて(5)式
を解くと、 従って、トレーラ牽引時には(6)式によってkftを求
め、この転舵係数kftにより前輪横すべり角に比例した
後輪舵角制御を行うことによって、トレーラ牽引時も非
牽引時と変わらない定常時ステア特性とすることができ
る。Here, in order that the steer characteristics do not change when the trailer is not towed and when the trailer is towed, the equations (3) and (4) may be used as equals as long as Af = Aft (5). By solving equation (5) using equation (2), Therefore, when the trailer is towed, kft is calculated by equation (6), and the rear wheel steering angle is controlled in proportion to the front wheel side slip angle by using the turning coefficient kft. It can be.
上記(6)式において、各記号は第2図の記号説明表
に記載しているように、牽引車量及びトレーラの各車両
諸元として定まっている数値であり、コントロールユニ
ット6内に車両諸元記憶装置と転舵係数演算装置を設け
ることにより容易に演算できるものである。In the above equation (6), each symbol is a numerical value determined as each vehicle specification of the towing vehicle amount and the trailer as described in the description table of symbols in FIG. The calculation can be easily performed by providing the original storage device and the turning coefficient calculation device.
即ち、第3図に示すように、牽引車と被牽引車の各車
両諸元を入力装置aより入力し、記憶装置b,cに記憶さ
せておくことにより、牽引,非牽引切換装置f即ちトレ
ーラ牽引センサ7からトレーラ牽引信号が入力されたと
き、転舵係数演算装置dが、車速検出装置e即ち車速セ
ンサ5から入力される車速Vの情報より決定されるトレ
ーラ非牽引時の転舵係数kfと、記憶装置(b),(c)
に記憶している車両諸元とに基づき前記(6)式にてト
レーラ牽引時の転舵係数kftを求め、前輪横すべり角β
fの発生時後輪操舵手段制御装置gが上記演算にて求め
た転舵係数kftと上記βfとからβfに比例した後輪舵
角δrを求めて後輪操舵装置hのアクチュエータ即ち例
えば電動モータ8を作動させるべき出力信号を発し後輪
舵角制御を行うことによって、前述したようにトレーラ
牽引時も非牽引と変わらない定常時ステア特性とするこ
とができ、トレーラ牽引時の操安性の著しい向上をはか
り得るものである。That is, as shown in FIG. 3, by inputting the vehicle specifications of the towing vehicle and the towed vehicle from the input device a and storing them in the storage devices b and c, the towing / non-towing switching device f, namely, When a trailer traction signal is input from the trailer traction sensor 7, the steering coefficient calculation device d determines the steering coefficient when the trailer is not towed, which is determined from the vehicle speed detection device e, that is, the vehicle speed V input from the vehicle speed sensor 5. kf and storage devices (b) and (c)
The steering coefficient kft when the trailer is towed is calculated by the above equation (6) based on the vehicle specifications stored in the vehicle, and the front wheel side slip angle β
When f occurs, the rear wheel steering means control device g obtains a rear wheel steering angle δr proportional to βf from the turning coefficient kft obtained by the above calculation and βf to obtain an actuator of the rear wheel steering device h, for example, an electric motor. 8 to control the rear wheel steering angle by issuing an output signal to operate the steering wheel 8 as described above, it is possible to obtain a steady steering characteristic that is the same as non-traction when the trailer is towed. Significant improvements can be made.
尚本発明は第1図に示す後輪操舵装置に限らず、前輪
横すべり角βfに対し後輪舵角δrを比例的に制御する
任意構成の後輪操舵装置に適用可能である。The present invention is not limited to the rear wheel steering device shown in FIG. 1, but can be applied to a rear wheel steering device having an arbitrary configuration for controlling the rear wheel steering angle δr proportionally to the front wheel side slip angle βf.
以下補足説明として、前輪横すべり角に比例して後輪
舵角制御を行う連結車両(4輪操舵車両+トレーラ)に
おける前記(1)式及び(2)式(スタビリティファク
タAf,Aft)の誘導について、第2図の2輪モデルを参照
して説明する。As a supplementary explanation, the induction of the equations (1) and (2) (stability factors Af, Aft) in a connected vehicle (4-wheel steering vehicle + trailer) that performs rear wheel steering angle control in proportion to the front wheel side slip angle. Will be described with reference to the two-wheel model in FIG.
尚トレーラ連結点は当然1個であるが、第2図におい
ては説明しやすくするために牽引車両後部の連結点とト
レーラ前部の連結点とをx軸上に前後に別々に表わして
いる。Although there is naturally one trailer connection point, in FIG. 2, the connection point at the rear of the towing vehicle and the connection point at the front of the trailer are separately shown on the x-axis for ease of explanation.
まず、次のモデルについて考える。トレーラ連結点に
おけるモーメントの伝達は無いものとし、各車輪にはコ
ーナリングフォースのみ作用すると仮定する。更に前後
輪転舵角δf,δr、重心点横すべり角β,β′、各車輪
の横すべり角βf,βr,βt、連結点折れ曲り角φはいず
れも微小として cos θ≒1,sin θ≒θ,tan θ≒θ とする。また定常走行=0とする。First, consider the following model. It is assumed that there is no moment transmission at the trailer connection point, and that only the cornering force acts on each wheel. Further, the front and rear wheel turning angles δf, δr, the center-of-gravity point side slip angles β, β ′, the side slip angles βf, βr, βt of each wheel, and the bend angle φ of the connection point are all small cos θ ≒ 1, sin θ ≒ θ, tan θ ≒ θ. It is also assumed that steady running = 0.
ここではx,x′軸方向の運動を無視して良いから車両
の横方向とヨーイング方向についてそれぞれつり合いを
考える。Here, since the movements in the x and x'-axis directions can be ignored, a balance is considered in each of the lateral direction and the yawing direction of the vehicle.
牽引車部において、 y軸方向の力のつり合いは、 m1V(+)=2CF1+2CF2+F ……(11) z軸まわりのモーメントのつり合いは、 I1=2l1CF1−2l2CF2−lhf ……(12) トレーラ部において、 y′軸方向の力とつり合いは、 m2V′(′+′)=2CF3−F′ ……(13) z′軸まわりのモーメントのつり合いは、 I2′=−2l4CF3−l3F′ ……(14) 連結点では次の拘束条件が成り立つ。In the towing vehicle, the balance of the force in the y-axis direction is m 1 V (+) = 2CF 1 + 2CF 2 + F (11) The balance of the moment about the z-axis is I 1 = 2l 1 CF 1 −2l 2 CF 2 −lhf (12) In the trailer section, the force and balance in the y′-axis direction are: m 2 V ′ (′ + ′) = 2CF 3 −F ′ (13) The moment around the z′-axis The balance is I 2 ′ = −2l 4 CF 3 −l 3 F ′ (14) At the connection point, the following constraint condition is satisfied.
V′=V+lhφ≒V ……(15) V′β′+l3′=V(β+φ)−lh ……(16) =−′ ……(17) F′≒F ……(18) 前輪横すべり角 後輪横すべり角 トレーラ輪横すべり角 さらにコーナリングフォースCF1,CF2,CF3はコーナリ
ングパワをそれぞれK1,K2,K3とすると、 (11),(13),(18)式よりF,F′を消去すると、 m1V(+)+m2V′(′+′) −2(CF1+CF2+CF3)=0 上式に(22)〜(24)式を代入して さらに、(15)〜(17)式を代入して整理すると、 (11),(14),(18)式よりF,F′を消去すると、 I2′+m1l3V(+)+2l4CF3−2l3(CF1+CF2)=0 上式に(22)〜(24)式を代入して さらに、(15)〜(17)式を代入して整理すると、 (12),(13),(18)式よりF,F′を消去すると、 I1−m2lhV′(′+′)−2l1CF1+2l2CF2 +2lhCF3=0 上式に(22)〜(24)式を代入して さらに、(15)〜(17)式を代入して整理すると、 以上、(25),(26),(27)式が車体座標系におけ
る連結車両(牽引車両+トレーラ)の運動方程式であ
る。V '= V + lhφ ≒ V ...... (15) V'β' + l 3 '= V (β + φ) -lh ...... (16) = -' ...... (17) F '≒ F ...... (18) the front wheel side slip angle Rear wheel side slip angle Trailer wheel side slip angle Further, assuming that the cornering forces CF 1 , CF 2 and CF 3 are K 1 , K 2 and K 3 respectively, Eliminating F and F 'from equations (11), (13) and (18) gives m 1 V (+) + m 2 V'('+') -2 (CF 1 + CF 2 + CF 3 ) = 0 Substituting equations (22)-(24) into Furthermore, rearranging by substituting equations (15) to (17), Eliminating F and F 'from equations (11), (14) and (18) gives: I 2 ′ + m 1 l 3 V (+) + 2l 4 CF 3 −2l 3 (CF 1 + CF 2 ) = 0 Substituting equations (22)-(24) Furthermore, rearranging by substituting equations (15) to (17), Eliminating F and F 'from equations (12), (13), and (18) yields: I 1 −m 2 lhV ′ (′ + ′) − 2l 1 CF 1 + 2l 2 CF 2 + 2lhCF 3 = 0 Substituting equations 22) to (24) Furthermore, rearranging by substituting equations (15) to (17), As described above, equations (25), (26), and (27) are equations of motion of the connected vehicle (towing vehicle + trailer) in the vehicle body coordinate system.
次に定常円旋回とステア特性について考える。 Next, steady circular turning and steer characteristics will be considered.
定常円旋回においては、 =0 …重心点の横すべり角一定 =0 …ヨー角速度一定 ,=0 …相対角一定 である。(25)〜(27)式に代入してマトリックスで表
現すると次のようになる。In the steady circular turning, = 0... Constant side slip angle at the center of gravity point = 0... Constant yaw angular velocity, = 0... Relative angle constant. Substituting into equations (25) to (27) and expressing in a matrix gives:
旋回半径をRとすると、 ここで定常円旋回では=0だから 次に牽引車両後輪を転舵係数kfとして、 但し、kf>0(同相操舵) で制御するものとすると、(29)式は ここで(33)式を Δ・x=y・δf とおくと、 (33)式をについて解くと、 ここで(31),(34)式を代入してδfについて整理す
ると、 (35)式から前輪横すべり角比例式4輪操舵車両のトレ
ーラ牽引時のスタビリティファクタAftは、 トレーラ牽引時の転舵係数をkftとおくと、(35)式
は前記(4)式となり、(36)式は前記(2)式とな
る。 If the turning radius is R, Here, since it is = 0 in the steady circular turning, Next, the rear wheel of the towing vehicle is used as the steering coefficient kf, However, assuming that the control is performed with kf> 0 (in-phase steering), the equation (29) becomes Here, when equation (33) is set as Δ · x = y · δf, Solving equation (33) gives Here, by substituting the equations (31) and (34) and organizing δf, From equation (35), the stability factor Aft of the front-wheel sideslip angle proportional four-wheel steering vehicle when the trailer is towed is If the turning coefficient at the time of trailer towing is kft, equation (35) becomes equation (4), and equation (36) becomes equation (2).
前輪横すべり角比例式4輪操舵車両単体(トレーラ非
牽引状態)では、トレーラに関する項を削除して、同様
の方法から((35)式,(36)式でm2=0とおいても良
い。)、 スタビリティファクタAfは、 (37)式は前記(3)式となり、(38)式は前記(1)
式となる。For a front-wheel side-slip angle proportional four-wheel steering vehicle alone (trailer non-traction state), the term relating to the trailer may be deleted, and m 2 = 0 may be set in the equations (35) and (36). ), The stability factor Af is Equation (37) is the above equation (3), and equation (38) is the above equation (1).
It becomes an expression.
上記のようにしてスタビリティファクタAf及びAftを
導くことができる。The stability factors Af and Aft can be derived as described above.
発明の効果 以上のように本発明によれば、前輪横すべり角に比例
した後輪舵角制御を言う4輪操舵車両において、トレー
ラを牽引する場合に牽引時の定常的ステア特性が非牽引
時の定常的ステア特性となるように後輪舵角制御を行う
ことにより、トレーラ牽引時も非牽引時と同じハンドル
操作にて充分安全なる走行を行うことができ、操縦安定
性の著しい向上をはかり得るもので、実用上多大の効果
をもたらし得るものである。Advantageous Effects of the Invention As described above, according to the present invention, in a four-wheel steering vehicle that refers to rear wheel steering angle control proportional to the front wheel side slip angle, when the trailer is towed, the steady steering characteristic during towing is reduced during non-traction. By performing rear wheel steering angle control so as to have a steady steering characteristic, it is possible to perform sufficiently safe driving with the same steering wheel operation as when the trailer is not towed even when towing the trailer, and it is possible to significantly improve steering stability It can bring a great effect practically.
第1図は本発明方法を適用すべき4輪操舵車両の後輪操
舵装置の一例を示す平面説明図、第2図はトレーラ牽引
4輪操舵車両の2輪モデル図、第3図は本発明における
後輪舵角制御回路例を示すブロック図である。 1……ステアリングハンドル、3……前輪、4……前輪
横力センサ、5……車速センサ、6……コントロールユ
ニット、7……トレーラ牽引センサ、8……電動モー
タ、11……後輪操舵機構、12……後輪、13……後輪舵角
センサ。FIG. 1 is an explanatory plan view showing an example of a rear wheel steering device to which the method of the present invention is applied, FIG. 2 is a two-wheel model diagram of a trailer-truck four-wheel steering vehicle, and FIG. FIG. 3 is a block diagram showing an example of a rear wheel steering angle control circuit in FIG. 1 ... steering wheel, 3 ... front wheel, 4 ... front wheel lateral force sensor, 5 ... vehicle speed sensor, 6 ... control unit, 7 ... trailer traction sensor, 8 ... electric motor, 11 ... rear wheel steering Mechanism, 12 ... Rear wheel, 13 ... Rear wheel steering angle sensor.
Claims (1)
輪横すべり角βfに比例した後輪舵角δrにてkf=−δ
r/βfなる式に基づいて後輪操舵制御を行う4輪操舵車
両において、上記トレーラ非牽引時の転舵係数kfに対し
トレーラ牽引時の転舵係数kftを下記式にて求め、トレ
ーラ牽引時には該転舵係数kftにて前輪横すべり角βf
に比例した後輪舵角制御を行うことを特徴とする4輪操
舵車両の後輪制御方法。 但し、牽引車両において、 m1は車両質量、lはホイールベース、l1は前輪から車両
重心までの距離、l2は後輪から車両重心までの距離、lh
は車両重心からトレーラ連結点までの距離、K1は前輪コ
ーナリングパワ、K2は後輪コーナリングパワ。 トレーラにおいて、 m2は車両質量、ltはホイールベース、l3はトレーラの連
結点から車両重心までの距離、l4は車両重心からトレー
ラ輪までの距離。When the trailer is not towed, the steering coefficient is kf, and at a rear wheel steering angle δr proportional to the front wheel side slip angle βf, kf = −δ.
In a four-wheel steering vehicle that performs rear wheel steering control based on the equation of r / βf, a steering coefficient kft when trailer is towed is calculated by the following equation with respect to a steering coefficient kf when the trailer is not towed. At the steering coefficient kft, the front wheel sideslip angle βf
A method of controlling rear wheels of a four-wheel steering vehicle, comprising performing rear wheel steering angle control in proportion to the following. In the towing vehicle, m 1 is the vehicle mass, l is the wheelbase, l 1 is the distance from the front wheel to the vehicle center of gravity, l 2 is the distance from the rear wheel to the vehicle center of gravity, lh
Distance from the center of gravity of the vehicle to the trailer coupling point, K 1 is a front wheel cornering power, K 2 is the rear wheel cornering power. In the trailer, the distance m 2 is vehicle mass, lt is wheel base, the distance l 3 from the coupling point of the trailer to the vehicle center of gravity, l 4 from the center of gravity of the vehicle to the trailer wheels.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9485388A JP2699082B2 (en) | 1988-04-18 | 1988-04-18 | Rear wheel control method for four-wheel steering vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9485388A JP2699082B2 (en) | 1988-04-18 | 1988-04-18 | Rear wheel control method for four-wheel steering vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01266073A JPH01266073A (en) | 1989-10-24 |
JP2699082B2 true JP2699082B2 (en) | 1998-01-19 |
Family
ID=14121591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9485388A Expired - Lifetime JP2699082B2 (en) | 1988-04-18 | 1988-04-18 | Rear wheel control method for four-wheel steering vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2699082B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5104182B2 (en) * | 2007-10-10 | 2012-12-19 | 株式会社ジェイテクト | Vehicle control device |
DE102019209380A1 (en) * | 2019-06-27 | 2020-12-31 | Zf Friedrichshafen Ag | Method and device for stabilizing a trailer combination and control device |
-
1988
- 1988-04-18 JP JP9485388A patent/JP2699082B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01266073A (en) | 1989-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107685767B (en) | Multiaxis wheel-hub motor driven vehicle rear-wheel steering-by-wire driving device and forward method | |
CN111108035B (en) | Method and system for controlling lane keeping of a vehicle | |
EP2872376B1 (en) | Steering and control systems for a three-wheeled vehicle | |
US7740102B2 (en) | Steering control device for vehicle | |
JP2534730B2 (en) | 4-wheel steering / Differential limiting force integrated control device | |
Huh et al. | Handling and driving characteristics for six-wheeled vehicles | |
CN103978971A (en) | Methods of controlling four-wheel steered vehicles | |
CN110466602A (en) | The timesharing four-wheel steering system and its control method of hub motor driven electric vehicle | |
CN108909828B (en) | Drive-by-wire steering and braking system and control method thereof | |
CN103204160A (en) | Electronic Stability Control System For Electric Drive Vehicle | |
JP2004075013A (en) | Vehicle control device | |
CN115003586B (en) | Method for controlling a motor vehicle at low speed by means of differential drive torque at the rear axle | |
JP2699082B2 (en) | Rear wheel control method for four-wheel steering vehicle | |
JP3334513B2 (en) | Rear wheel steering control method for towing vehicle and four-wheel steering mechanism | |
JP2651593B2 (en) | Rear wheel control method for four-wheel steering vehicle | |
Saxena et al. | 4 wheel steering systems (4was) | |
JPH01172071A (en) | Front and rear wheel steering device for car | |
CN107776527B (en) | Front wheel steering control device | |
JPH01266074A (en) | Method for controlling rear wheel of four-wheel steering vehicle | |
JPH04126675A (en) | Rear-wheels steering device for semi-trailer | |
JPH0811493B2 (en) | Driving force control device for four-wheel drive vehicle | |
JP2548346B2 (en) | Vehicle speed calculator | |
JPH04331669A (en) | Steering characteristic controller for vehicle | |
JPH0698938B2 (en) | Safety device for four-wheel steering type traveling vehicle | |
JP2681480B2 (en) | Control method of variable steering gear ratio steering device |