WO2014168016A1 - Vehicle control device and control method - Google Patents

Vehicle control device and control method Download PDF

Info

Publication number
WO2014168016A1
WO2014168016A1 PCT/JP2014/058900 JP2014058900W WO2014168016A1 WO 2014168016 A1 WO2014168016 A1 WO 2014168016A1 JP 2014058900 W JP2014058900 W JP 2014058900W WO 2014168016 A1 WO2014168016 A1 WO 2014168016A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
towing
vehicle
permission
braking force
Prior art date
Application number
PCT/JP2014/058900
Other languages
French (fr)
Japanese (ja)
Inventor
田原 雅彦
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014168016A1 publication Critical patent/WO2014168016A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/702Road conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/12Parameters used for control of starting apparatus said parameters being related to the vehicle exterior
    • F02N2200/124Information about road conditions, e.g. road inclination or surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a vehicle control device and a control method.
  • JP 2004-221575A discloses a conventional vehicle control device that prohibits automatic engine stop even when the engine automatic stop permission condition is satisfied when the vehicle is towing another vehicle. .
  • an object of the present invention is to provide a device that can automatically stop the engine even during towing and improve fuel efficiency while suppressing a decrease in the hill hold function.
  • the present invention has been made paying attention to such problems, and it is an object of the present invention to provide an apparatus capable of suppressing the decrease in the hill hold function while improving fuel efficiency by enabling automatic engine stop even when towing. To do.
  • the hill hold braking force is generated when the vehicle stops on a slope, it is determined whether or not a plurality of permission conditions for permitting automatic engine stop are satisfied, and the automatic stop permission condition is
  • a vehicle control device is provided that automatically stops the engine when established.
  • the vehicle control device includes a road surface gradient permission condition as one of a plurality of permission conditions for permitting automatic stop, and the gradient permission condition is satisfied when the absolute value of the road surface gradient is equal to or less than a predetermined gradient.
  • the predetermined gradient is made smaller during towing than during non-towing.
  • the hill hold braking force permission condition is satisfied when the hill hold braking force permission condition is included in one of a plurality of permission conditions for permitting automatic stop and the hill hold braking force is equal to or greater than a predetermined braking force.
  • the predetermined braking force is increased during towing than when not towing.
  • FIG. 1 is a schematic configuration diagram of a vehicle drive apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a control system diagram of the gasoline engine according to the first embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram of the brake device according to the first embodiment of the present invention.
  • FIG. 4A is a flowchart for explaining setting of an idle stop permission flag according to the first embodiment of the present invention.
  • FIG. 4B is a flowchart for explaining setting of an idle stop permission flag according to the first embodiment of the present invention.
  • FIG. 5A is a characteristic diagram of an idle stop permission region when traveling on a slope in a non-traction state according to the first embodiment of the present invention.
  • FIG. 5B is a characteristic diagram of an idle stop permission region when traveling on a slope in the towing state according to the first embodiment of the present invention.
  • FIG. 6A is a flowchart for explaining setting of an idle stop permission flag according to the second embodiment of the present invention.
  • FIG. 6B is a flowchart for explaining setting of an idle stop permission flag according to the second embodiment of the present invention.
  • FIG. 7A is a characteristic diagram of an idle stop permission area when traveling on a slope in a non-traction state according to the second embodiment of the present invention.
  • FIG. 7B is a characteristic diagram of an idle stop permission region when traveling on a slope in the towing state according to the second embodiment of the present invention.
  • FIG. 8A is a characteristic diagram of an idle stop permission region when traveling on a slope in a non-traction state according to another embodiment of the second embodiment of the present invention.
  • FIG. 8B is a characteristic diagram of an idle stop permission area when traveling on a slope in the towing state according to another embodiment of the second embodiment of the present invention.
  • FIG. 9A is a characteristic diagram of an idle stop permission area when traveling on a slope in a non-traction state according to another embodiment of the second embodiment of the present invention.
  • FIG. 9B is a characteristic diagram of an idle stop permission region when traveling on a slope in the towing state according to another embodiment of the second embodiment of the present invention.
  • FIG. 10 is a timing chart of the comparative example.
  • FIG. 11 is a timing chart of the comparative example.
  • FIG. 12 is a timing chart of the second embodiment of the present invention.
  • FIG. 13 is a timing chart of the second embodiment of the present invention.
  • FIG. 14 is a flowchart for explaining setting of the traction state flag according to the first embodiment of the present invention.
  • FIG. 15 is a flowchart for explaining setting of a traction state flag according to another aspect of the first embodiment of the present invention.
  • FIG. 16 is a flowchart for explaining setting of a traction state flag according to another aspect of the first embodiment of the present invention.
  • FIG. 17A is a characteristic diagram of basic vehicle acceleration during uphill running.
  • FIG. 17B is a characteristic diagram of basic vehicle acceleration during downhill travel.
  • FIG. 1 is a schematic configuration diagram of a drive device for a vehicle 1 according to the first embodiment of the present invention.
  • a vehicle 1 shown in FIG. 1 includes an engine 2 as a power source, a starter 6 used for starting the engine 2, a torque converter 8, a belt-type automatic transmission 9, an alternator 21, an air conditioner compressor 31, A battery 41 as a power source, a DC-DC converter 42, a first electric load 43, and a second electric load 45 are provided.
  • the engine 2 generates power for driving the vehicle 1.
  • the engine 2 is not limited to a gasoline engine, and various engines such as a diesel engine can be used.
  • the output shaft 3 of the engine 2, the rotating shaft 22 of the alternator 21, and the rotating shaft 32 of the air conditioner compressor 31 are arranged in parallel.
  • a crank pulley 4 is attached to one end of the output shaft 3 of the engine 2.
  • a pulley 23 is attached to the rotating shaft 22 of the alternator 21.
  • a pulley 33 is attached to the rotary shaft 32 of the air conditioner compressor 31.
  • the belt 5 is wound around the crank pulley 4, the pulley 23, and the pulley 33.
  • the power of the engine 2 is transmitted to the rotary shaft 22 and the rotary shaft 32 through the belt 5.
  • the alternator 21 is driven to generate power.
  • the power of the engine 2 is transmitted to the rotary shaft 32 of the air conditioner compressor 31, the air conditioner compressor 31 is driven.
  • An automatic transmission 9 is connected to the other end of the output shaft 3 of the engine 2 via a torque converter 8.
  • the torque converter 8 includes a pump impeller, a turbine runner, and a mechanical lock-up clutch that fastens and opens the pump impeller and the turbine runner.
  • the automatic transmission 9 includes a primary pulley, a secondary pulley, and a steel belt that is wound around these pulleys.
  • the automatic transmission 9 is not limited to such a configuration, and may be a planetary gear type stepped transmission.
  • the power of the engine 2 is finally transmitted to the vehicle drive wheels via the torque converter 8 and the automatic transmission 9.
  • the starter 6, the alternator 21 and the first electric load 43 are directly connected to the battery 41, and the second electric load 45 is connected via the DC-DC converter 42.
  • the battery 41 stores the generated power of the alternator 21 and supplies the starter 6 and the like as necessary.
  • the first electric load 43 is a peripheral device of the vehicle 1 such as an airbag (A / Bag) 44, for example.
  • the second electric load 45 is a peripheral device of the vehicle 1 such as an audio system (Audio) 46 that is vulnerable to an instantaneous drop in battery voltage as compared with the first electric load 43. Since the second electric load 45 is vulnerable to an instantaneous drop in battery voltage, the second electric load 45 is connected to the battery 41 via the DC-DC converter 42.
  • an audio system Audio
  • the operation of the second electric load 45 is affected. Therefore, during the cranking, the DC-DC converter 42 is operated to boost the battery voltage that temporarily decreases, thereby suppressing the supply voltage to the second electric load 45 from decreasing instantaneously.
  • the DC-DC converter 42 is connected to an engine controller 51, which will be described later, by a LIN (Local Interconnect Network), and its operation and non-operation are controlled by the engine controller 51.
  • LIN Local Interconnect Network
  • ECM engine controller
  • NAVI navigation system
  • IPDM IntelligentIntelligentIntelliPower Distribution Module
  • Each controller 51, 61-66 includes a processor that executes a program, a memory that stores a program executed by the processor, and an interface connected to the processor.
  • Each controller 51, 61-66 is connected by a CAN (Controller-Area-Network) communication line capable of exchanging information so that various data can be shared. Further, since the controllers 62 and 65 are electric loads that cannot tolerate a voltage drop, they are supplied with power via the DC-DC converter 42.
  • CAN Controller-Area-Network
  • FIG. 2 is a control system diagram of the engine 2.
  • the engine 2 includes a fuel injection valve 7 provided at each intake port for intermittently supplying fuel to the engine 2 and an ignition plug provided so as to face the combustion chamber.
  • the intake passage 11 of the engine 2 is provided with an air flow meter 55 for detecting the intake air amount and an electronically controlled throttle valve 12.
  • the opening of the throttle valve 12 (hereinafter referred to as “throttle opening”) is controlled by a throttle motor 13 and detected by a throttle sensor 14.
  • the engine 2 is controlled by the engine controller 51.
  • the engine controller 51 detects an accelerator sensor 53 that detects the amount of depression of the accelerator pedal 52 (hereinafter referred to as “accelerator opening”) APO, and a crank angle. Detection signals from various sensors that detect the operating state of the engine 2, such as a crank angle sensor 54, a brake switch 58 that detects the presence or absence of a brake operation, and an ignition key switch 96 that detects the presence or absence of key operation of an ignition key, are input.
  • a crank angle sensor 54 a brake switch 58 that detects the presence or absence of a brake operation
  • an ignition key switch 96 that detects the presence or absence of key operation of an ignition key
  • the engine controller 51 calculates the engine rotation speed based on the signal of the crank angle sensor 54, and calculates the target intake air amount and the target fuel injection amount based on the operating state of the engine 2. Then, the engine controller 51 issues a command to the throttle motor 13 and each fuel injection valve 7 so that the target intake air amount and the target fuel injection amount are obtained.
  • the engine controller 51 when the engine 2 is a gasoline engine, the engine controller 51 generates a spark with an ignition plug by interrupting the primary current of the ignition coil at a predetermined time before the compression top dead center, and the air-fuel mixture in the combustion chamber Ignite.
  • the engine controller 51 determines that there is an initial start request when the driver performs an ON operation of the ignition key and detects an ON signal of the ignition key switch 96, and drives the starter 6 to drive the engine 2 Start.
  • the engine controller 51 (automatic stop execution means) performs automatic stop (hereinafter referred to as “idle stop”) of the engine 2 and restart of the engine 2 for the purpose of improving fuel efficiency.
  • a plurality of permission conditions for permitting idle stop are as shown in the following ⁇ 1> to ⁇ 7>.
  • the engine controller 51 determines that the idle stop permission condition is satisfied when all of the plurality of permission conditions indicated by ⁇ 1> to ⁇ 7> are satisfied, and sets the idle stop permission flag to 1.
  • the select lever is in a range other than the R range (D range, P range or N range).
  • the vehicle speed VSP 0.
  • the engine is running (engine speed Ne.noteq.0). )
  • the brake fluid pressure is a predetermined value or more.
  • the actual remaining battery capacity is a predetermined value or more.
  • the brake booster negative pressure is a predetermined value or more.
  • is equal to or less than a predetermined gradient
  • ⁇ 1> to ⁇ 4> above determine whether the vehicle 1 is intended to stop.
  • one of the permission conditions that the actual remaining battery capacity is equal to or greater than a predetermined value is that when the remaining battery capacity is low, the starter 6 can be operated when the engine 2 is restarted. This is because the system voltage may be lower than the predetermined voltage and the first electric load 43 may be reset when cranking is performed. The reason why ⁇ 6> and ⁇ 7> are set as one of the permission conditions will be described later.
  • a plurality of release conditions for releasing the idle stop are as shown in the following ⁇ 8> to ⁇ 13>.
  • the engine controller 51 satisfies the idle stop release condition when all the release conditions from ⁇ 8> to ⁇ 10> are satisfied and any one release condition from ⁇ 11> to ⁇ 13> is satisfied. And the idle stop permission flag is returned to zero.
  • the select lever has shifted to the travel range (D range or R range).
  • the vehicle speed VSP is not equal to 0.
  • the vehicle is in idle stop.
  • the accelerator pedal is depressed (the accelerator is open).
  • the brake fluid pressure is equal to or less than a predetermined value.
  • the engine controller 51 uses the starter 6 to crank the engine 2. Then, the fuel injection from the fuel injection valve 7 and the spark ignition by the spark plug are restarted, and the engine 2 is restarted.
  • the engine 2 is restarted when the accelerator pedal is depressed (when the accelerator opening APO ⁇ 0) because the driver intends to start the vehicle 1.
  • the engine 2 is restarted when the brake fluid pressure is equal to or lower than a predetermined value because the driver intends to start the vehicle 1 or creep the vehicle.
  • the remaining battery capacity is reduced, that is, when the remaining battery capacity is equal to or lower than the predetermined value, the engine 2 is restarted while idling stop is continued in a state where the remaining battery capacity is reduced. Then, when the engine 2 is started by the starter 6 at the time of restart, the voltage drops below a predetermined voltage and the first electric load 43 may be reset.
  • the charge / discharge current of the battery 41 detected by the current sensor 67 is transmitted to the engine controller 51 via the IPDM 66.
  • the engine controller 51 sets a target value of the remaining battery capacity (State Of Charge) in accordance with the operating conditions of the engine 2, and based on the value obtained by integrating the charge / discharge current of the battery 41 at regular time intervals. The remaining battery capacity is calculated. The engine controller 51 manages the balance of charge / discharge of the battery 41 based on the target value of the remaining battery capacity and the actual remaining battery capacity.
  • State Of Charge the remaining battery capacity
  • the engine controller 51 increases the target power generation voltage of the alternator 21.
  • the control module 24 variably controls the target power generation voltage of the alternator 21 so that this target power generation voltage is obtained.
  • the automatic transmission controller 61 includes a select lever sensor 91 for detecting the position of the select lever, a road surface gradient sensor 95 for detecting the road surface gradient ⁇ , and an automatic transmission controller indicating that the driver is towing. 61, a traction switch 98 for informing the motor 61, an input shaft rotational speed sensor 99 for detecting the input shaft rotational speed Nin of the automatic transmission 9, and an output shaft for detecting the output shaft rotational speed Nout of the automatic transmission 9. A detection signal from the rotation speed sensor 100 is input.
  • the traction switch 98 is provided in advance in the driver's seat and is operated by the driver.
  • the automatic transmission controller 61 continuously controls the gear ratio of the automatic transmission 9 according to the traveling state of the vehicle 1 determined from the vehicle speed VSP and the throttle opening, which are transmitted via the CAN communication line. .
  • the automatic transmission controller 61 has a lock-up region in which the traveling state of the vehicle 1 is predetermined as a traveling state in which the lock-up clutch of the torque converter 8 is engaged (the vehicle speed VSP and the throttle opening are used as parameters).
  • the lockup clutch is engaged to bring the engine 2 and the automatic transmission 9 into a directly connected state.
  • the lockup clutch is released.
  • the torque converter 8 does not absorb the torque, and the fuel efficiency is improved accordingly.
  • the automatic transmission controller 61 has a shift pattern for non-towing and a shift pattern for towing. When the driver switches the tow switch 98 from OFF to ON, the shift pattern is changed. Switch from non-traction to non-traction.
  • FIG. 3 is a schematic configuration diagram of the braking device 70.
  • the braking device 70 includes a brake pedal 57, a brake booster (negative pressure booster) 71, a master cylinder 72, a brake fluid supply passage 73, a wheel cylinder 74, a reservoir tank 75, and an ABS unit 81.
  • a drum type is adopted as the braking device 70, but a disc type may be adopted.
  • FIG. 3 only one wheel cylinder 74 is shown, but in reality, each of the four wheels is provided with a wheel cylinder 74.
  • the brake pedal 57 is operated by the driver.
  • the presence or absence of a brake operation is detected by a brake switch 58.
  • the brake booster 71 is connected to the brake pedal 57 and reduces the driver's brake pedal operating force (hereinafter referred to as “brake pedaling force”).
  • the master cylinder 72 is connected to the brake pedal 57 via the brake booster 71, and generates a brake fluid pressure corresponding to the depression amount of the brake pedal 57.
  • the brake fluid supply passage 73 is a passage filled with brake fluid, and connects the master cylinder 72 and the wheel cylinder 74.
  • the brake fluid pressure generated in the master cylinder 72 is transmitted to the wheel cylinder 74 of each wheel through the brake fluid supply passage 73.
  • the brake shoe is opened to the left and right by the piston of the wheel cylinder 74, and the brake shoe is pressed against the drum. As a result, a braking force necessary for decelerating and stopping the vehicle 1 is generated.
  • the ABS unit 81 includes a brake fluid return passage 82, a normally open type holding valve 83, and a normally closed type pressure reducing valve 84.
  • the brake fluid return passage 82 is a passage branched from the brake fluid supply passage 73 and connected to the reservoir tank 75.
  • the brake fluid stored in the reservoir tank 75 is supplied to the master cylinder 72 by a pump (not shown).
  • the holding valve 83 is provided in the brake fluid supply passage 73. The opening and closing of the holding valve 83 is controlled by the brake controller 62. The holding valve 83 is normally opened, and is closed when a control signal from the brake controller 62 is input.
  • the pressure reducing valve 84 is provided in the brake fluid return passage 82. Opening and closing of the pressure reducing valve 84 is controlled by the brake controller 62.
  • the pressure reducing valve 84 is normally closed, and is opened when a control signal from the brake controller 62 is input.
  • the brake controller 62 includes a wheel speed sensor 92 for detecting the wheel speed of each wheel, a brake fluid pressure sensor 93 for detecting the brake fluid pressure, and a negative pressure in the brake booster 71 (hereinafter referred to as “brake booster negative pressure”).
  • the detection signal of the brake booster negative pressure sensor 94 is detected.
  • the brake controller 62 calculates the average wheel speed of each wheel as the vehicle speed VSP.
  • the brake controller 62 is provided with a vehicle dynamics control (hereinafter referred to as “VDC control”) for improving vehicle stability during traveling, and an ABS for preventing wheel locking as necessary.
  • VDC control vehicle dynamics control
  • ABS ABS for preventing wheel locking as necessary.
  • (Antilocked Braking System) control hill hold control for assisting start when idling stop is executed on a slope
  • hill start assist control for assisting start on a slope.
  • the VDC control is a control that improves vehicle stability during traveling by brake control and engine output control when the vehicle 1 is likely to cause skidding or tail swing due to an emergency avoidance of a slippery road surface or an obstacle. . Detection of a side slip or a swinging state of the vehicle 1 is performed by a sensor such as a wheel speed sensor 92 or a front / rear / lateral G sensor.
  • ABS control detects the wheel speed during braking (when the brake pedal is operated) and adjusts the braking force by electronic control to prevent tire locking, thereby improving stability during sudden braking and by steering operation. This control makes it easier to avoid obstacles.
  • the hill hold control generates a braking force by controlling the brake fluid pressure of the wheel cylinder (brake caliper) 74 when starting when an idle stop is performed on a slope such as a downhill or an uphill. This is control for eliminating the braking force when a predetermined driving force is generated.
  • the vehicle when the vehicle is started by releasing the brake pedal 57 on the slope, the vehicle 1 slides forward on the downhill with the weight of the vehicle itself until the driving force is generated, or the vehicle 1 moves on the uphill. Suppressing backwards is suppressed.
  • the road surface gradient ⁇ is within a predetermined range (for example, within ⁇ 14% (such a range is not necessarily provided)). And it is implemented when the select lever is at a position other than the parking range (P range).
  • the brake fluid pressure is maintained after releasing the brake pedal 57, and then the brake fluid pressure is gradually reduced. Further, when the vehicle can be started by operating the accelerator pedal 52, the brake fluid pressure is automatically released so that the vehicle can start smoothly.
  • the driver operates the brake pedal 57 on the slope to stop the vehicle 1, and then holds the brake fluid pressure when operating the accelerator pedal 52 to start the vehicle.
  • This is a control that suppresses the vehicle 1 from falling forward or sliding backward while the foot is switched from 57 to the accelerator pedal 52.
  • the road gradient ⁇ is within a predetermined range (for example, ⁇ 10% or more (such a range is not necessarily provided)), and the select lever is parked. This is performed when the position is other than the range (P range) or the neutral range (N range).
  • the brake fluid pressure is maintained after releasing the brake pedal 57, and then the brake fluid pressure is gradually reduced. Further, when the vehicle can be started by operating the accelerator pedal 52, the brake fluid pressure is automatically released so that the vehicle can start smoothly.
  • the brake controller 62 keeps the holding valve 83 open and keeps the pressure reducing valve 84 closed during normal operation of the brake pedal 57.
  • the brake controller 62 performs ABS control to close the holding valve 83 and close the pressure reducing valve 84 when the brake pedal force is strong and the wheel is locked, such as when the brake pedal 57 is depressed suddenly.
  • the valve is opened and the brake fluid pressure in the wheel cylinder 74 is released to the reservoir tank 75. This prevents the wheels from locking.
  • the brake controller 62 performs hill hold control, and when the brake fluid pressure is reduced to a predetermined value or less, the brake valve 62 is closed to seal the brake fluid pressure acting on the wheel cylinder 74.
  • the brake controller 62 opens the pressure reducing valve 84 and returns the brake fluid pressure of the wheel cylinder 74 to the reservoir tank 75 to eliminate the braking force.
  • the BCM 63 receives a detection signal of a traction connector connection detection sensor 97 for detecting a connection state of a traction connector used when the vehicle 1 pulls another vehicle (at the time of towing).
  • the BCM 63 transmits the detection signal of the traction connector connection detection sensor 97 to the engine controller 51 via the CAN communication line.
  • Traction connector is composed of male and female couplers. If the towing vehicle is a tow vehicle and the other towed vehicle is a towed vehicle, the tow connector can be attached by fitting the male coupler of the towed vehicle with the female coupler of the towed vehicle. Connected. On the other hand, by removing the male coupler of the tow vehicle from the female coupler of the towed vehicle, the tow connector is disconnected. The traction connector connection detection sensor 97 outputs an ON signal when the traction connector is connected, and outputs an OFF signal when the traction connector is not connected.
  • the towed vehicle may be a relatively heavy vehicle relative to the towed vehicle, or the towed vehicle can only carry a bicycle or a motorcycle.
  • the vehicle may be lighter than the vehicle.
  • the towed vehicle is relatively lighter than the towed vehicle, it may be possible to allow idling stop even when the hill is stopped in a towing state. Fuel consumption can be improved.
  • is equal to or smaller than a predetermined gradient” is one of the idle stop permission conditions, and the value of the predetermined gradient is smaller than that at the time of towing when towing. I did it.
  • the condition ⁇ 7> is referred to as “road surface gradient permission condition” as necessary.
  • the road slope ⁇ is a positive value when going uphill
  • the road slope ⁇ becomes a negative value when going downhill.
  • the positive road slope on the uphill is equal to or lower than the predetermined value.
  • a negative slope of the road surface is greater than or equal to a predetermined negative value.
  • 4A and 4B are flowcharts for setting the idle stop permission flag.
  • the engine controller 51 executes this routine at regular time intervals (for example, every 10 ms).
  • step S1 to step S6 the engine controller 51 determines whether or not the above-described permission conditions ⁇ 1> to ⁇ 6> are satisfied. If even one of these permission conditions is not satisfied, the engine controller 51 determines that the idle stop permission condition is not satisfied, and performs the process of step S7. If all of these conditions are satisfied, the engine controller 51 performs the process of step S8.
  • step S1 the engine controller 51 determines whether or not the position of the select lever detected by the select lever sensor 91 is in the travel range (D range). The engine controller 51 performs the process of step S2 if the position of the select lever is the travel range, and performs the process of step S7 if it is not the travel range.
  • step S2 the engine controller 51 determines whether or not the vehicle speed VSP is zero.
  • the engine controller 51 performs the process of step S3 if the vehicle speed VSP is zero, and performs the process of step S7 if it is not zero.
  • step S3 the engine controller 51 determines whether or not the engine 2 is in operation.
  • the engine controller 51 determines that the engine 2 is in operation if the engine speed is equal to or higher than a predetermined speed (for example, zero).
  • the engine controller 51 performs the process of step S4 if the engine 2 is in operation, and performs the process of step S7 if it is not in operation.
  • step S4 the engine controller 51 determines whether or not the brake fluid pressure detected by the brake fluid pressure sensor 93 is equal to or greater than a predetermined value (for example, zero).
  • the engine controller 51 performs the process of step S5 if the brake hydraulic pressure is greater than or equal to a predetermined value, and performs the process of step S7 if it is less than the predetermined value.
  • step S5 the engine controller 51 determines whether or not the actual remaining battery capacity is equal to or greater than a predetermined value.
  • the engine controller 51 performs the process of step S6 if the actual remaining battery capacity is greater than or equal to a predetermined value, and performs the process of step S7 if it is less than the predetermined value.
  • step S6 the engine controller 51 determines whether or not the brake booster negative pressure is greater than or equal to a predetermined value.
  • One of the permitting conditions that the brake booster negative pressure is equal to or greater than a predetermined value is a master cylinder that generates a braking force that prevents the vehicle 1 from sliding forward or backward when performing hill hold control. This is to ensure the pressure.
  • the engine controller 51 performs the process of step S8 if the brake booster negative pressure is greater than or equal to a predetermined value, and performs the process of step S7 if it is less than the predetermined value.
  • step S7 the engine controller 51 sets an idle stop permission flag to 0 in order to prohibit idle stop.
  • step S8 the engine controller 51 performs a traction state flag setting process.
  • the traction state flag setting process is a process for setting the traction state flag to 1 when towing and setting the traction state flag to 0 when not towing.
  • any of the modes shown in FIGS. 14 to 16 may be used.
  • the processing shown in FIGS. 14 to 16 may be performed at regular intervals as in the present embodiment, or when the ignition key ON operation is detected by the driver and the ON signal of the ignition key switch 96 is detected. It may be performed only once.
  • FIG. 14 is a flowchart for explaining an aspect of the traction state flag setting process.
  • step S31 the engine controller 51 reads the detection signal of the traction connector connection detection sensor 97.
  • step S32 the engine controller 51 determines whether or not the traction connector is connected based on the detection signal of the traction connector connection detection sensor 97.
  • the engine controller 51 performs the process of step S33 if the traction connector is connected, and performs the process of step S34 if it is not connected.
  • step S33 the engine controller 51 sets the traction state flag to 1.
  • step S34 the engine controller 51 sets the traction state flag to 0.
  • FIG. 15 is a flowchart illustrating another aspect of the traction state flag setting process.
  • step S41 the engine controller 51 reads the detection signal of the traction switch 98.
  • step S42 the engine controller 51 determines whether or not the traction switch 98 is ON.
  • the engine controller 51 performs the process of step S33 when the traction switch 98 is ON, that is, when towing, and performs the process of step S34 when the traction switch 98 is OFF, that is, when not towing.
  • step S33 and step S34 is the same as the processing in FIG.
  • FIG. 16 is a flowchart illustrating another aspect of the traction state flag setting process.
  • step 51 the engine controller 51 calculates an engine driving force estimation value Teng [N] by searching a predetermined map from the accelerator opening APO [%] and the engine speed Ne [rpm].
  • step 52 the engine controller 51 uses the input shaft rotational speed Nin [rpm] of the automatic transmission 9, the output shaft rotational speed Nout [rpm] of the automatic transmission 9, and a shift control that is a fastening element constituting the automatic transmission.
  • the gear speed of the automatic transmission 9 is read in a state where the clutch and brake of the vehicle are not slipping.
  • step 53 the engine controller 51 estimates the automatic transmission 9 from the engine driving force estimation value Teng, the gear speed, the input shaft rotational speed Nin of the automatic transmission 9, and the output shaft rotational speed Nout of the automatic transmission 9.
  • the driving force Ttrns [N] is calculated. In calculating the estimated driving force Ttrns [N], gear speed information is not always necessary.
  • step 54 the engine controller 51 calculates the actual vehicle acceleration ⁇ [m / s 2 ] from the vehicle speed VSP and the road surface gradient ⁇ .
  • the vehicle acceleration during traveling on a flat road can be obtained by differentiating the vehicle speed VSP [m / s].
  • the vehicle acceleration changes between when traveling on a slope and when traveling on a flat road.
  • the vehicle acceleration is smaller when traveling uphill than when traveling on a flat road. Therefore, when traveling on an uphill road, as the road surface gradient ⁇ increases with a positive value, a positive road surface gradient coefficient smaller than 1.0 is obtained, and this road surface gradient coefficient is multiplied by the vehicle acceleration when traveling on a flat road. The value is calculated as the vehicle acceleration when traveling uphill.
  • the calculated vehicle acceleration during uphill traveling is the actual vehicle acceleration ⁇ here.
  • the vehicle acceleration is greater when traveling downhill than when traveling on a flat road. Therefore, when traveling downhill, the road surface gradient coefficient that is greater than 1.0 is obtained as the absolute value of the road surface gradient ⁇ increases, and the value obtained by multiplying the vehicle acceleration during flat road traveling by this road surface gradient coefficient is used for downhill travel. Calculated as the vehicle acceleration at the time.
  • the calculated vehicle acceleration during downhill traveling is the actual vehicle acceleration ⁇ referred to here.
  • the method of obtaining the actual vehicle acceleration ⁇ is not limited to this, and for example, a method of detecting the actual vehicle acceleration ⁇ using an acceleration sensor may be used.
  • step 55 the engine controller 51 determines whether or not the actual vehicle acceleration ⁇ is smaller than the estimated driving force Ttrns of the automatic transmission 9. If the actual vehicle acceleration ⁇ is smaller than the estimated driving force Ttrns of the automatic transmission 9, the engine controller 51 determines that the vehicle is towing. On the other hand, if the actual vehicle acceleration ⁇ is larger than the estimated driving force Ttrns of the automatic transmission 9, the engine controller 51 determines that the vehicle is not towing.
  • the following may be performed. That is, based on the estimated driving force Ttrns of the automatic transmission 9 and the road surface gradient ⁇ , a basic vehicle acceleration ⁇ 0 [m / d] when traveling on a hill and when not towing is retrieved by searching a map having the contents shown in FIGS. 17A and 17B. s 2 ] is estimated.
  • FIG. 17A is a map for calculating basic vehicle acceleration ⁇ 0 during uphill running.
  • the basic vehicle acceleration ⁇ 0 increases as the estimated driving force Ttrns increases if the road surface gradient ⁇ is the same.
  • the basic vehicle acceleration ⁇ 0 decreases as the road surface gradient ⁇ increases.
  • FIG. 17B is a map for calculating the basic vehicle acceleration ⁇ 0 when traveling downhill.
  • the basic vehicle acceleration ⁇ 0 increases as the estimated driving force Ttrns of the automatic transmission 9 increases as long as the absolute value
  • the difference between the basic vehicle acceleration ⁇ 0 estimated in this way and the actual vehicle acceleration ⁇ [m / s 2 ] is calculated, and the absolute value
  • the allowable value ⁇ is a value for determining whether or not the actual vehicle acceleration ⁇ is smaller than the estimated driving force Ttrns of the automatic transmission 9.
  • step 55 the engine controller 51 determines that the vehicle is towing if the actual vehicle acceleration ⁇ is smaller than the estimated driving force Ttrns of the automatic transmission 9, and performs the processing of step 33. On the other hand, if the actual vehicle acceleration ⁇ is larger than the estimated driving force Ttrns of the automatic transmission 9 in step 55, it is determined that the vehicle is not towing, and the process of step 34 is performed.
  • step S33 and step S34 is the same as the processing in FIG.
  • step S9 the engine controller 51 determines whether or not the traction state flag is set to 1.
  • the engine controller 51 performs the process of step S10 if the traction state flag is set to 1, and performs the process of step S14 if it is set to 0.
  • step S10 the engine controller 51 calculates a permission gradient S1 [%] during towing.
  • the permission gradient S1 at the time of towing is the upper limit value of the absolute value of the road surface gradient that permits idling stop at the time of towing.
  • the permission gradient S1 at the time of towing is set to a predetermined positive constant value.
  • step S11 the engine controller 51 compares the absolute value
  • the engine controller 51 performs the process of step S12 if the absolute value
  • S13 is performed.
  • step S12 the engine controller 51 sets an idle stop permission flag to 1 in order to permit idle stop when the vehicle is running in the towing state.
  • step S13 the engine controller 51 sets an idle stop permission flag to 0 in order to prohibit idle stop when the vehicle is running in the towing state.
  • step S14 the engine controller 51 calculates a permission gradient S2 [%] during non-traction.
  • the permission gradient S2 when not towing is the upper limit value of the absolute value of the road surface gradient that permits idling stop when not towing.
  • the permission gradient S2 at the time of non-traction is a positive constant value set in advance.
  • the permitted gradient S1 during towing is determined to be permitted during non-traction.
  • a value smaller than the gradient S2 is set. This is because the hill hold function is lower when the vehicle is parked in the towing state than when the vehicle is parked in the non-towed state if the road surface has the same road surface gradient. This is because it is necessary to reduce the absolute value of the road surface gradient that permits the stop.
  • step S15 the engine controller 51 compares the absolute value
  • the engine controller 51 performs the process of step S16 if the absolute value
  • the process of step S17 is performed.
  • step S16 the engine controller 51 sets an idle stop permission flag to 1 in order to permit an idle stop when the vehicle is traveling in a non-traction state.
  • step S17 the engine controller 51 sets the idle stop permission flag to 0 in order to prohibit idle stop when the vehicle is traveling in the non-traction state.
  • FIG. 5A is a diagram showing an idle stop permission area when running on a slope in a non-traction state.
  • FIG. 5B is a diagram showing an idle stop permission area when traveling on a slope in the towing state.
  • the idle stop permission region provided on the plane with the horizontal axis as the road surface gradient and the vertical axis as the brake hydraulic pressure is used when the vehicle is towing and towing in the non-traction state. It is different from when driving on a slope in the state.
  • the idling stop permission region when traveling on a slope in the non-traction state is a range in which the road surface gradient ⁇ is ⁇ S2 ⁇ ⁇ ⁇ S2 (S2 is a permission gradient when not towing), and the brake
  • the hydraulic pressure is set in a positive range.
  • the road surface gradient ⁇ is in the range of ⁇ S1 ⁇ ⁇ ⁇ S1 (S1 is the permission gradient during towing), and the brake fluid pressure is It is provided in the positive range.
  • the idling stop permission region is narrower when traveling on the slope in the towing state than on traveling on the slope in the towed state.
  • the road gradient ⁇ is zero. Therefore, in FIG. 5, the range in which the road surface gradient ⁇ is a positive value indicates an uphill, and the range in which the road surface gradient ⁇ is a negative value indicates a downhill.
  • the road surface gradient permission condition that is, “the absolute value of the road surface gradient
  • idling stop is basically permitted when the vehicle is stopped on a slope where the absolute value of the road surface gradient
  • the vehicle that was towed when traveling on a hill in the traction state included the towed vehicle rather than the case of non-traction.
  • the hill hold function decreases as the overall vehicle weight increases. In order to cope with the decrease in the hill hold function, if the brake pedal 57 must be stepped on so that the vehicle does not slide backward or slide forward, the merchantability is deteriorated.
  • the value of the predetermined gradient (S1, S2) which is the permission threshold value of the road surface gradient permission condition, is changed between towing and towing.
  • the predetermined gradient S1 during towing is set to a value smaller than the predetermined gradient S2 during towing (S1 ⁇ S2).
  • the road surface gradient range ( ⁇ S1 ⁇ ⁇ ⁇ S1) that allows idle stop when the vehicle stops when driving on a hill in a towing state, and the road surface gradient that allows idle stop when stopped on a hill in a non-traction state. It was narrower than the range ( ⁇ S2 ⁇ ⁇ ⁇ S2).
  • a traction connector for connecting to a towed vehicle and a traction connector connection detection sensor 97 are provided.
  • the traction connector connection detection sensor 97 detects that the traction connector is connected, It is determined that it is during towing. Accordingly, if the vehicle has the traction connector connection detection sensor 97, it can be easily determined whether the vehicle is towing using the traction connector connection detection sensor 97.
  • the traction switch 98 for switching the shift map is provided, and when the traction switch 98 is turned on, it is determined that it is during traction. Accordingly, if the vehicle has the traction switch 98, it can be easily determined whether the vehicle is towing using the traction switch 98.
  • means for calculating the estimated driving force Ttrns of the automatic transmission and means for calculating the actual vehicle acceleration when traveling on a hill, with respect to the estimated driving force Ttrns.
  • Whether or not the actual vehicle acceleration ⁇ is smaller than the estimated driving force Ttrns of the automatic transmission is determined as follows.
  • the basic vehicle acceleration ⁇ 0 when traveling on a slope and when not towing is estimated.
  • the difference between the estimated basic vehicle acceleration ⁇ 0 and the actual vehicle acceleration ⁇ is calculated.
  • of the difference is compared with a predetermined allowable value ⁇ , and when the absolute value
  • 6A and 6B are flowcharts for setting an idle stop permission flag according to the second embodiment of the present invention.
  • the engine controller 51 executes this routine at regular time intervals (for example, every 10 ms).
  • step S21 the engine controller 51 reads the brake fluid pressure B detected by the brake fluid pressure sensor 93.
  • This brake fluid pressure B corresponds to the hill hold braking force.
  • step S22 the engine controller 51 determines whether or not the operating point determined from the road surface gradient ⁇ and the brake fluid pressure B belongs to the idle stop permission region indicated by hatching in FIG. 7B.
  • the engine controller 51 performs the process of step S23 if the operating point determined from the road surface gradient ⁇ and the brake fluid pressure B belongs to the idle stop permission area, and performs the process of step S13 if it does not belong to the idle stop permission area. .
  • FIG. 7B is a diagram showing an idle stop permission area when traveling on a slope in the towing state.
  • the road surface gradient ⁇ is ⁇ S1 ⁇ ⁇ ⁇ S1 (S1 is the permission at the time of towing) as in the first embodiment (FIG. 5B). (Gradient) is provided in the road surface gradient range.
  • the lower limit side boundary of the brake fluid pressure B is different from the first embodiment. That is, the brake fluid pressure B when the road surface gradient ⁇ is zero is set to a positive predetermined value P1, and the lower limit boundary of the brake fluid pressure B becomes larger than the predetermined value P1 as the absolute value
  • step S23 the engine controller 51 calculates a permitted brake hydraulic pressure B1 [kPa] during towing.
  • the permitted brake hydraulic pressure B1 during towing is a lower limit value of the hill hold braking force that permits idling stop during towing.
  • the permitted brake hydraulic pressure B1 during towing is a variable value using the brake hydraulic pressure B and the road surface gradient ⁇ as parameters. That is, a table storing the permitted brake hydraulic pressure B1 at the time of traction using the brake hydraulic pressure B and the road surface gradient ⁇ as parameters is created in the idle stop permission area shown in FIG. 7B, and this table is searched. Thus, the permitted brake hydraulic pressure B1 during towing is calculated.
  • step S24 the engine controller 51 determines whether or not a brake fluid pressure permission condition is satisfied. Specifically, the engine controller 51 compares the brake fluid pressure B with the permitted brake fluid pressure B1 during traction, and if the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B1 during traction, the brake fluid It is determined that the pressure permission condition is satisfied. If the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B1 during traction, the engine controller 51 performs the process of step S12, and otherwise performs the process of step S13.
  • step S25 the engine controller 51 determines whether or not the operating point determined from the road surface gradient ⁇ and the brake fluid pressure B belongs to the idle stop permission region indicated by hatching in FIG. 7A.
  • the engine controller 51 performs the process of step S26 if the operating point determined from the road surface gradient ⁇ and the brake fluid pressure B belongs to the idle stop permission area, and performs the process of step S17 if it does not belong to the idle stop permission area. .
  • FIG. 7A is a diagram showing an idle stop permission area when running on a slope in a non-traction state.
  • the road surface gradient ⁇ is ⁇ S2 ⁇ ⁇ ⁇ S2 (S2 is in the non-traction state) as in the first embodiment (FIG. 5A). (Permissible gradient) of the road surface gradient.
  • the lower limit side boundary of the brake fluid pressure B is different from the first embodiment. That is, the brake fluid pressure B when the road surface gradient ⁇ is zero is set to a positive predetermined value P1, and the lower limit boundary of the brake fluid pressure B becomes larger than the predetermined value P1 as the absolute value
  • step S26 the engine controller 51 calculates a permitted brake hydraulic pressure B2 [kPa] when not towing.
  • the permitted brake hydraulic pressure B2 at the time of non-traction is a lower limit value of the brake hydraulic pressure B at which idle stop is permitted at the time of non-traction.
  • the permitted brake fluid pressure B2 at the time of non-traction is a variable value using the brake fluid pressure B and the road surface gradient ⁇ as parameters, as in the case of the permitted brake fluid pressure B1 at the time of traction.
  • the permitted brake hydraulic pressure B1 during traction is greater than the permitted brake hydraulic pressure B2 during non-traction. Is also set to a small value. If this is the same brake fluid pressure, the hill hold function is lower when the hill is stopped in the traction state than when the hill is stopped in the non-traction state. For this reason, it is necessary to increase the brake hydraulic pressure that permits idling stop when the hill hold function is lowered when the vehicle stops on a slope in the towing state.
  • step 27 the engine controller 51 determines whether or not a brake fluid pressure permission condition is satisfied. Specifically, the engine controller 51 compares the brake fluid pressure B with the permitted brake fluid pressure B2 during non-traction, and if the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B2 during non-traction, It is determined that the brake fluid pressure permission condition is satisfied. If the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B2 at the time of non-traction, the engine controller 51 performs the process of step S16, and otherwise performs the process of step S17.
  • the idle stop permission area when running on a slope in the non-traction state and the traction state is not limited to the area illustrated in FIGS. 7A and 7B, for example, as illustrated in FIGS. 8A and 8B and FIGS. 9A and 9B. This area may be the idle stop permission area.
  • the lower limit side boundary of the brake hydraulic pressure B is set to a predetermined value P1 when traveling on the slope in the non-traction state, and the lower limit side boundary of the brake hydraulic pressure B is set to the predetermined value when traveling on the slope in the traction state.
  • the predetermined value P2 is larger than the value P1.
  • 9A and 9B do not limit the road gradient ⁇ , but limit only the lower limit side boundary of the brake fluid pressure B. That is, the lower limit side boundary of the brake hydraulic pressure B is set to the predetermined value P1 when traveling on the hill in the non-traction state, and the lower limit side boundary of the brake hydraulic pressure B is larger than the predetermined value P1 when traveling on the hill in the traction state.
  • the predetermined value P2 is set to the predetermined value P1 when traveling on the hill in the non-traction state, and the lower limit side boundary of the brake hydraulic pressure B is larger than the predetermined value P1 when traveling on the hill in the traction state.
  • FIGS. 10 to 13 show how the vehicle speed VSP, the engine speed Ne, the brake fluid pressure B, the traction state flag, the idle stop permission flag, the idle stop state flag, the starter control flag, and the like change when traveling on a slope. It is the time chart shown. An example in which idling stop is permitted when traveling on a slope regardless of the non-traction state or the traction state is a comparative example.
  • FIG. 10 is a time chart showing a state of traveling on a hill in a non-traction state in the comparative example.
  • the starter control flag becomes 1.
  • cranking of the engine 2 is performed by the starter 6, and fuel supply and spark ignition are executed.
  • the engine speed becomes equal to or higher than the complete explosion determination rotational speed (engine complete explosion determination), and the engine is restarted.
  • FIG. 11 is a time chart showing a state of traveling on a hill in a towing state in a comparative example.
  • the road surface gradient is the same as in FIG. 10, but the vehicle is in a towed state. Therefore, when the creep force disappears at time t ⁇ b> 11, the vehicle 1 slides backward or forwards. The driver notices this, and the brake pedal 57 is depressed at time t12 (see the hatched portion at the bottom of FIG. 11).
  • the brake fluid pressure B increases at time t12 from the case of FIG. 10 (see the third hatched portion in FIG. 11), thereby maintaining the stop state on the slope. ing.
  • the idling stop is permitted when traveling on the slope regardless of the traction state or the non-traction state, so that the fuel efficiency of the engine 2 can be improved even when traveling on the slope in the traction state.
  • the hill hold function is lowered by an amount corresponding to an increase in the weight of the entire vehicle including the towed vehicle, compared to when traveling on a slope in the non-towing state.
  • the driver has to step on the brake pedal 57 so that the vehicle does not slide backward or slide forward. The merchantability will be reduced.
  • FIG. 12 is a time chart showing a state during traveling on a slope in the towing state in the second embodiment.
  • the actual brake fluid pressure B is between B1 and B2.
  • the actual brake fluid pressure B (corresponding to the actual braking force) indicated by the solid line is smaller than B1.
  • the brake fluid pressure permission condition is not satisfied because the brake fluid pressure B is less than B1. Therefore, the idle stop permission condition is not satisfied, and the idle stop is not performed.
  • the creep torque is lost after the idling stop, and the vehicle 1 slips or falls, and the brake pedal 57 is further depressed. Idle stop is prohibited when it is necessary to perform. As a result, it is possible to avoid a situation where the brake pedal 57 must be increased after the idle stop as in the comparative example.
  • FIG. 13 is a time chart showing a state when traveling on a hill in the towing state in the second embodiment, and is a time chart showing a state when the actual brake fluid pressure B is larger than that in FIG.
  • the brake pedal 57 is stepped up after the idling stop even if the idling stop is performed when traveling on the slope in the towing state. That is, since the actual brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B1 during traction, it is determined that the brake fluid pressure permission condition is satisfied.
  • the idle stop permission condition is satisfied at time t2, and the idle stop is performed. Thereby, fuel consumption improves.
  • the brake fluid pressure permission condition (hill hold braking force permission condition), that is, “the brake fluid pressure B is greater than or equal to a predetermined value” is one of the idle stop permission conditions, and the brake fluid pressure B is predetermined.
  • the value is equal to or greater than the values (B1, B2), it is determined that the brake fluid pressure permission condition is satisfied, and the idle stop is permitted.
  • the vehicle that was towed when traveling on a hill in the traction state included the towed vehicle rather than the case of non-traction.
  • the hill hold function decreases as the overall vehicle weight increases. If the idle stop is performed in such a state, it is necessary to increase the brake pedal 57 after the idle stop so that the vehicle does not slide backward or slide forward, and the merchantability is reduced.
  • the predetermined values (B1, B2) which are permission threshold values of the brake fluid pressure permission condition, are changed between towing and towing. Specifically, when the gradient is the same, the predetermined value B1 at the time of towing is set to a value larger than the predetermined value B2 at the time of towing (B1> B2).
  • the braking force range (B ⁇ B1) that permits idling stop when the vehicle stops during hill driving in the towing state and the braking force range (B ⁇ B1) that permits idling stop when the vehicle stops during hill driving in the non-traction state. Narrower than B2).
  • the hill hold braking force is generated when the vehicle stops when traveling on a hill in the towing state.
  • the method of generating the hill hold braking force when the vehicle is stopped when traveling on a slope in the towing state is not limited to this.
  • an interlock function for interlocking the automatic transmission 9 may be provided. By operating this interlock function, the rotation of the output shaft of the automatic transmission can be forcibly blocked.
  • the interlock function is activated to forcibly prevent the output shaft of the automatic transmission 9 from rotating, thereby generating a hill hold braking force when the hill is stopped in a traction state. Can be.
  • a specific interlock function is disclosed in JP-A-7-108853. For example, if two or more rotational driving force transmission paths having different gear ratios are forcibly formed in the automatic transmission 9, the output shaft of the automatic transmission 9 cannot be rotated, and a hill hold braking force can be generated. . Further, if the automatic transmission 9 is parked and the rotation system around the output shaft of the automatic transmission 9 is locked, the output shaft of the automatic transmission 9 cannot be rotated and a hill hold braking force can be generated. .
  • the brake fluid pressure B used when calculating B1 and B2 may be fixed to a predetermined brake fluid pressure generated by hill hold control.

Abstract

A vehicle control device equipped with: a hill-holding braking force generation means that generates hill-holding braking force when the vehicle is stopped on a sloping road; an automatic stopping permission determination means that determines whether multiple permission conditions for permitting automatic stopping of the engine have been satisfied; and an automatic stopping execution means that executes automatic stopping of the engine when the automatic stopping conditions have been satisfied. The automatic stopping permission determination means includes a road gradient permission condition as one of the multiple permission conditions, and when the absolute value of the road gradient is equal to or greater than a prescribed gradient, the automatic stopping permission determination means determines that the road gradient permission condition has been satisfied, and sets the prescribed gradient to a smaller value when towing is occurring than when towing is not occurring.

Description

車両の制御装置及び制御方法Vehicle control apparatus and control method
 本発明は車両の制御装置及び制御方法に関する。 The present invention relates to a vehicle control device and a control method.
 JP2004-211575Aには、従来の車両の制御装置として、車両が他の車両を牽引する牽引時には、エンジンの自動停止許可条件が成立していてもエンジンの自動停止を禁止するものが開示されている。 JP 2004-221575A discloses a conventional vehicle control device that prohibits automatic engine stop even when the engine automatic stop permission condition is satisfied when the vehicle is towing another vehicle. .
 しかしながら、牽引時に無条件でエンジンの自動停止を禁止するのでは、牽引時にエンジンの燃費を向上させることができなくなる。 However, prohibiting the automatic stop of the engine unconditionally during towing makes it impossible to improve the fuel efficiency of the engine during towing.
 そこで本発明は、牽引時にもエンジンの自動停止を可能として燃費を向上させつつヒルホールド機能の低下を抑制し得る装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a device that can automatically stop the engine even during towing and improve fuel efficiency while suppressing a decrease in the hill hold function.
 本発明はこのような問題点に着目してなされたものであり、牽引時にもエンジンの自動停止を可能として燃費を向上させつつヒルホールド機能の低下を抑制し得る装置を提供することを目的とする。 The present invention has been made paying attention to such problems, and it is an object of the present invention to provide an apparatus capable of suppressing the decrease in the hill hold function while improving fuel efficiency by enabling automatic engine stop even when towing. To do.
 本発明のある態様によれば、坂道での停車時にヒルホールド制動力を発生させ、エンジンの自動停止を許可するための複数の許可条件が成立したか否かを判定し、自動停止許可条件が成立したときにエンジンの自動停止を実行する車両の制御装置が提供される。そして、この車両の制御装置は、自動停止を許可するための複数の許可条件の一つに路面勾配許可条件を含み、路面勾配の絶対値が所定勾配以下のときに、勾配許可条件が成立したと判定するとともに、牽引時には非牽引時より前記所定勾配を小さくする。又は、自動停止を許可するための複数の許可条件の一つにヒルホールド制動力許可条件を含み、ヒルホールド制動力が所定制動力以上のときに、ヒルホールド制動力許可条件が成立したと判定するとともに、牽引時には非牽引時より所定制動力を大きくする。 According to an aspect of the present invention, the hill hold braking force is generated when the vehicle stops on a slope, it is determined whether or not a plurality of permission conditions for permitting automatic engine stop are satisfied, and the automatic stop permission condition is A vehicle control device is provided that automatically stops the engine when established. The vehicle control device includes a road surface gradient permission condition as one of a plurality of permission conditions for permitting automatic stop, and the gradient permission condition is satisfied when the absolute value of the road surface gradient is equal to or less than a predetermined gradient. And the predetermined gradient is made smaller during towing than during non-towing. Alternatively, it is determined that the hill hold braking force permission condition is satisfied when the hill hold braking force permission condition is included in one of a plurality of permission conditions for permitting automatic stop and the hill hold braking force is equal to or greater than a predetermined braking force. In addition, the predetermined braking force is increased during towing than when not towing.
図1は、本発明の第1実施形態による車両の駆動装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle drive apparatus according to a first embodiment of the present invention. 図2は、本発明の第1実施形態によるガソリンエンジンの制御システム図である。FIG. 2 is a control system diagram of the gasoline engine according to the first embodiment of the present invention. 図3は、本発明の第1実施形態によるブレーキ装置の概略構成図である。FIG. 3 is a schematic configuration diagram of the brake device according to the first embodiment of the present invention. 図4Aは、本発明の第1実施形態によるアイドルストップ許可フラグの設定を説明するためのフローチャートである。FIG. 4A is a flowchart for explaining setting of an idle stop permission flag according to the first embodiment of the present invention. 図4Bは、本発明の第1実施形態によるアイドルストップ許可フラグの設定を説明するためのフローチャートである。FIG. 4B is a flowchart for explaining setting of an idle stop permission flag according to the first embodiment of the present invention. 図5Aは、本発明の第1実施形態による非牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 5A is a characteristic diagram of an idle stop permission region when traveling on a slope in a non-traction state according to the first embodiment of the present invention. 図5Bは、本発明の第1実施形態による牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 5B is a characteristic diagram of an idle stop permission region when traveling on a slope in the towing state according to the first embodiment of the present invention. 図6Aは、本発明の第2実施形態によるアイドルストップ許可フラグの設定を説明するためのフローチャートである。FIG. 6A is a flowchart for explaining setting of an idle stop permission flag according to the second embodiment of the present invention. 図6Bは、本発明の第2実施形態によるアイドルストップ許可フラグの設定を説明するためのフローチャートである。FIG. 6B is a flowchart for explaining setting of an idle stop permission flag according to the second embodiment of the present invention. 図7Aは、本発明の第2実施形態による非牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 7A is a characteristic diagram of an idle stop permission area when traveling on a slope in a non-traction state according to the second embodiment of the present invention. 図7Bは、本発明の第2実施形態による牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 7B is a characteristic diagram of an idle stop permission region when traveling on a slope in the towing state according to the second embodiment of the present invention. 図8Aは、本発明の第2実施形態の他の形態による非牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 8A is a characteristic diagram of an idle stop permission region when traveling on a slope in a non-traction state according to another embodiment of the second embodiment of the present invention. 図8Bは、本発明の第2実施形態の他の形態による牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 8B is a characteristic diagram of an idle stop permission area when traveling on a slope in the towing state according to another embodiment of the second embodiment of the present invention. 図9Aは、本発明の第2実施形態の他の形態による非牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 9A is a characteristic diagram of an idle stop permission area when traveling on a slope in a non-traction state according to another embodiment of the second embodiment of the present invention. 図9Bは、本発明の第2実施形態の他の形態による牽引状態での坂道走行時のアイドルストップ許可領域の特性図である。FIG. 9B is a characteristic diagram of an idle stop permission region when traveling on a slope in the towing state according to another embodiment of the second embodiment of the present invention. 図10は、比較例のタイミングチャートである。FIG. 10 is a timing chart of the comparative example. 図11は、比較例のタイミングチャートである。FIG. 11 is a timing chart of the comparative example. 図12は、本発明の第2実施形態のタイミングチャートである。FIG. 12 is a timing chart of the second embodiment of the present invention. 図13は、本発明の第2実施形態のタイミングチャートである。FIG. 13 is a timing chart of the second embodiment of the present invention. 図14は、本発明の第1実施形態による牽引状態フラグの設定を説明するためのフローチャートである。FIG. 14 is a flowchart for explaining setting of the traction state flag according to the first embodiment of the present invention. 図15は、本発明の第1実施形態の他の態様による牽引状態フラグの設定を説明するためのフローチャートである。FIG. 15 is a flowchart for explaining setting of a traction state flag according to another aspect of the first embodiment of the present invention. 図16は、本発明の第1実施形態の他の態様による牽引状態フラグの設定を説明するためのフローチャートである。FIG. 16 is a flowchart for explaining setting of a traction state flag according to another aspect of the first embodiment of the present invention. 図17Aは、上り坂走行時の基本車両加速度の特性図である。FIG. 17A is a characteristic diagram of basic vehicle acceleration during uphill running. 図17Bは、下り坂走行時の基本車両加速度の特性図である。FIG. 17B is a characteristic diagram of basic vehicle acceleration during downhill travel.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態による車両1の駆動装置の概略構成図である。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a drive device for a vehicle 1 according to the first embodiment of the present invention.
 図1に示す車両1は、動力源としてのエンジン2と、エンジン2の始動に用いるスタータ6と、トルクコンバータ8と、ベルト式の自動変速機9と、オルタネータ21と、エアコン用コンプレッサ31と、電力源としてのバッテリ41と、DC-DCコンバータ42と、第1電気負荷43と、第2電気負荷45と、を備える。 A vehicle 1 shown in FIG. 1 includes an engine 2 as a power source, a starter 6 used for starting the engine 2, a torque converter 8, a belt-type automatic transmission 9, an alternator 21, an air conditioner compressor 31, A battery 41 as a power source, a DC-DC converter 42, a first electric load 43, and a second electric load 45 are provided.
 エンジン2は、車両1を駆動するための動力を発生させる。エンジン2としては、ガソリンエンジンに限らず、ディーゼルエンジンなど種々のエンジンを使用することができる。 The engine 2 generates power for driving the vehicle 1. The engine 2 is not limited to a gasoline engine, and various engines such as a diesel engine can be used.
 エンジン2の出力軸3、オルタネータ21の回転軸22及びエアコン用コンプレッサ31の回転軸32は、それぞれ平行に配置される。エンジン2の出力軸3の一端には、クランクプーリ4が取り付けられる。オルタネータ21の回転軸22には、プーリ23が取り付けられる。エアコン用コンプレッサ31の回転軸32には、プーリ33が取り付けられる。クランクプーリ4、プーリ23及びプーリ33には、ベルト5が掛け回される。 The output shaft 3 of the engine 2, the rotating shaft 22 of the alternator 21, and the rotating shaft 32 of the air conditioner compressor 31 are arranged in parallel. A crank pulley 4 is attached to one end of the output shaft 3 of the engine 2. A pulley 23 is attached to the rotating shaft 22 of the alternator 21. A pulley 33 is attached to the rotary shaft 32 of the air conditioner compressor 31. The belt 5 is wound around the crank pulley 4, the pulley 23, and the pulley 33.
 このベルト5を介して、エンジン2の動力が回転軸22及び回転軸32に伝達される。エンジン2の動力がオルタネータ21の回転軸22に伝達されると、オルタネータ21が駆動されて発電が行われる。エンジン2の動力がエアコン用コンプレッサ31の回転軸32に伝達されると、エアコン用コンプレッサ31が駆動される。 The power of the engine 2 is transmitted to the rotary shaft 22 and the rotary shaft 32 through the belt 5. When the power of the engine 2 is transmitted to the rotating shaft 22 of the alternator 21, the alternator 21 is driven to generate power. When the power of the engine 2 is transmitted to the rotary shaft 32 of the air conditioner compressor 31, the air conditioner compressor 31 is driven.
 エンジン2の出力軸3の他端には、トルクコンバータ8を介して自動変速機9が接続される。 An automatic transmission 9 is connected to the other end of the output shaft 3 of the engine 2 via a torque converter 8.
 トルクコンバータ8は、ポンプインペラと、タービンランナと、ポンプインペラ及びタービンランナを締結・開放する機械式のロックアップクラッチと、を備える。自動変速機9は、プライマリプーリと、セカンダリプーリと、これらのプーリに掛け回されるスチールベルトと、を備える。自動変速機9は、このような形態のものに限らず遊星歯車式の有段変速機でも良い。エンジン2の動力は、トルクコンバータ8、自動変速機9を介して最終的に車両駆動輪に伝達される。 The torque converter 8 includes a pump impeller, a turbine runner, and a mechanical lock-up clutch that fastens and opens the pump impeller and the turbine runner. The automatic transmission 9 includes a primary pulley, a secondary pulley, and a steel belt that is wound around these pulleys. The automatic transmission 9 is not limited to such a configuration, and may be a planetary gear type stepped transmission. The power of the engine 2 is finally transmitted to the vehicle drive wheels via the torque converter 8 and the automatic transmission 9.
 バッテリ41には、スタータ6、オルタネータ21及び第1電気負荷43が直接接続され、DC-DCコンバータ42を介して第2電気負荷45が接続される。バッテリ41は、オルタネータ21の発電電力を蓄え、必要に応じてスタータ6等に電力を供給する。 The starter 6, the alternator 21 and the first electric load 43 are directly connected to the battery 41, and the second electric load 45 is connected via the DC-DC converter 42. The battery 41 stores the generated power of the alternator 21 and supplies the starter 6 and the like as necessary.
 第1電気負荷43は、例えばエアバッグ(A/Bag)44などの車両1の周辺機器である。 The first electric load 43 is a peripheral device of the vehicle 1 such as an airbag (A / Bag) 44, for example.
 第2電気負荷45は、例えばオーディオシステム(Audio)46などの、第1電気負荷43と比べてバッテリ電圧の瞬間的な低下に弱い車両1の周辺機器である。第2電気負荷45はバッテリ電圧の瞬間的な低下に弱いので、第2電気負荷45に関しては、DC-DCコンバータ42を介してバッテリ41に接続している。 The second electric load 45 is a peripheral device of the vehicle 1 such as an audio system (Audio) 46 that is vulnerable to an instantaneous drop in battery voltage as compared with the first electric load 43. Since the second electric load 45 is vulnerable to an instantaneous drop in battery voltage, the second electric load 45 is connected to the battery 41 via the DC-DC converter 42.
 すなわち、エンジン2の再始動時のクランキング中は、バッテリ電圧が一時的に低下する。バッテリ電圧が一時的に低下すると、第2電気負荷45の作動に影響を及ぼす。そこで、クランキング中はDC-DCコンバータ42を作動させて一時的に低下するバッテリ電圧を昇圧させることで、第2電気負荷45に対する供給電圧が瞬間的に低下するのを抑制している。なお、DC-DCコンバータ42は、LIN(Local Interconnect Network)によって後述するエンジンコントローラ51と接続されており、エンジンコントローラ51によってその作動、非作動が制御されている。 That is, the battery voltage temporarily decreases during cranking when the engine 2 is restarted. When the battery voltage temporarily decreases, the operation of the second electric load 45 is affected. Therefore, during the cranking, the DC-DC converter 42 is operated to boost the battery voltage that temporarily decreases, thereby suppressing the supply voltage to the second electric load 45 from decreasing instantaneously. The DC-DC converter 42 is connected to an engine controller 51, which will be described later, by a LIN (Local Interconnect Network), and its operation and non-operation are controlled by the engine controller 51.
 また、図1に示す車両1は、車両1の制御装置として、エンジンコントローラ(ECM)51と、自動変速機用コントローラ61と、ブレーキコントローラ62と、BCM(Body Control Module)63と、エアコン用オートアンプ64と、ナビゲーションシステム(NAVI)65と、IPDM(Intelligent Power Distribution Module)66と、を備える。 1 includes an engine controller (ECM) 51, an automatic transmission controller 61, a brake controller 62, a BCM (Body Control Module) 63, and an air conditioner auto as control devices for the vehicle 1. An amplifier 64, a navigation system (NAVI) 65, and an IPDM (IntelligentIntelliPower Distribution Module) 66 are provided.
 各コントローラ51、61-66は、プログラムを実行するプロセッサと、プロセッサによって実行されるプログラムを格納するメモリと、プロセッサに接続されたインターフェースと、を備える。また、各コントローラ51、61-66は、各種データを共有化できるように、情報交換が可能なCAN(Controller Area Network)通信線により接続されている。また、コントローラ62,65は、電圧降下を許容できない電気負荷なので、DC-DCコンバータ42を介して電力の供給を受けている。 Each controller 51, 61-66 includes a processor that executes a program, a memory that stores a program executed by the processor, and an interface connected to the processor. Each controller 51, 61-66 is connected by a CAN (Controller-Area-Network) communication line capable of exchanging information so that various data can be shared. Further, since the controllers 62 and 65 are electric loads that cannot tolerate a voltage drop, they are supplied with power via the DC-DC converter 42.
 以下、図1と図2を参照して、エンジンコントローラ51について詳しく説明する。 Hereinafter, the engine controller 51 will be described in detail with reference to FIGS. 1 and 2.
 図2は、エンジン2の制御システム図である。 FIG. 2 is a control system diagram of the engine 2.
 エンジン2は、燃料をエンジン2に間欠的に供給するために各吸気ポートに設けられた燃料噴射弁7と、燃焼室に臨むように設けられた点火プラグと、を備える。 The engine 2 includes a fuel injection valve 7 provided at each intake port for intermittently supplying fuel to the engine 2 and an ignition plug provided so as to face the combustion chamber.
 エンジン2の吸気通路11には、吸入空気量を検出するエアフローメータ55と、電子制御式のスロットル弁12と、が設けられる。スロットル弁12の開度(以下「スロットル開度」という。)は、スロットルモータ13によって制御され、スロットルセンサ14によって検出される。 The intake passage 11 of the engine 2 is provided with an air flow meter 55 for detecting the intake air amount and an electronically controlled throttle valve 12. The opening of the throttle valve 12 (hereinafter referred to as “throttle opening”) is controlled by a throttle motor 13 and detected by a throttle sensor 14.
 エンジン2は、エンジンコントローラ51によって制御される。 The engine 2 is controlled by the engine controller 51.
 エンジンコントローラ51には、前述したエアフローメータ55やスロットルセンサ14の検出信号のほか、アクセルペダル52の踏込量(以下「アクセル開度」という。)APOを検出するアクセルセンサ53、クランク角を検出するクランク角センサ54、ブレーキ操作の有無を検出するブレーキスイッチ58、イグニッションキーのキー操作の有無を検出するイグニッションキースイッチ96などの、エンジン2の運転状態を検出する各種センサからの検出信号が入力される。 In addition to the detection signals from the air flow meter 55 and the throttle sensor 14, the engine controller 51 detects an accelerator sensor 53 that detects the amount of depression of the accelerator pedal 52 (hereinafter referred to as “accelerator opening”) APO, and a crank angle. Detection signals from various sensors that detect the operating state of the engine 2, such as a crank angle sensor 54, a brake switch 58 that detects the presence or absence of a brake operation, and an ignition key switch 96 that detects the presence or absence of key operation of an ignition key, are input. The
 エンジンコントローラ51は、クランク角センサ54の信号に基づいてエンジン回転速度を算出し、エンジン2の運転状態に基づいて目標吸入空気量及び目標燃料噴射量を算出する。そして、エンジンコントローラ51は、目標吸入空気量及び目標燃料噴射量が得られるようにスロットルモータ13及び各燃料噴射弁7に指令を出す。 The engine controller 51 calculates the engine rotation speed based on the signal of the crank angle sensor 54, and calculates the target intake air amount and the target fuel injection amount based on the operating state of the engine 2. Then, the engine controller 51 issues a command to the throttle motor 13 and each fuel injection valve 7 so that the target intake air amount and the target fuel injection amount are obtained.
 また、エンジンコントローラ51は、エンジン2がガソリンエンジンの場合は、圧縮上死点前の所定の時期に点火コイルの一次側電流を遮断することにより点火プラグで火花を発生させ、燃焼室内の混合気に点火する。 Further, when the engine 2 is a gasoline engine, the engine controller 51 generates a spark with an ignition plug by interrupting the primary current of the ignition coil at a predetermined time before the compression top dead center, and the air-fuel mixture in the combustion chamber Ignite.
 また、エンジンコントローラ51は、運転者によりイグニッションキーのON操作が行われ、イグニッションキースイッチ96のON信号を検出したときに、初回の始動要求があると判断してスタータ6を駆動し、エンジン2を始動させる。 Further, the engine controller 51 determines that there is an initial start request when the driver performs an ON operation of the ignition key and detects an ON signal of the ignition key switch 96, and drives the starter 6 to drive the engine 2 Start.
 また、エンジンコントローラ51(自動停止実行手段)は、燃費向上を目的としてエンジン2の自動停止(以下「アイドルストップ」という。)及びエンジン2の再始動を行う。アイドルストップを許可するための複数の許可条件は、以下の〈1〉から〈7〉に示す通りである。エンジンコントローラ51は、〈1〉から〈7〉に示す複数の許可条件が全て満たされたときに、アイドルストップ許可条件が成立したと判定し、アイドルストップ許可フラグを1に設定する。 Further, the engine controller 51 (automatic stop execution means) performs automatic stop (hereinafter referred to as “idle stop”) of the engine 2 and restart of the engine 2 for the purpose of improving fuel efficiency. A plurality of permission conditions for permitting idle stop are as shown in the following <1> to <7>. The engine controller 51 determines that the idle stop permission condition is satisfied when all of the plurality of permission conditions indicated by <1> to <7> are satisfied, and sets the idle stop permission flag to 1.
 〈1〉セレクトレバーがRレンジ以外のレンジ(Dレンジ、Pレンジ又はNレンジ)にあること
 〈2〉車速VSP=0であること
 〈3〉エンジン運転中であること(エンジン回転速度Ne≠0)
 〈4〉ブレーキ液圧が所定値以上であること
 〈5〉実際のバッテリ残容量が所定値以上であること
 〈6〉ブレーキブースタ負圧が所定値以上であること
 〈7〉路面勾配の絶対値|θ|が所定勾配以下であること
 アイドルストップ許可条件が成立すると、エンジンコントローラ51は、燃料噴射弁7から吸気ポートへの燃料噴射を遮断してエンジン2を停止させる。これにより、無駄な燃料消費を低減する。
<1> The select lever is in a range other than the R range (D range, P range or N range). <2> The vehicle speed VSP = 0. <3> The engine is running (engine speed Ne.noteq.0). )
<4> The brake fluid pressure is a predetermined value or more. <5> The actual remaining battery capacity is a predetermined value or more. <6> The brake booster negative pressure is a predetermined value or more. <7> Absolute value of road surface gradient. | Θ | is equal to or less than a predetermined gradient When the idle stop permission condition is satisfied, the engine controller 51 stops fuel injection from the fuel injection valve 7 to the intake port and stops the engine 2. Thereby, useless fuel consumption is reduced.
 上記〈1〉から〈4〉は、車両1を停車させる意図があるかを判定するものである。上記〈5〉で、実際のバッテリ残容量が所定値以上であることを許可条件の一つとするのは、バッテリ残容量が少ない状態だと、エンジン2を再始動するときにスタータ6がエンジン2をクランキングした際に、所定の電圧よりも系統電圧が下がり、第1電気負荷43がリセットされるおそれがあるためである。上記〈6〉及び〈7〉を許可条件の一つとする理由については後述する。 <1> to <4> above determine whether the vehicle 1 is intended to stop. In the above <5>, one of the permission conditions that the actual remaining battery capacity is equal to or greater than a predetermined value is that when the remaining battery capacity is low, the starter 6 can be operated when the engine 2 is restarted. This is because the system voltage may be lower than the predetermined voltage and the first electric load 43 may be reset when cranking is performed. The reason why <6> and <7> are set as one of the permission conditions will be described later.
 一方、アイドルストップを解除するための複数の解除条件は、以下の〈8〉から〈13〉に示す通りである。エンジンコントローラ51は、〈8〉から〈10〉の解除条件が全て満たされ、かつ、〈11〉から〈13〉のいずれか一つの解除条件が満たされたときに、アイドルストップ解除条件が成立したと判定し、アイドルストップ許可フラグを0に戻す。 On the other hand, a plurality of release conditions for releasing the idle stop are as shown in the following <8> to <13>. The engine controller 51 satisfies the idle stop release condition when all the release conditions from <8> to <10> are satisfied and any one release condition from <11> to <13> is satisfied. And the idle stop permission flag is returned to zero.
 〈8〉セレクトレバーが走行レンジ(Dレンジ又はRレンジ)に遷移した
 〈9〉車速VSP≠0となった
 〈10〉アイドルストップ中であること
 〈11〉アクセルペダルが踏み込まれたこと(アクセル開度APO≠0)
 〈12〉ブレーキ液圧が所定値以下であること
 〈13〉実際のバッテリ残容量が低下していること
 アイドルストップ解除条件が成立すると、エンジンコントローラ51は、スタータ6を用いてエンジン2をクランキングし、燃料噴射弁7からの燃料噴射と点火プラグによる火花点火とを再開しエンジン2を再始動する。
<8> The select lever has shifted to the travel range (D range or R range). <9> The vehicle speed VSP is not equal to 0. <10> The vehicle is in idle stop. <11> The accelerator pedal is depressed (the accelerator is open). Degree APO ≠ 0)
<12> The brake fluid pressure is equal to or less than a predetermined value. <13> The actual remaining battery capacity is reduced. When the idle stop cancellation condition is satisfied, the engine controller 51 uses the starter 6 to crank the engine 2. Then, the fuel injection from the fuel injection valve 7 and the spark ignition by the spark plug are restarted, and the engine 2 is restarted.
 上記〈11〉で、アクセルペダルが踏み込まれたとき(アクセル開度APO≠0のとき)にエンジン2を再始動するのは、運転者に車両1を発進させる意図があるためである。上記〈12〉で、ブレーキ液圧が所定値以下であるときにエンジン2を再始動するのは、運転者に車両1を発進させ、又は、クリープ走行させる意図があるためである。上記〈13〉で、バッテリ残容量が低下しているとき、すなわちバッテリ残容量が所定値以下のときにエンジン2を再始動するのは、バッテリ残容量が低下している状態でアイドルストップを継続すると、再始動時にスタータ6によってエンジン2を始動させた場合、所定の電圧よりも低下し第1電気負荷43がリセットされるおそれがあるためである。 In <11> above, the engine 2 is restarted when the accelerator pedal is depressed (when the accelerator opening APO ≠ 0) because the driver intends to start the vehicle 1. In <12> above, the engine 2 is restarted when the brake fluid pressure is equal to or lower than a predetermined value because the driver intends to start the vehicle 1 or creep the vehicle. In <13> above, when the remaining battery capacity is reduced, that is, when the remaining battery capacity is equal to or lower than the predetermined value, the engine 2 is restarted while idling stop is continued in a state where the remaining battery capacity is reduced. Then, when the engine 2 is started by the starter 6 at the time of restart, the voltage drops below a predetermined voltage and the first electric load 43 may be reset.
 また、エンジンコントローラ51には、電流センサ67によって検出されたバッテリ41の充放電電流がIPDM66を介して送信されている。 Further, the charge / discharge current of the battery 41 detected by the current sensor 67 is transmitted to the engine controller 51 via the IPDM 66.
 エンジンコントローラ51は、エンジン2の運転条件に応じてバッテリ残容量(State Of Charge)の目標値を設定すると共に、バッテリ41の充放電電流を一定の時間間隔毎に積算した値に基づいて、実際のバッテリ残容量を算出する。エンジンコントローラ51は、バッテリ残容量の目標値と実際のバッテリ残容量とに基づいて、バッテリ41の充放電の収支を管理する。 The engine controller 51 sets a target value of the remaining battery capacity (State Of Charge) in accordance with the operating conditions of the engine 2, and based on the value obtained by integrating the charge / discharge current of the battery 41 at regular time intervals. The remaining battery capacity is calculated. The engine controller 51 manages the balance of charge / discharge of the battery 41 based on the target value of the remaining battery capacity and the actual remaining battery capacity.
 例えば、実際のバッテリ残容量がバッテリ残容量目標値に満たないときは、エンジンコントローラ51はオルタネータ21の目標発電電圧を上昇させる。この目標発電電圧が得られるように、コントロールモジュール24(図2参照)がオルタネータ21の目標発電電圧を可変に制御する。 For example, when the actual battery remaining capacity is less than the battery remaining capacity target value, the engine controller 51 increases the target power generation voltage of the alternator 21. The control module 24 (see FIG. 2) variably controls the target power generation voltage of the alternator 21 so that this target power generation voltage is obtained.
 以下、図1を参照して自動変速機用コントローラ61について詳しく説明する。 Hereinafter, the automatic transmission controller 61 will be described in detail with reference to FIG.
 自動変速機用コントローラ61には、セレクトレバーの位置を検出するためのセレクトレバーセンサ91、路面勾配θを検出するための路面勾配センサ95、運転者が牽引時であることを自動変速機用コントローラ61に知らせるための牽引スイッチ98、自動変速機9の入力軸回転速度Ninを検出するための入力軸回転速度センサ99、及び、自動変速機9の出力軸回転速度Noutを検出するための出力軸回転速度センサ100からの検出信号が入力される。牽引スイッチ98は、運転席に予め設けられており、運転者によって操作される。 The automatic transmission controller 61 includes a select lever sensor 91 for detecting the position of the select lever, a road surface gradient sensor 95 for detecting the road surface gradient θ, and an automatic transmission controller indicating that the driver is towing. 61, a traction switch 98 for informing the motor 61, an input shaft rotational speed sensor 99 for detecting the input shaft rotational speed Nin of the automatic transmission 9, and an output shaft for detecting the output shaft rotational speed Nout of the automatic transmission 9. A detection signal from the rotation speed sensor 100 is input. The traction switch 98 is provided in advance in the driver's seat and is operated by the driver.
 自動変速機用コントローラ61は、CAN通信線を介して送信されてきた、車速VSPとスロットル開度とから定まる車両1の走行状態に応じて、自動変速機9の変速比を無段階に制御する。 The automatic transmission controller 61 continuously controls the gear ratio of the automatic transmission 9 according to the traveling state of the vehicle 1 determined from the vehicle speed VSP and the throttle opening, which are transmitted via the CAN communication line. .
 また、自動変速機用コントローラ61は、車両1の走行状態が、トルクコンバータ8のロックアップクラッチを締結する走行状態として予め定められたロックアップ領域(車速VSPとスロットル開度とをパラメータとしている)内に入ったときに、ロックアップクラッチを締結してエンジン2と自動変速機9とを直結状態とする。そして、車両1の走行状態がロックアップ領域外となったときに、ロックアップクラッチを開放する。エンジン2と自動変速機9とを直結状態にすると、トルクコンバータ8でのトルクの吸収がなくなり、その分燃費が良くなる。 Further, the automatic transmission controller 61 has a lock-up region in which the traveling state of the vehicle 1 is predetermined as a traveling state in which the lock-up clutch of the torque converter 8 is engaged (the vehicle speed VSP and the throttle opening are used as parameters). When entering, the lockup clutch is engaged to bring the engine 2 and the automatic transmission 9 into a directly connected state. When the traveling state of the vehicle 1 is out of the lockup region, the lockup clutch is released. When the engine 2 and the automatic transmission 9 are directly connected, the torque converter 8 does not absorb the torque, and the fuel efficiency is improved accordingly.
 また、自動変速機用コントローラ61は、非牽引時用の変速パターンと、牽引時用の変速パターンと、を有しており、運転者が牽引スイッチ98をOFFからONに切換えると、変速パターンを非牽引時用のものから牽引時用のものに切換える。 The automatic transmission controller 61 has a shift pattern for non-towing and a shift pattern for towing. When the driver switches the tow switch 98 from OFF to ON, the shift pattern is changed. Switch from non-traction to non-traction.
 以下、図1と図3を参照してブレーキコントローラ62について詳しく説明する。 Hereinafter, the brake controller 62 will be described in detail with reference to FIGS. 1 and 3.
 図3は、制動装置70の概略構成図である。 FIG. 3 is a schematic configuration diagram of the braking device 70.
 制動装置70は、ブレーキペダル57と、ブレーキブースタ(負圧式倍力装置)71と、マスターシリンダ72と、ブレーキ液供給通路73と、ホイールシリンダ74と、リザーバタンク75と、ABSユニット81と、を備える。本実施形態では、制動装置70としてドラム式を採用しているが、ディスク式を採用しても構わない。なお、図3において、ホイールシリンダ74を1つしか示していないが、実際には4つの各車輪にそれぞれホイールシリンダ74が設けられる。 The braking device 70 includes a brake pedal 57, a brake booster (negative pressure booster) 71, a master cylinder 72, a brake fluid supply passage 73, a wheel cylinder 74, a reservoir tank 75, and an ABS unit 81. Prepare. In this embodiment, a drum type is adopted as the braking device 70, but a disc type may be adopted. In FIG. 3, only one wheel cylinder 74 is shown, but in reality, each of the four wheels is provided with a wheel cylinder 74.
 ブレーキペダル57は、運転者によって操作される。ブレーキ操作の有無は、ブレーキスイッチ58によって検出される。 The brake pedal 57 is operated by the driver. The presence or absence of a brake operation is detected by a brake switch 58.
 ブレーキブースタ71は、ブレーキペダル57に接続され、運転者のブレーキペダル操作力(以下「ブレーキ踏力」という。)を軽減させる。 The brake booster 71 is connected to the brake pedal 57 and reduces the driver's brake pedal operating force (hereinafter referred to as “brake pedaling force”).
 マスターシリンダ72は、ブレーキブースタ71を介してブレーキペダル57に接続され、ブレーキペダル57の踏み込み量に応じたブレーキ液圧を発生させる。 The master cylinder 72 is connected to the brake pedal 57 via the brake booster 71, and generates a brake fluid pressure corresponding to the depression amount of the brake pedal 57.
 ブレーキ液供給通路73は、ブレーキ液で満たされた通路であって、マスターシリンダ72とホイールシリンダ74とを接続する。マスターシリンダ72で発生したブレーキ液圧はブレーキ液供給通路73を介して各輪のホイールシリンダ74に伝達される。ホイールシリンダ74にブレーキ液圧が伝達されると、ホイールシリンダ74のピストンによってブレーキシューが左右に開かれ、ブレーキシューがドラムに押しつけられる。これにより、車両1を減速、停止させるために必要な制動力が発生する。 The brake fluid supply passage 73 is a passage filled with brake fluid, and connects the master cylinder 72 and the wheel cylinder 74. The brake fluid pressure generated in the master cylinder 72 is transmitted to the wheel cylinder 74 of each wheel through the brake fluid supply passage 73. When the brake fluid pressure is transmitted to the wheel cylinder 74, the brake shoe is opened to the left and right by the piston of the wheel cylinder 74, and the brake shoe is pressed against the drum. As a result, a braking force necessary for decelerating and stopping the vehicle 1 is generated.
 ABSユニット81は、ブレーキ液リターン通路82と、常開型の保持弁83と、常閉型の減圧弁84と、を備える。 The ABS unit 81 includes a brake fluid return passage 82, a normally open type holding valve 83, and a normally closed type pressure reducing valve 84.
 ブレーキ液リターン通路82は、ブレーキ液供給通路73から分岐してリザーバタンク75に接続される通路である。リザーバタンク75に貯溜されたブレーキ液は、図示しないポンプによってマスターシリンダ72に供給される。 The brake fluid return passage 82 is a passage branched from the brake fluid supply passage 73 and connected to the reservoir tank 75. The brake fluid stored in the reservoir tank 75 is supplied to the master cylinder 72 by a pump (not shown).
 保持弁83は、ブレーキ液供給通路73に設けられる。保持弁83の開閉はブレーキコントローラ62によって制御される。保持弁83は、通常開弁した状態となっており、ブレーキコントローラ62からの制御信号が入力されると閉弁した状態となる。 The holding valve 83 is provided in the brake fluid supply passage 73. The opening and closing of the holding valve 83 is controlled by the brake controller 62. The holding valve 83 is normally opened, and is closed when a control signal from the brake controller 62 is input.
 減圧弁84は、ブレーキ液リターン通路82に設けられる。減圧弁84の開閉はブレーキコントローラ62によって制御される。減圧弁84は、通常閉弁した状態となっており、ブレーキコントローラ62からの制御信号が入力されると開弁した状態となる。 The pressure reducing valve 84 is provided in the brake fluid return passage 82. Opening and closing of the pressure reducing valve 84 is controlled by the brake controller 62. The pressure reducing valve 84 is normally closed, and is opened when a control signal from the brake controller 62 is input.
 ブレーキコントローラ62には、各車輪の車輪速を検出する車輪速センサ92、ブレーキ液圧を検出するためのブレーキ液圧センサ93、及び、ブレーキブースタ71内の負圧(以下「ブレーキブースタ負圧」という。)を検出するためのブレーキブースタ負圧センサ94の検出信号が入力される。 The brake controller 62 includes a wheel speed sensor 92 for detecting the wheel speed of each wheel, a brake fluid pressure sensor 93 for detecting the brake fluid pressure, and a negative pressure in the brake booster 71 (hereinafter referred to as “brake booster negative pressure”). The detection signal of the brake booster negative pressure sensor 94 is detected.
 ブレーキコントローラ62は、各車輪の車輪速の平均値を車速VSPとして算出する。 The brake controller 62 calculates the average wheel speed of each wheel as the vehicle speed VSP.
 また、ブレーキコントローラ62は、必要に応じて、走行時の車両安定性を向上させるためのビークルダイナミクスコントロール(Vehicle Dynamics Control)(以下「VDC制御」という。)、車輪のロックを防止するためのABS(Antilocked Braking System)制御、坂道でアイドルストップが実施されたときの発進を補助するためのヒルホールド制御、及び、坂道発進を補助するためのヒルスタートアシスト制御を実施する。 In addition, the brake controller 62 is provided with a vehicle dynamics control (hereinafter referred to as “VDC control”) for improving vehicle stability during traveling, and an ABS for preventing wheel locking as necessary. (Antilocked Braking System) control, hill hold control for assisting start when idling stop is executed on a slope, and hill start assist control for assisting start on a slope.
 VDC制御は、滑りやすい路面や障害物の緊急回避などで車両1が横滑りや尻振りを起こしそうになったときに、ブレーキ制御とエンジン出力制御により走行時の車両安定性を向上させる制御である。車両1の横滑りや尻振り状態の検出は、車輪速センサ92や前後・横Gセンサなどの各センサによって行われている。 The VDC control is a control that improves vehicle stability during traveling by brake control and engine output control when the vehicle 1 is likely to cause skidding or tail swing due to an emergency avoidance of a slippery road surface or an obstacle. . Detection of a side slip or a swinging state of the vehicle 1 is performed by a sensor such as a wheel speed sensor 92 or a front / rear / lateral G sensor.
 ABS制御は、制動時(ブレーキペダル操作時)の車輪速を検知し、電子制御で制動力を調整してタイヤのロックを防止することによって、急制動時の安定性を向上させ、ステアリング操作による障害物回避をし易くする制御である。 ABS control detects the wheel speed during braking (when the brake pedal is operated) and adjusts the braking force by electronic control to prevent tire locking, thereby improving stability during sudden braking and by steering operation. This control makes it easier to avoid obstacles.
 ヒルホールド制御は、下り坂や上り坂など、坂道でアイドルストップが実施されたときの発進時に、ホイールシリンダ(ブレーキキャリパ)74のブレーキ液圧を保持するように制御して制動力を発生させ、所定の駆動力が発生すると制動力を無くす制御である。これにより、坂道でブレーキペダル57を離して車両を発進させるときに、駆動力が発生するまでの間に下り坂で車両1が車両自体の重みで前方にずり落ちたり、上り坂で車両1が後方にずり下がったりするのを抑制している。 The hill hold control generates a braking force by controlling the brake fluid pressure of the wheel cylinder (brake caliper) 74 when starting when an idle stop is performed on a slope such as a downhill or an uphill. This is control for eliminating the braking force when a predetermined driving force is generated. Thus, when the vehicle is started by releasing the brake pedal 57 on the slope, the vehicle 1 slides forward on the downhill with the weight of the vehicle itself until the driving force is generated, or the vehicle 1 moves on the uphill. Suppressing backwards is suppressed.
 ヒルホールド制御は、坂道で停車してアイドルストップが実施された場合に、例えば路面勾配θが所定の範囲(例えば±14%以内(このような範囲を必ずしも設けなくても良い。))にあり、かつ、セレクトレバーが駐車レンジ(Pレンジ)以外の位置にあるときに実施される。 In the hill hold control, when the vehicle stops on a slope and an idle stop is performed, for example, the road surface gradient θ is within a predetermined range (for example, within ± 14% (such a range is not necessarily provided)). And it is implemented when the select lever is at a position other than the parking range (P range).
 ヒルホールド制御は、あくまでも発進補助であるため、ブレーキペダル57を離した後、ブレーキ液圧を保持し、その後、ブレーキ液圧を徐々に減圧するようにしている。また、アクセルペダル52の操作により発進可能な状態となれば、自動的にブレーキ液圧を解除し、スムーズな発進が可能となるようにしている。 Since the hill hold control is only for starting assistance, the brake fluid pressure is maintained after releasing the brake pedal 57, and then the brake fluid pressure is gradually reduced. Further, when the vehicle can be started by operating the accelerator pedal 52, the brake fluid pressure is automatically released so that the vehicle can start smoothly.
 ヒルスタートアシスト制御は、運転者が坂道でブレーキペダル57を操作して車両1を停車させ、その後、アクセルペダル52を操作して車両を発進させるときにブレーキ液圧を保持しておき、ブレーキペダル57からアクセルペダル52へ足を踏み換える間に車両1が前方に落ちたり後方にずり下がったりするのを抑制する制御である。 In the hill start assist control, the driver operates the brake pedal 57 on the slope to stop the vehicle 1, and then holds the brake fluid pressure when operating the accelerator pedal 52 to start the vehicle. This is a control that suppresses the vehicle 1 from falling forward or sliding backward while the foot is switched from 57 to the accelerator pedal 52.
 ヒルスタートアシスト制御は、坂道での停車時に、例えば路面勾配θが所定の範囲(例えば±10%以上(このような範囲を必ずしも設けなくても良い。))にあり、かつ、セレクトレバーが駐車レンジ(Pレンジ)又はニュートラルレンジ(Nレンジ)以外の位置にあるときに実施される。 When the hill start assist control is stopped on a slope, for example, the road gradient θ is within a predetermined range (for example, ± 10% or more (such a range is not necessarily provided)), and the select lever is parked. This is performed when the position is other than the range (P range) or the neutral range (N range).
 ヒルスタートアシスト制御は、あくまでも発進補助であるため、ブレーキペダル57を離した後、ブレーキ液圧を保持し、その後、ブレーキ液圧を徐々に減圧するようにしている。また、アクセルペダル52の操作により発進可能な状態となれば、自動的にブレーキ液圧を解除し、スムーズな発進が可能となるようにしている。 Since the hill start assist control is only for starting assistance, the brake fluid pressure is maintained after releasing the brake pedal 57, and then the brake fluid pressure is gradually reduced. Further, when the vehicle can be started by operating the accelerator pedal 52, the brake fluid pressure is automatically released so that the vehicle can start smoothly.
 ブレーキコントローラ62は、ブレーキペダル57の通常操作時には、保持弁83を開弁したままの状態とし、減圧弁84を閉弁したままの状態とする。 The brake controller 62 keeps the holding valve 83 open and keeps the pressure reducing valve 84 closed during normal operation of the brake pedal 57.
 一方、ブレーキコントローラ62は、ブレーキペダル57を急激に踏み込んだ場合など、ブレーキ踏力が強く、車輪がロックするようなときは、ABS制御を実施して保持弁83を閉弁すると共に減圧弁84を開弁し、ホイールシリンダ74内のブレーキ液圧をリザーバタンク75に逃がす。これによって車輪がロックするのを回避する。 On the other hand, the brake controller 62 performs ABS control to close the holding valve 83 and close the pressure reducing valve 84 when the brake pedal force is strong and the wheel is locked, such as when the brake pedal 57 is depressed suddenly. The valve is opened and the brake fluid pressure in the wheel cylinder 74 is released to the reservoir tank 75. This prevents the wheels from locking.
 また、坂道で停車してアイドルストップが実施されているときにアイドルストップ解除条件が満たされると、エンジン2が再始動される。しかしながら、エンジン2が完爆するまでは駆動力(クリープトルク)が発生しない。そのため、運転者が車両1を発進させるためにブレーキペダル57から足を離すと、車両1が前方にずり落ちたり、後方にずり下がったりするおそれがある。 Also, when the idle stop cancellation condition is satisfied when the vehicle is stopped on a slope and the idle stop is performed, the engine 2 is restarted. However, no driving force (creep torque) is generated until the engine 2 completes explosion. For this reason, if the driver removes his / her foot from the brake pedal 57 in order to start the vehicle 1, the vehicle 1 may slide forward or slide backward.
 そこでブレーキコントローラ62は、ヒルホールド制御を実施し、ブレーキ液圧が所定値以下まで低下したときは保持弁83を閉弁してホイールシリンダ74に作用しているブレーキ液圧を封止する。これにより、運転者のブレーキ操作にかかわらず、坂道での停車状態を維持できるだけの制動力を確保して、車両1が前方にずり落ちたり、後方にずり下がったりするのを抑制する。そして、エンジンの完爆判定等が行われ車両が発進可能になると、ブレーキコントローラ62は減圧弁84を開弁し、ホイールシリンダ74のブレーキ液圧をリザーバタンク75に戻して制動力を無くす。 Therefore, the brake controller 62 performs hill hold control, and when the brake fluid pressure is reduced to a predetermined value or less, the brake valve 62 is closed to seal the brake fluid pressure acting on the wheel cylinder 74. Thus, regardless of the driver's braking operation, a braking force sufficient to maintain the stopping state on the hill is ensured, and the vehicle 1 is prevented from sliding forward or backward. When the complete explosion determination of the engine or the like is performed and the vehicle can start, the brake controller 62 opens the pressure reducing valve 84 and returns the brake fluid pressure of the wheel cylinder 74 to the reservoir tank 75 to eliminate the braking force.
 以下、図1を参照してBCM63について詳しく説明する。 Hereinafter, the BCM 63 will be described in detail with reference to FIG.
 BCM63には、車両1が他の車両を牽引するとき(牽引時)に使用される牽引コネクタの接続状態を検出するための牽引コネクタ接続検出センサ97の検出信号が入力される。BCM63は、牽引コネクタ接続検出センサ97の検出信号を、CAN通信線を介してエンジンコントローラ51に送信する。 The BCM 63 receives a detection signal of a traction connector connection detection sensor 97 for detecting a connection state of a traction connector used when the vehicle 1 pulls another vehicle (at the time of towing). The BCM 63 transmits the detection signal of the traction connector connection detection sensor 97 to the engine controller 51 via the CAN communication line.
 牽引コネクタは、雄と雌の各カップラで構成されている。牽引する側の車両を「牽引車両」、牽引される側の他の車両を「被牽引車両」とすると、牽引車両の雄のカップラを、被牽引車両の雌のカップラをはめ込むことで牽引コネクタが接続状態となる。一方、牽引車両の雄のカップラを、被牽引車両の雌のカップラから外すことで牽引コネクタが非接続状態となる。牽引コネクタ接続検出センサ97は、牽引コネクタが接続状態のときにON信号を出力し、非接続状態のときにOFF信号を出力する。 Traction connector is composed of male and female couplers. If the towing vehicle is a tow vehicle and the other towed vehicle is a towed vehicle, the tow connector can be attached by fitting the male coupler of the towed vehicle with the female coupler of the towed vehicle. Connected. On the other hand, by removing the male coupler of the tow vehicle from the female coupler of the towed vehicle, the tow connector is disconnected. The traction connector connection detection sensor 97 outputs an ON signal when the traction connector is connected, and outputs an OFF signal when the traction connector is not connected.
 ここで牽引時には、被牽引車両が接続されている分だけ車両重量が増加する。そのため、ヒルホールド制御が実施されても、発進時にブレーキペダル57を踏み直して車両が前方にずり落ちたり後方にずり下がったりしないようにしなければならないおそれがある。このように牽引時には、ヒルホールド制御によるヒルホールド機能が被牽引時よりも低下する。 時 に は Here, when towing, the vehicle weight increases as much as the towed vehicle is connected. Therefore, even if the hill hold control is performed, there is a possibility that the vehicle must not step down forward or back backward by stepping on the brake pedal 57 when starting. Thus, during traction, the hill hold function by hill hold control is lower than during towing.
 そこで牽引時には、アイドルストップ許可条件が成立していてもアイドルストップを許可せず、アイドルストップを禁止することが考えられる。しかしながら、牽引時というだけで無条件にアイドルストップを禁止するのでは、牽引時にエンジン2の燃費を向上させることができなくなる。 Therefore, at the time of towing, it is conceivable that idle stop is not permitted and idle stop is prohibited even if the idle stop permission condition is satisfied. However, if the idling stop is prohibited unconditionally only during towing, the fuel efficiency of the engine 2 cannot be improved during towing.
 一口に牽引時といっても牽引時の内容は様々であり、被牽引車両が牽引車両に対して相対的に重い車両であることもあれば、被牽引車両が自転車やバイクなどを載せるだけの、牽引車両に対して相対的に軽い車両であることもある。特に、被牽引車両が牽引車両よりも相対的に軽い場合であれば、牽引状態での坂道停車時であってもアイドルストップを許可できるかもしれず、アイドルストップを許可できれば、牽引時でもエンジン2の燃費を向上させることができる。 Even when towing a tow, the contents of towing vary, and the towed vehicle may be a relatively heavy vehicle relative to the towed vehicle, or the towed vehicle can only carry a bicycle or a motorcycle. The vehicle may be lighter than the vehicle. In particular, if the towed vehicle is relatively lighter than the towed vehicle, it may be possible to allow idling stop even when the hill is stopped in a towing state. Fuel consumption can be improved.
 そこで本実施形態では、「〈7〉路面勾配の絶対値|θ|が所定勾配以下であること」をアイドルストップ許可条件の一つとし、牽引時には所定勾配の値が被牽引時よりも小さくなるようにした。以下の説明では、この〈7〉の条件を、必要に応じて「路面勾配許可条件」という。 Therefore, in the present embodiment, “<7> absolute value of road surface gradient | θ | is equal to or smaller than a predetermined gradient” is one of the idle stop permission conditions, and the value of the predetermined gradient is smaller than that at the time of towing when towing. I did it. In the following description, the condition <7> is referred to as “road surface gradient permission condition” as necessary.
 なお、上り坂のときに路面勾配θを正の値とすると、下り坂のときに路面勾配θは負の値となる。本実施形態では上り坂と下り坂の両方を対象とするので、「路面勾配の絶対値が所定勾配以下であるとき」には、上り坂で正の値の路面勾配が所定値以下のときと、下り坂で負の値の路面勾配が負の値の所定値以上のときとが含まれる。 If the road slope θ is a positive value when going uphill, the road slope θ becomes a negative value when going downhill. In this embodiment, since both uphill and downhill are targeted, when “the absolute value of the road slope is equal to or less than the predetermined slope”, the positive road slope on the uphill is equal to or lower than the predetermined value. , And a negative slope of the road surface is greater than or equal to a predetermined negative value.
 以下、エンジンコントローラ51によって実行される本実施形態によるアイドルストップ制御について、図4A及び図4Bを参照して説明する。 Hereinafter, the idle stop control according to the present embodiment executed by the engine controller 51 will be described with reference to FIGS. 4A and 4B.
 図4A及び図4Bは、アイドルストップ許可フラグを設定するためのフローチャートである。エンジンコントローラ51は、このルーチンを一定時間ごと(例えば10msごと)に実行する。 4A and 4B are flowcharts for setting the idle stop permission flag. The engine controller 51 executes this routine at regular time intervals (for example, every 10 ms).
 ステップS1からステップS6において、エンジンコントローラ51は、前述した〈1〉から〈6〉の許可条件が成立しているか否かを判定する。エンジンコントローラ51は、これらの許可条件が一つでも成立していなければ、アイドルストップ許可条件が成立しないと判断してステップS7の処理を行い、全て成立していればステップS8の処理を行う。 In step S1 to step S6, the engine controller 51 determines whether or not the above-described permission conditions <1> to <6> are satisfied. If even one of these permission conditions is not satisfied, the engine controller 51 determines that the idle stop permission condition is not satisfied, and performs the process of step S7. If all of these conditions are satisfied, the engine controller 51 performs the process of step S8.
 ステップS1において、エンジンコントローラ51は、セレクトレバーセンサ91で検出されたセレクトレバーの位置が走行レンジ(Dレンジ)か否かを判定する。エンジンコントローラ51は、セレクトレバーの位置が走行レンジであればステップS2の処理を行い、走行レンジ以外であればステップS7の処理を行う。 In step S1, the engine controller 51 determines whether or not the position of the select lever detected by the select lever sensor 91 is in the travel range (D range). The engine controller 51 performs the process of step S2 if the position of the select lever is the travel range, and performs the process of step S7 if it is not the travel range.
 ステップS2において、エンジンコントローラ51は、車速VSPがゼロであるか否かを判定する。エンジンコントローラ51は、車速VSPがゼロであればステップS3の処理を行い、ゼロでなければステップS7の処理を行う。 In step S2, the engine controller 51 determines whether or not the vehicle speed VSP is zero. The engine controller 51 performs the process of step S3 if the vehicle speed VSP is zero, and performs the process of step S7 if it is not zero.
 ステップS3において、エンジンコントローラ51は、エンジン2が運転中であるか否かを判定する。エンジンコントローラ51は、エンジン回転速度が所定回転速度(例えばゼロ)以上であれば、エンジン2が運転中であると判定する。エンジンコントローラ51は、エンジン2が運転中であればステップS4の処理を行い、運転中でなければステップS7の処理を行う。 In step S3, the engine controller 51 determines whether or not the engine 2 is in operation. The engine controller 51 determines that the engine 2 is in operation if the engine speed is equal to or higher than a predetermined speed (for example, zero). The engine controller 51 performs the process of step S4 if the engine 2 is in operation, and performs the process of step S7 if it is not in operation.
 ステップS4において、エンジンコントローラ51は、ブレーキ液圧センサ93で検出されたブレーキ液圧が所定値(例えばゼロ)以上か否かを判定する。エンジンコントローラ51は、ブレーキ液圧が所定値以上であればステップS5の処理を行い、所定値未満であればステップS7の処理を行う。 In step S4, the engine controller 51 determines whether or not the brake fluid pressure detected by the brake fluid pressure sensor 93 is equal to or greater than a predetermined value (for example, zero). The engine controller 51 performs the process of step S5 if the brake hydraulic pressure is greater than or equal to a predetermined value, and performs the process of step S7 if it is less than the predetermined value.
 ステップS5において、エンジンコントローラ51は、実際のバッテリ残容量が所定値以上か否かを判定する。エンジンコントローラ51は、実際のバッテリ残容量が所定値以上であればステップS6の処理を行い、所定値未満であればステップS7の処理を行う。 In step S5, the engine controller 51 determines whether or not the actual remaining battery capacity is equal to or greater than a predetermined value. The engine controller 51 performs the process of step S6 if the actual remaining battery capacity is greater than or equal to a predetermined value, and performs the process of step S7 if it is less than the predetermined value.
 ステップS6において、エンジンコントローラ51は、ブレーキブースタ負圧が所定値以上か否かを判定する。ブレーキブースタ負圧が所定値以上であることを許可条件の一つとするのは、ヒルホールド制御を実施するにあたって、車両1が前方へずり落ちたり後方へずり下がったりしない制動力を発生させるマスターシリンダ圧を確保するためである。エンジンコントローラ51は、ブレーキブースタ負圧が所定値以上であればステップS8の処理を行い、所定値未満であればステップS7の処理を行う。 In step S6, the engine controller 51 determines whether or not the brake booster negative pressure is greater than or equal to a predetermined value. One of the permitting conditions that the brake booster negative pressure is equal to or greater than a predetermined value is a master cylinder that generates a braking force that prevents the vehicle 1 from sliding forward or backward when performing hill hold control. This is to ensure the pressure. The engine controller 51 performs the process of step S8 if the brake booster negative pressure is greater than or equal to a predetermined value, and performs the process of step S7 if it is less than the predetermined value.
 ステップS7において、エンジンコントローラ51は、アイドルストップを禁止するために、アイドルストップ許可フラグを0に設定する。 In step S7, the engine controller 51 sets an idle stop permission flag to 0 in order to prohibit idle stop.
 ステップS8において、エンジンコントローラ51は、牽引状態フラグ設定処理を実施する。牽引状態フラグ設定処理は、牽引時であれば牽引状態フラグを1に設定し、非牽引時であれば牽引状態フラグを0に設定するための処理である。 In step S8, the engine controller 51 performs a traction state flag setting process. The traction state flag setting process is a process for setting the traction state flag to 1 when towing and setting the traction state flag to 0 when not towing.
 以下、牽引状態フラグ設定処理の複数の態様について、図14から図16を参照して説明する。牽引状態フラグ設定処理については、図14から図16に示す態様のいずれの態様を用いてもよい。図14から図16に示す処理は、本実施形態のように一定時間ごとに行ってもよいし、運転者によりイグニッションキーのON操作が行われ、イグニッションキースイッチ96のON信号を検出したときに一度だけ行うようにしても良い。 Hereinafter, a plurality of modes of the traction state flag setting process will be described with reference to FIGS. 14 to 16. For the traction state flag setting process, any of the modes shown in FIGS. 14 to 16 may be used. The processing shown in FIGS. 14 to 16 may be performed at regular intervals as in the present embodiment, or when the ignition key ON operation is detected by the driver and the ON signal of the ignition key switch 96 is detected. It may be performed only once.
 図14は、牽引状態フラグ設定処理の一態様について説明するフローチャートである。 FIG. 14 is a flowchart for explaining an aspect of the traction state flag setting process.
 ステップS31において、エンジンコントローラ51は、牽引コネクタ接続検出センサ97の検出信号を読み込む。 In step S31, the engine controller 51 reads the detection signal of the traction connector connection detection sensor 97.
 ステップS32において、エンジンコントローラ51は、牽引コネクタ接続検出センサ97の検出信号に基づいて、牽引コネクタが接続されているか否かを判定する。エンジンコントローラ51は、牽引コネクタが接続されていればステップS33の処理を行い、接続されていなければステップS34の処理を行う。 In step S32, the engine controller 51 determines whether or not the traction connector is connected based on the detection signal of the traction connector connection detection sensor 97. The engine controller 51 performs the process of step S33 if the traction connector is connected, and performs the process of step S34 if it is not connected.
 ステップS33において、エンジンコントローラ51は、牽引状態フラグを1に設定する。 In step S33, the engine controller 51 sets the traction state flag to 1.
 ステップS34において、エンジンコントローラ51は、牽引状態フラグを0に設定する。 In step S34, the engine controller 51 sets the traction state flag to 0.
 図15は、牽引状態フラグ設定処理の他の態様について説明するフローチャートである。 FIG. 15 is a flowchart illustrating another aspect of the traction state flag setting process.
 ステップS41において、エンジンコントローラ51は、牽引スイッチ98の検出信号を読み込む。 In step S41, the engine controller 51 reads the detection signal of the traction switch 98.
 ステップS42において、エンジンコントローラ51は、牽引スイッチ98がONか否かを判定する。エンジンコントローラ51は、牽引スイッチ98がON、すなわち牽引時であればステップS33の処理を行い、牽引スイッチ98がOFF、すなわち非牽引時であればステップS34の処理を行う。 In step S42, the engine controller 51 determines whether or not the traction switch 98 is ON. The engine controller 51 performs the process of step S33 when the traction switch 98 is ON, that is, when towing, and performs the process of step S34 when the traction switch 98 is OFF, that is, when not towing.
 ステップS33及びステップS34の処理は、図14の処理と同様である。 The processing in step S33 and step S34 is the same as the processing in FIG.
 図16は、牽引状態フラグ設定処理の他の態様について説明するフローチャートである。 FIG. 16 is a flowchart illustrating another aspect of the traction state flag setting process.
 ステップ51において、エンジンコントローラ51は、アクセル開度APO[%]とエンジン回転速度Ne[rpm]から所定のマップを検索することによりエンジンの駆動力推定値Teng[N]を算出する。 In step 51, the engine controller 51 calculates an engine driving force estimation value Teng [N] by searching a predetermined map from the accelerator opening APO [%] and the engine speed Ne [rpm].
 ステップ52において、エンジンコントローラ51は、自動変速機9の入力軸回転速度Nin[rpm]、自動変速機9の出力軸回転速度Nout[rpm]、自動変速機を構成する締結要素である変速制御用のクラッチやブレーキが滑っていない状態での自動変速機9のギアスピードを読み込む。 In step 52, the engine controller 51 uses the input shaft rotational speed Nin [rpm] of the automatic transmission 9, the output shaft rotational speed Nout [rpm] of the automatic transmission 9, and a shift control that is a fastening element constituting the automatic transmission. The gear speed of the automatic transmission 9 is read in a state where the clutch and brake of the vehicle are not slipping.
 ステップ53において、エンジンコントローラ51は、エンジンの駆動力推定値Teng、ギアスピード、自動変速機9の入力軸回転速度Nin、及び、自動変速機9の出力軸回転速度Noutから自動変速機9の推定駆動力Ttrns[N]を算出する。なお、推定駆動力Ttrns[N]を算出するにあたって、ギアスピードの情報は必ずしも必要ではない。 In step 53, the engine controller 51 estimates the automatic transmission 9 from the engine driving force estimation value Teng, the gear speed, the input shaft rotational speed Nin of the automatic transmission 9, and the output shaft rotational speed Nout of the automatic transmission 9. The driving force Ttrns [N] is calculated. In calculating the estimated driving force Ttrns [N], gear speed information is not always necessary.
 ステップ54において、エンジンコントローラ51は、車速VSPと路面勾配θとから実際の車両加速度α[m/s2]を算出する。例えば、車速VSP[m/s]を微分することで、平坦路走行時の車両加速度を求めることができる。 In step 54, the engine controller 51 calculates the actual vehicle acceleration α [m / s 2 ] from the vehicle speed VSP and the road surface gradient θ. For example, the vehicle acceleration during traveling on a flat road can be obtained by differentiating the vehicle speed VSP [m / s].
 ここで、車両加速度は、坂道走行時と平坦路走行時とで変化する。 Here, the vehicle acceleration changes between when traveling on a slope and when traveling on a flat road.
 例えば車両加速度は、上り坂走行時のほうが平坦路走行時より小さくなる。そこで、上り坂走行時は、路面勾配θが正の値で大きくなるほど、1.0より小さくなる正の値の路面勾配係数を求め、この路面勾配係数を平坦路走行時の車両加速度に乗算した値を上り坂走行時の車両加速度として算出する。この算出した上り坂走行時の車両加速度がここでいう実際の車両加速度αである。 For example, the vehicle acceleration is smaller when traveling uphill than when traveling on a flat road. Therefore, when traveling on an uphill road, as the road surface gradient θ increases with a positive value, a positive road surface gradient coefficient smaller than 1.0 is obtained, and this road surface gradient coefficient is multiplied by the vehicle acceleration when traveling on a flat road. The value is calculated as the vehicle acceleration when traveling uphill. The calculated vehicle acceleration during uphill traveling is the actual vehicle acceleration α here.
 一方、車両加速度は、下り坂走行時のほうが平坦路走行時より大きくなる。そこで、下り坂走行時は、路面勾配θの絶対値が大きくなるほど、1.0より大きくなる路面勾配係数を求め、この路面勾配係数を平坦路走行時の車両加速度に乗算した値を下り坂走行時の車両加速度として算出する。この算出した下り坂走行時の車両加速度がここでいう実際の車両加速度αである。 On the other hand, the vehicle acceleration is greater when traveling downhill than when traveling on a flat road. Therefore, when traveling downhill, the road surface gradient coefficient that is greater than 1.0 is obtained as the absolute value of the road surface gradient θ increases, and the value obtained by multiplying the vehicle acceleration during flat road traveling by this road surface gradient coefficient is used for downhill travel. Calculated as the vehicle acceleration at the time. The calculated vehicle acceleration during downhill traveling is the actual vehicle acceleration α referred to here.
 なお、実際の車両加速度αを求める方法はこれに限られるものでなく、例えば加速度センサにより実際の車両加速度αを検出する方法でもかまわない。 Note that the method of obtaining the actual vehicle acceleration α is not limited to this, and for example, a method of detecting the actual vehicle acceleration α using an acceleration sensor may be used.
 ステップ55において、エンジンコントローラ51は、自動変速機9の推定駆動力Ttrnsに対し、実際の車両加速度αが小さいか否かを判定する。エンジンコントローラ51は、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが小さければ、牽引時であると判定する。一方でエンジンコントローラ51は、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが大きければ、非牽引時であると判定する。 In step 55, the engine controller 51 determines whether or not the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission 9. If the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission 9, the engine controller 51 determines that the vehicle is towing. On the other hand, if the actual vehicle acceleration α is larger than the estimated driving force Ttrns of the automatic transmission 9, the engine controller 51 determines that the vehicle is not towing.
 ここで、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが小さいか否かを判定するには、具体的には次のようにすればよい。すなわち、自動変速機9の推定駆動力Ttrnsと路面勾配θとに基づいて、図17A及び図17Bを内容とするマップを検索することにより坂道走行時かつ非牽引時の基本車両加速度α0[m/s2]を推定する。 Here, in order to determine whether or not the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission 9, specifically, the following may be performed. That is, based on the estimated driving force Ttrns of the automatic transmission 9 and the road surface gradient θ, a basic vehicle acceleration α0 [m / d] when traveling on a hill and when not towing is retrieved by searching a map having the contents shown in FIGS. 17A and 17B. s 2 ] is estimated.
 図17Aは、上り坂走行時における基本車両加速度α0を算出するマップである。 FIG. 17A is a map for calculating basic vehicle acceleration α0 during uphill running.
 図17Aに示すように、上り坂走行時のときは、路面勾配θが同じ条件であれば推定駆動力Ttrnsが大きくなるほど、基本車両加速度α0は大きくなる。また、自動変速機9の推定駆動力Ttrnsが同じ条件であれば路面勾配θが大きくなるほど、基本車両加速度α0は小さくなる。 As shown in FIG. 17A, when traveling uphill, the basic vehicle acceleration α0 increases as the estimated driving force Ttrns increases if the road surface gradient θ is the same. In addition, if the estimated driving force Ttrns of the automatic transmission 9 is the same, the basic vehicle acceleration α0 decreases as the road surface gradient θ increases.
 図17Bは、下り坂走行時における基本車両加速度α0を算出するマップである。 FIG. 17B is a map for calculating the basic vehicle acceleration α0 when traveling downhill.
 図17Bに示すように、下り坂走行時のときは、路面勾配の絶対値|θ|が同じ条件であれば自動変速機9の推定駆動力Ttrnsが大きくなるほど、基本車両加速度α0は大きくなる。また、自動変速機9の推定駆動力Ttrnsが同じ条件であれば路面勾配の絶対値|θ|が大きくなるほど、基本車両加速度α0は大きくなる。 As shown in FIG. 17B, when traveling downhill, the basic vehicle acceleration α0 increases as the estimated driving force Ttrns of the automatic transmission 9 increases as long as the absolute value | θ | of the road surface gradient is the same. If the estimated driving force Ttrns of the automatic transmission 9 is the same, the basic vehicle acceleration α0 increases as the absolute value | θ | of the road surface gradient increases.
 このようにして推定した基本車両加速度α0と実際の車両加速度α[m/s2]との差を算出し、差の絶対値|α0-α|と、予め設定しておいた許容値ε[m/s2]と、を比較する。許容値εは、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが小さいか否かを判定するための値である。 The difference between the basic vehicle acceleration α0 estimated in this way and the actual vehicle acceleration α [m / s 2 ] is calculated, and the absolute value | α0−α | of the difference and the preset allowable value ε [ m / s 2 ]. The allowable value ε is a value for determining whether or not the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission 9.
 そして、差の絶対値|α0-α|が許容値ε(正の値)を超えていれば、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが小さいと判断する。差の絶対値|α0-α|が許容値ε以内に収まっていれば、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが大きいと判断する。 If the absolute value | α0−α | of the difference exceeds the allowable value ε (positive value), it is determined that the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission 9. If the absolute value of the difference | α0−α | is within the allowable value ε, it is determined that the actual vehicle acceleration α is larger than the estimated driving force Ttrns of the automatic transmission 9.
 図16に戻り、ステップ55において、エンジンコントローラ51は、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが小さければ牽引時であると判定し、ステップ33の処理を行う。一方、ステップ55で自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが大きければ非牽引時であると判定し、ステップ34の処理を行う。 16, in step 55, the engine controller 51 determines that the vehicle is towing if the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission 9, and performs the processing of step 33. On the other hand, if the actual vehicle acceleration α is larger than the estimated driving force Ttrns of the automatic transmission 9 in step 55, it is determined that the vehicle is not towing, and the process of step 34 is performed.
 ステップS33及びステップS34の処理は、図14の処理と同様である。 The processing in step S33 and step S34 is the same as the processing in FIG.
 以下、図4Bに戻り、再びエンジンコントローラ51によって実行される本実施形態によるアイドルストップ制御について説明する。 Hereinafter, returning to FIG. 4B, the idle stop control according to the present embodiment executed by the engine controller 51 will be described again.
 ステップS9において、エンジンコントローラ51は、牽引状態フラグが1に設定されているか否かを判定する。エンジンコントローラ51は、牽引状態フラグが1に設定されていればステップS10の処理を行い、0に設定されていればステップS14の処理を行う。 In step S9, the engine controller 51 determines whether or not the traction state flag is set to 1. The engine controller 51 performs the process of step S10 if the traction state flag is set to 1, and performs the process of step S14 if it is set to 0.
 ステップS10において、エンジンコントローラ51は、牽引時の許可勾配S1[%]を算出する。牽引時の許可勾配S1は、牽引時にアイドルストップを許可する路面勾配の絶対値の上限値である。本実施形態では、牽引時の許可勾配S1を予め設定した正の一定値としている。 In step S10, the engine controller 51 calculates a permission gradient S1 [%] during towing. The permission gradient S1 at the time of towing is the upper limit value of the absolute value of the road surface gradient that permits idling stop at the time of towing. In this embodiment, the permission gradient S1 at the time of towing is set to a predetermined positive constant value.
 ステップS11において、エンジンコントローラ51は、路面勾配の絶対値|θ|[%]と、牽引時の許可勾配S1と、を比較する。エンジンコントローラ51は、路面勾配の絶対値|θ|が牽引時の許可勾配S1以下であればステップS12の処理行い、路面勾配の絶対値|θ|が牽引時の許可勾配S1よりも大きければステップS13の処理を行う。 In step S11, the engine controller 51 compares the absolute value | θ | [%] of the road gradient with the allowable gradient S1 during towing. The engine controller 51 performs the process of step S12 if the absolute value | θ | of the road surface gradient is equal to or smaller than the permitted gradient S1 at the time of towing, and steps if the absolute value | θ | of the road surface gradient is larger than the permitted gradient S1 at the time of towing. The process of S13 is performed.
 ステップS12において、エンジンコントローラ51は、牽引状態での車両走行時にアイドルストップを許可するため、アイドルストップ許可フラグを1に設定する。 In step S12, the engine controller 51 sets an idle stop permission flag to 1 in order to permit idle stop when the vehicle is running in the towing state.
 ステップS13において、エンジンコントローラ51は、牽引状態での車両走行時にアイドルストップを禁止するため、アイドルストップ許可フラグを0に設定する。 In step S13, the engine controller 51 sets an idle stop permission flag to 0 in order to prohibit idle stop when the vehicle is running in the towing state.
 ステップS14において、エンジンコントローラ51は、非牽引時の許可勾配S2[%]を算出する。非牽引時の許可勾配S2は、非牽引時にアイドルストップを許可する路面勾配の絶対値の上限値である。本実施形態では、非牽引時の許可勾配S2を予め設定した正の一定値としている。 In step S14, the engine controller 51 calculates a permission gradient S2 [%] during non-traction. The permission gradient S2 when not towing is the upper limit value of the absolute value of the road surface gradient that permits idling stop when not towing. In this embodiment, the permission gradient S2 at the time of non-traction is a positive constant value set in advance.
 ここで、牽引時の許可勾配S1と、非牽引時の許可勾配S2と、の大小関係について説明すると、図5A及び図5Bに示すように、牽引時の許可勾配S1は、非牽引時の許可勾配S2よりも小さい値に設定される。これは、同じ路面勾配であれば、牽引状態での停車時のほうが非牽引状態での停車時よりもヒルホールド機能が低下するので、牽引状態での停車時にはヒルホールド機能が低下する分だけアイドルストップを許可する路面勾配の絶対値を小さくする必要があるためである。 Here, the magnitude relationship between the permitted gradient S1 during towing and the permitted gradient S2 during non-towing will be described. As shown in FIGS. 5A and 5B, the permitted gradient S1 during towing is determined to be permitted during non-traction. A value smaller than the gradient S2 is set. This is because the hill hold function is lower when the vehicle is parked in the towing state than when the vehicle is parked in the non-towed state if the road surface has the same road surface gradient. This is because it is necessary to reduce the absolute value of the road surface gradient that permits the stop.
 ステップS15において、エンジンコントローラ51は、路面勾配の絶対値|θ|[%]と、非牽引時の許可勾配S2と、を比較する。エンジンコントローラ51は、路面勾配の絶対値|θ|が非牽引時の許可勾配S2以下であればステップS16の処理行い、路面勾配の絶対値|θ|が牽引時の許可勾配S2よりも大きければステップS17の処理を行う。 In step S15, the engine controller 51 compares the absolute value | θ | [%] of the road surface gradient with the permitted gradient S2 during non-traction. The engine controller 51 performs the process of step S16 if the absolute value | θ | of the road surface gradient is equal to or smaller than the permitted gradient S2 when not towing, and if the absolute value | θ | of the road surface gradient is larger than the permitted gradient S2 when towed. The process of step S17 is performed.
 ステップS16において、エンジンコントローラ51は、非牽引状態での車両走行時にアイドルストップを許可するため、アイドルストップ許可フラグを1に設定する。 In step S16, the engine controller 51 sets an idle stop permission flag to 1 in order to permit an idle stop when the vehicle is traveling in a non-traction state.
 ステップS17において、エンジンコントローラ51は、非牽引状態での車両走行時にアイドルストップを禁止するため、アイドルストップ許可フラグを0に設定する。 In step S17, the engine controller 51 sets the idle stop permission flag to 0 in order to prohibit idle stop when the vehicle is traveling in the non-traction state.
 図5Aは、非牽引状態での坂道走行時のアイドルストップ許可領域を示した図である。図5Bは、牽引状態での坂道走行時のアイドルストップ許可領域を示した図である。 FIG. 5A is a diagram showing an idle stop permission area when running on a slope in a non-traction state. FIG. 5B is a diagram showing an idle stop permission area when traveling on a slope in the towing state.
 図5A及び図5Bに示すように、本実施形態では、横軸を路面勾配、縦軸をブレーキ液圧とする平面上に設けたアイドルストップ許可領域が、非牽引状態での坂道走行時と牽引状態での坂道走行時とで相違する。 As shown in FIG. 5A and FIG. 5B, in this embodiment, the idle stop permission region provided on the plane with the horizontal axis as the road surface gradient and the vertical axis as the brake hydraulic pressure is used when the vehicle is towing and towing in the non-traction state. It is different from when driving on a slope in the state.
 すなわち、図5Aに示すように、非牽引状態での坂道走行時のアイドルストップ許可領域は、路面勾配θが-S2≦θ≦S2(S2は非牽引時の許可勾配)の範囲、かつ、ブレーキ液圧が正の範囲に設けられている。 That is, as shown in FIG. 5A, the idling stop permission region when traveling on a slope in the non-traction state is a range in which the road surface gradient θ is −S2 ≦ θ ≦ S2 (S2 is a permission gradient when not towing), and the brake The hydraulic pressure is set in a positive range.
 一方、図5Bに示すように、牽引状態での坂道走行時のアイドルストップ許可領域は、路面勾配θが-S1≦θ≦S1(S1は牽引時の許可勾配)の範囲、かつブレーキ液圧が正の範囲に設けられている。 On the other hand, as shown in FIG. 5B, in the idling stop permission region when traveling on a slope in the towing state, the road surface gradient θ is in the range of −S1 ≦ θ ≦ S1 (S1 is the permission gradient during towing), and the brake fluid pressure is It is provided in the positive range.
 このように、牽引状態での坂道走行時のほうが、被牽引状態での坂道走行時よりもアイドルストップ許可領域が狭くなっている。 Thus, the idling stop permission region is narrower when traveling on the slope in the towing state than on traveling on the slope in the towed state.
 なお、図5において平坦路であれば、路面勾配θはゼロである。したがって、図5において、路面勾配θが正の値である範囲は上り坂であることを、路面勾配θが負の値である範囲は下り坂であることを示す。 In FIG. 5, if the road is flat, the road gradient θ is zero. Therefore, in FIG. 5, the range in which the road surface gradient θ is a positive value indicates an uphill, and the range in which the road surface gradient θ is a negative value indicates a downhill.
 以下、第1実施形態によるアイドルストップ制御の作用効果について説明する。 Hereinafter, the effect of the idle stop control according to the first embodiment will be described.
 第1実施形態では、路面勾配許可条件、すなわち「路面勾配の絶対値|θ|が所定勾配以下であること」をアイドルストップ許可条件の一つとし、路面勾配の絶対値|θ|が所定勾配(S1、S2)以下であるとき、路面勾配許可条件が成立したと判定する。つまり、路面勾配の絶対値|θ|が所定勾配以下である坂道での停車時であれば、基本的にアイドルストップを許可する。これにより、牽引状態での坂道走行時にもエンジンの燃費を向上させることができる。 In the first embodiment, the road surface gradient permission condition, that is, “the absolute value of the road surface gradient | θ | is equal to or smaller than a predetermined gradient” is one of the idle stop permission conditions, and the absolute value of the road surface gradient | θ | When (S1, S2) or less, it is determined that the road surface gradient permission condition is satisfied. In other words, idling stop is basically permitted when the vehicle is stopped on a slope where the absolute value of the road surface gradient | θ | Thereby, the fuel consumption of the engine can be improved even when traveling on a slope in the towing state.
 なお、非牽引状態での坂道走行時に停車する場合と、牽引状態での坂道走行時に停車する場合とを比較すると、牽引状態での坂道走行時に停車するほうが非牽引時より被牽引車両を含めた全体の車両重量が増加する分だけヒルホールド機能が低下する。このヒルホールド機能の低下に対処するため、ブレーキペダル57を踏み増しして車両が後方にずり下がったり前方にずり落ちたりしないようにしなければならないのでは、商品性が低下する。 In addition, comparing the case of stopping when driving on a hill in a non-traction state and the case of stopping when driving on a hill in a traction state, the vehicle that was towed when traveling on a hill in the traction state included the towed vehicle rather than the case of non-traction. The hill hold function decreases as the overall vehicle weight increases. In order to cope with the decrease in the hill hold function, if the brake pedal 57 must be stepped on so that the vehicle does not slide backward or slide forward, the merchantability is deteriorated.
 そこで第1実施形態では、路面勾配許可条件の許可閾値である所定勾配(S1、S2)の値を、牽引時と被牽引時とで変化させた。具体的には、牽引時の所定勾配S1を、被牽引時の所定勾配S2よりも小さい値とした(S1<S2)。 Therefore, in the first embodiment, the value of the predetermined gradient (S1, S2), which is the permission threshold value of the road surface gradient permission condition, is changed between towing and towing. Specifically, the predetermined gradient S1 during towing is set to a value smaller than the predetermined gradient S2 during towing (S1 <S2).
 つまり、牽引状態での坂道走行時に停車したときにアイドルストップを許可する路面勾配範囲(-S1≦θ≦S1)を、非牽引状態での坂道走行時に停車したときにアイドルストップを許可する路面勾配範囲(-S2≦θ≦S2)よりも狭くした。 That is, the road surface gradient range (−S1 ≦ θ ≦ S1) that allows idle stop when the vehicle stops when driving on a hill in a towing state, and the road surface gradient that allows idle stop when stopped on a hill in a non-traction state. It was narrower than the range (−S2 ≦ θ ≦ S2).
 このように、非牽引状態での坂道走行時は、路面勾配が相対的に急な坂道でもアイドルストップを許可するのに対し、牽引状態での坂道走行時は、路面勾配が相対的に緩やかな坂道でしかアイドルストップを許可しないようにした。 In this way, when running on a slope in a non-towing state, idle stop is permitted even on a slope with a relatively steep road slope, whereas on a slope running in a towing state, the road slope is relatively gentle. Allow idle stop only on slopes.
 これにより、牽引状態での坂道走行時にアイドルストップを行ったとき、アイドルストップ後にブレーキペダル57を踏み増しして車両が後方にずり下がったり前方にずり落ちたりしないようにする必要がなくなり、商品性を向上できる。 This eliminates the need to increase the brake pedal 57 after the idle stop so that the vehicle does not slide backward or slide forward when the vehicle is idled during towing. Can be improved.
 このように、第1実施形態によれば、牽引状態での坂道走行時であっても、エンジンの燃費を向上させつつ、坂道での停車時に十分なヒルホールド機能を保持させることができる。 Thus, according to the first embodiment, it is possible to maintain a sufficient hill hold function when stopping on a hill while improving the fuel efficiency of the engine even when traveling on a hill in a towing state.
 また、第1実施形態では、被牽引車両と接続するための牽引コネクタと、牽引コネクタ接続検出センサ97とを備え、この牽引コネクタ接続検出センサ97によって牽引コネクタが接続されたことを検出したときに、牽引時であると判定する。これにより、牽引コネクタ接続検出センサ97を有している車両であれば、牽引コネクタ接続検出センサ97を用いて牽引時であるか否かを容易に判定することができる。 In the first embodiment, a traction connector for connecting to a towed vehicle and a traction connector connection detection sensor 97 are provided. When the traction connector connection detection sensor 97 detects that the traction connector is connected, It is determined that it is during towing. Accordingly, if the vehicle has the traction connector connection detection sensor 97, it can be easily determined whether the vehicle is towing using the traction connector connection detection sensor 97.
 また、第1実施形態の他の態様によれば、変速用マップを切換えるための牽引スイッチ98を備え、牽引スイッチ98がONになったときに、牽引時であると判定する。これにより、牽引スイッチ98を有している車両であれば、牽引スイッチ98を用いて牽引時であるか否かを容易に判定することができる。 Further, according to another aspect of the first embodiment, the traction switch 98 for switching the shift map is provided, and when the traction switch 98 is turned on, it is determined that it is during traction. Accordingly, if the vehicle has the traction switch 98, it can be easily determined whether the vehicle is towing using the traction switch 98.
 また、第1実施形態の他の態様によれば、自動変速機の推定駆動力Ttrnsを算出する手段と、坂道走行時の実際の車両加速度を算出する手段とを備え、推定駆動力Ttrnsに対して実際の車両加速度αが小さいときに、牽引時であると判定する。これにより、牽引コネクタ接続検出センサ97や牽引スイッチ98がなくても、牽引時であるか否かを容易に判定することができる。 Further, according to another aspect of the first embodiment, there is provided means for calculating the estimated driving force Ttrns of the automatic transmission, and means for calculating the actual vehicle acceleration when traveling on a hill, with respect to the estimated driving force Ttrns. When the actual vehicle acceleration α is small, it is determined that the vehicle is towing. Thereby, even if there is no traction connector connection detection sensor 97 or traction switch 98, it can be easily determined whether or not it is during traction.
 自動変速機の推定駆動力Ttrnsに対して実際の車両加速度αが小さいか否かは、以下のように判定される。 Whether or not the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission is determined as follows.
 まず、自動変速機9の推定駆動力Ttrnsと路面勾配θから、所定のマップ(図18参照)を検索することにより、坂道走行時かつ非牽引時の基本車両加速度α0を推定する。次に、推定した基本車両加速度α0と実際の車両加速度αとの差を算出する。最後に、差の絶対値|α0-α|と予め定めた許容値εとを比較し、差の絶対値|α0-α|が許容値εを超えているときに、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが小さいと判定する。 First, by searching a predetermined map (see FIG. 18) from the estimated driving force Ttrns of the automatic transmission 9 and the road surface gradient θ, the basic vehicle acceleration α0 when traveling on a slope and when not towing is estimated. Next, the difference between the estimated basic vehicle acceleration α0 and the actual vehicle acceleration α is calculated. Finally, the absolute value | α0−α | of the difference is compared with a predetermined allowable value ε, and when the absolute value | α0−α | of the difference exceeds the allowable value ε, the automatic transmission 9 is estimated. It is determined that the actual vehicle acceleration α is smaller than the driving force Ttrns.
 これにより、自動変速機9の推定駆動力Ttrnsに対し実際の車両加速度αが小さいか否かを具体的に判定することができる。 Thereby, it can be specifically determined whether or not the actual vehicle acceleration α is smaller than the estimated driving force Ttrns of the automatic transmission 9.
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。本実施形態は、路面勾配許可条件に替えて、ブレーキ液圧許可条件(ヒルホールド制動力許可条件)をアイドルストップ許可条件の一つとする点で、第1実施形態と相違する。以下、その相違点を中心に説明する。なお、以下の各実施形態では上述した第1実施形態と同様の機能を果たす部分には、同一の符号を用いて重複する説明を適宜省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. This embodiment is different from the first embodiment in that the brake fluid pressure permission condition (hill hold braking force permission condition) is one of the idle stop permission conditions instead of the road surface gradient permission condition. Hereinafter, the difference will be mainly described. In the following embodiments, the same reference numerals are used for portions that perform the same functions as those in the first embodiment described above, and repeated descriptions are omitted as appropriate.
 図6A及び図6Bは、本発明の第2実施形態によるアイドルストップ許可フラグを設定するためのフローチャートである。エンジンコントローラ51は、このルーチンを一定時間ごと(例えば10msごと)に実行する。 6A and 6B are flowcharts for setting an idle stop permission flag according to the second embodiment of the present invention. The engine controller 51 executes this routine at regular time intervals (for example, every 10 ms).
 ステップS21において、エンジンコントローラ51は、ブレーキ液圧センサ93で検出されているブレーキ液圧Bを読み込む。このブレーキ液圧Bが、ヒルホールド制動力に相当する。 In step S21, the engine controller 51 reads the brake fluid pressure B detected by the brake fluid pressure sensor 93. This brake fluid pressure B corresponds to the hill hold braking force.
 ステップS22において、エンジンコントローラ51は、路面勾配θとブレーキ液圧Bとから定まる運転点が、図7Bにおいてハッチングで示したアイドルストップ許可領域に属するか否かを判定する。エンジンコントローラ51は、路面勾配θとブレーキ液圧Bとから定まる運転点がアイドルストップ許可領域に属していればステップS23の処理を行い、アイドルストップ許可領域に属していなければステップS13の処理を行う。 In step S22, the engine controller 51 determines whether or not the operating point determined from the road surface gradient θ and the brake fluid pressure B belongs to the idle stop permission region indicated by hatching in FIG. 7B. The engine controller 51 performs the process of step S23 if the operating point determined from the road surface gradient θ and the brake fluid pressure B belongs to the idle stop permission area, and performs the process of step S13 if it does not belong to the idle stop permission area. .
 図7Bは、牽引状態での坂道走行時のアイドルストップ許可領域を示す図である。 FIG. 7B is a diagram showing an idle stop permission area when traveling on a slope in the towing state.
 図7Bに示すように、牽引状態での坂道走行時のアイドルストップ許可領域は、第1実施形態(図5B)と同様に、路面勾配θが-S1≦θ≦S1(S1は牽引時の許可勾配)の路面勾配範囲に設けられている。 As shown in FIG. 7B, in the idling stop permission region when traveling on the slope in the towing state, the road surface gradient θ is −S1 ≦ θ ≦ S1 (S1 is the permission at the time of towing) as in the first embodiment (FIG. 5B). (Gradient) is provided in the road surface gradient range.
 ただし、ブレーキ液圧Bの下限側境界については、第1実施形態と相違している。すなわち、路面勾配θがゼロのときのブレーキ液圧Bを正の所定値P1として、路面勾配の絶対値|θ|が大きくなるほどブレーキ液圧Bの下限側境界が所定値P1より大きくなり、路面勾配の絶対値|θ|がS1のとき所定値P2となるようにしている。 However, the lower limit side boundary of the brake fluid pressure B is different from the first embodiment. That is, the brake fluid pressure B when the road surface gradient θ is zero is set to a positive predetermined value P1, and the lower limit boundary of the brake fluid pressure B becomes larger than the predetermined value P1 as the absolute value | θ | When the absolute value | θ | of the gradient is S1, the predetermined value P2 is set.
 ステップS23において、エンジンコントローラ51は、牽引時の許可ブレーキ液圧B1[kPa]を算出する。牽引時の許可ブレーキ液圧B1は、牽引時にアイドルストップを許可するヒルホールド制動力の下限値である。 In step S23, the engine controller 51 calculates a permitted brake hydraulic pressure B1 [kPa] during towing. The permitted brake hydraulic pressure B1 during towing is a lower limit value of the hill hold braking force that permits idling stop during towing.
 本実施形態では、牽引時の許可ブレーキ液圧B1は、ブレーキ液圧Bと路面勾配θとをパラメータとする可変値としている。すなわち、図7Bに示したアイドルストップ許可領域内に、ブレーキ液圧Bと路面勾配θとをパラメータとした牽引時の許可ブレーキ液圧B1を格納したテーブルを作成しておき、このテーブルを検索することで牽引時の許可ブレーキ液圧B1を算出している。 In the present embodiment, the permitted brake hydraulic pressure B1 during towing is a variable value using the brake hydraulic pressure B and the road surface gradient θ as parameters. That is, a table storing the permitted brake hydraulic pressure B1 at the time of traction using the brake hydraulic pressure B and the road surface gradient θ as parameters is created in the idle stop permission area shown in FIG. 7B, and this table is searched. Thus, the permitted brake hydraulic pressure B1 during towing is calculated.
 ステップS24において、エンジンコントローラ51は、ブレーキ液圧許可条件が成立しているか否かを判定する。具体的には、エンジンコントローラ51は、ブレーキ液圧Bと、牽引時の許可ブレーキ液圧B1と、を比較し、ブレーキ液圧Bが牽引時の許可ブレーキ液圧B1以上であれば、ブレーキ液圧許可条件が成立していると判定する。エンジンコントローラ51は、ブレーキ液圧Bが牽引時の許可ブレーキ液圧B1以上であれば、ステップS12の処理を行い、そうでなければステップS13の処理を行う。 In step S24, the engine controller 51 determines whether or not a brake fluid pressure permission condition is satisfied. Specifically, the engine controller 51 compares the brake fluid pressure B with the permitted brake fluid pressure B1 during traction, and if the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B1 during traction, the brake fluid It is determined that the pressure permission condition is satisfied. If the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B1 during traction, the engine controller 51 performs the process of step S12, and otherwise performs the process of step S13.
 ステップS25において、エンジンコントローラ51は、路面勾配θとブレーキ液圧Bとから定まる運転点が、図7Aにおいてハッチングで示したアイドルストップ許可領域に属するか否かを判定する。エンジンコントローラ51は、路面勾配θとブレーキ液圧Bとから定まる運転点がアイドルストップ許可領域に属していればステップS26の処理を行い、アイドルストップ許可領域に属していなければステップS17の処理を行う。 In step S25, the engine controller 51 determines whether or not the operating point determined from the road surface gradient θ and the brake fluid pressure B belongs to the idle stop permission region indicated by hatching in FIG. 7A. The engine controller 51 performs the process of step S26 if the operating point determined from the road surface gradient θ and the brake fluid pressure B belongs to the idle stop permission area, and performs the process of step S17 if it does not belong to the idle stop permission area. .
 図7Aは、非牽引状態での坂道走行時のアイドルストップ許可領域を示す図である。 FIG. 7A is a diagram showing an idle stop permission area when running on a slope in a non-traction state.
 図7Aに示すように、非牽引状態での坂道走行時のアイドルストップ許可領域は、第1実施形態(図5A)と同様に、路面勾配θが-S2≦θ≦S2(S2は非牽引時の許可勾配)の路面勾配範囲に設けられている。 As shown in FIG. 7A, in the idling stop permission region when traveling on a slope in the non-traction state, the road surface gradient θ is −S2 ≦ θ ≦ S2 (S2 is in the non-traction state) as in the first embodiment (FIG. 5A). (Permissible gradient) of the road surface gradient.
 ただし、ブレーキ液圧Bの下限側境界については、第1実施形態と相違している。すなわち、路面勾配θがゼロのときのブレーキ液圧Bを正の所定値P1として、路面勾配の絶対値|θ|が大きくなるほどブレーキ液圧Bの下限側境界が所定値P1より大きくなり、路面勾配の絶対値|θ|がS2のとき所定値P2となるようにしている。 However, the lower limit side boundary of the brake fluid pressure B is different from the first embodiment. That is, the brake fluid pressure B when the road surface gradient θ is zero is set to a positive predetermined value P1, and the lower limit boundary of the brake fluid pressure B becomes larger than the predetermined value P1 as the absolute value | θ | When the absolute value | θ | of the gradient is S2, the predetermined value P2 is set.
 ステップS26において、エンジンコントローラ51は、非牽引時の許可ブレーキ液圧B2[kPa]を算出する。非牽引時の許可ブレーキ液圧B2は、非牽引時にアイドルストップを許可するブレーキ液圧Bの下限値である。 In step S26, the engine controller 51 calculates a permitted brake hydraulic pressure B2 [kPa] when not towing. The permitted brake hydraulic pressure B2 at the time of non-traction is a lower limit value of the brake hydraulic pressure B at which idle stop is permitted at the time of non-traction.
 本実施形態では、非牽引時の許可ブレーキ液圧B2は、牽引時の許可ブレーキ液圧B1のときと同様に、ブレーキ液圧Bと路面勾配θとをパラメータとする可変値としている。 In the present embodiment, the permitted brake fluid pressure B2 at the time of non-traction is a variable value using the brake fluid pressure B and the road surface gradient θ as parameters, as in the case of the permitted brake fluid pressure B1 at the time of traction.
 ここで、牽引時の許可ブレーキ液圧B1と、非牽引時の許可ブレーキ液圧B2と、の大小関係について説明すると、牽引時の許可ブレーキ液圧B1は非牽引時の許可ブレーキ液圧B2よりも小さい値に設定される。これは、同じブレーキ液圧であれば、牽引状態での坂道停車時のほうが、非牽引状態での坂道停車時よりヒルホールド機能が低下する。このため、牽引状態での坂道停車時にはヒルホールド機能が低下する分だけアイドルストップを許可するブレーキ液圧を大きくする必要があるためである。 Here, the magnitude relationship between the permitted brake hydraulic pressure B1 during traction and the permitted brake hydraulic pressure B2 during non-traction will be described. The permitted brake hydraulic pressure B1 during traction is greater than the permitted brake hydraulic pressure B2 during non-traction. Is also set to a small value. If this is the same brake fluid pressure, the hill hold function is lower when the hill is stopped in the traction state than when the hill is stopped in the non-traction state. For this reason, it is necessary to increase the brake hydraulic pressure that permits idling stop when the hill hold function is lowered when the vehicle stops on a slope in the towing state.
 ステップ27において、エンジンコントローラ51は、ブレーキ液圧許可条件が成立しているか否かを判定する。具体的には、エンジンコントローラ51は、ブレーキ液圧Bと、非牽引時の許可ブレーキ液圧B2と、を比較し、ブレーキ液圧Bが非牽引時の許可ブレーキ液圧B2以上であれば、ブレーキ液圧許可条件が成立していると判定する。エンジンコントローラ51は、ブレーキ液圧Bが非牽引時の許可ブレーキ液圧B2以上であれば、ステップS16の処理を行い、そうでなければステップS17の処理を行う。 In step 27, the engine controller 51 determines whether or not a brake fluid pressure permission condition is satisfied. Specifically, the engine controller 51 compares the brake fluid pressure B with the permitted brake fluid pressure B2 during non-traction, and if the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B2 during non-traction, It is determined that the brake fluid pressure permission condition is satisfied. If the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B2 at the time of non-traction, the engine controller 51 performs the process of step S16, and otherwise performs the process of step S17.
 なお、非牽引状態及び牽引状態での坂道走行時のアイドルストップ許可領域は、図7A及び図7Bに示した領域に限られるものではなく、例えば図8A及び図8Bや図9A及び図9Bに示した領域をアイドルストップ許可領域としても良い。 It should be noted that the idle stop permission area when running on a slope in the non-traction state and the traction state is not limited to the area illustrated in FIGS. 7A and 7B, for example, as illustrated in FIGS. 8A and 8B and FIGS. 9A and 9B. This area may be the idle stop permission area.
 図8A及び図8Bは、非牽引状態での坂道走行時は、ブレーキ液圧Bの下限側境界を所定値P1とし、牽引状態での坂道走行時は、ブレーキ液圧Bの下限側境界を所定値P1よりも大きな所定値P2とするものである。 8A and 8B, the lower limit side boundary of the brake hydraulic pressure B is set to a predetermined value P1 when traveling on the slope in the non-traction state, and the lower limit side boundary of the brake hydraulic pressure B is set to the predetermined value when traveling on the slope in the traction state. The predetermined value P2 is larger than the value P1.
 図9A及び図9Bは、路面勾配θについては制限を設けず、ブレーキ液圧Bの下限側境界についてのみ制限を設けるものである。すなわち、非牽引状態での坂道走行時は、ブレーキ液圧Bの下限側境界を所定値P1とし、牽引状態での坂道走行時は、ブレーキ液圧Bの下限側境界を所定値P1よりも大きな所定値P2とする。 9A and 9B do not limit the road gradient θ, but limit only the lower limit side boundary of the brake fluid pressure B. That is, the lower limit side boundary of the brake hydraulic pressure B is set to the predetermined value P1 when traveling on the hill in the non-traction state, and the lower limit side boundary of the brake hydraulic pressure B is larger than the predetermined value P1 when traveling on the hill in the traction state. The predetermined value P2.
 図10から図13は、坂道走行時に、車速VSP、エンジン回転速度Ne、ブレーキ液圧B、牽引状態フラグ、アイドルストップ許可フラグ、アイドルストップ状態フラグ、スタータ制御フラグ等がどのように変化するのかを示したタイムチャートである。なお、非牽引状態、牽引状態に関係なく坂道走行時にアイドルストップを許可する例を比較例とする。 FIGS. 10 to 13 show how the vehicle speed VSP, the engine speed Ne, the brake fluid pressure B, the traction state flag, the idle stop permission flag, the idle stop state flag, the starter control flag, and the like change when traveling on a slope. It is the time chart shown. An example in which idling stop is permitted when traveling on a slope regardless of the non-traction state or the traction state is a comparative example.
 図10は、比較例における非牽引状態での坂道走行時の様子を示すタイムチャートである。 FIG. 10 is a time chart showing a state of traveling on a hill in a non-traction state in the comparative example.
 図10では、非牽引状態での坂道走行時に、時刻t1で停車され、ブレーキ液圧Bが非牽引時の許可ブレーキ液圧B2以上であるので、時刻t2でアイドルストップ許可条件が成立し、アイドルストップが行われている(アイドルストップ状態フラグ=1)。 In FIG. 10, when traveling on a slope in the non-traction state, the vehicle is stopped at time t1, and the brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B2 during non-traction, so that the idle stop permission condition is satisfied at time t2. Stop is being performed (idle stop state flag = 1).
 時刻t3でブレーキ液圧Bが所定値未満となり、アイドルストップ解除条件が成立すると(アイドルストップ許可フラグ=0)、スタータ制御フラグが1となる。スタータ制御フラグが1になると、スタータ6によってエンジン2のクランキングが行われると共に、燃料供給と火花点火が実行される。これにより、時刻t4でエンジン回転速度が完爆判定回転速度以上となり(エンジン完爆判定)、エンジンが再始動される。 When the brake fluid pressure B becomes less than the predetermined value at time t3 and the idle stop release condition is satisfied (idle stop permission flag = 0), the starter control flag becomes 1. When the starter control flag becomes 1, cranking of the engine 2 is performed by the starter 6, and fuel supply and spark ignition are executed. Thereby, at time t4, the engine speed becomes equal to or higher than the complete explosion determination rotational speed (engine complete explosion determination), and the engine is restarted.
 図11は、比較例における牽引状態での坂道走行時の様子を示すタイムチャートである。 FIG. 11 is a time chart showing a state of traveling on a hill in a towing state in a comparative example.
 図11では、路面勾配は図10と同じであるが牽引状態であるため、時刻t11でクリープ力がなくなると、車両1の後方へのずり下がり、又は、前方へのずり落ちが発生する。これに運転者が気づき、時刻t12でブレーキペダル57が踏み増されている(図11の最下段のハッチング部参照)。 In FIG. 11, the road surface gradient is the same as in FIG. 10, but the vehicle is in a towed state. Therefore, when the creep force disappears at time t <b> 11, the vehicle 1 slides backward or forwards. The driver notices this, and the brake pedal 57 is depressed at time t12 (see the hatched portion at the bottom of FIG. 11).
 運転者がブレーキペダル57を踏み増ししたため、時刻t12でブレーキ液圧Bが図10の場合より上昇し(図11の第3段目のハッチング部参照)、これによって坂道での停車状態を維持させている。 Since the driver depresses the brake pedal 57, the brake fluid pressure B increases at time t12 from the case of FIG. 10 (see the third hatched portion in FIG. 11), thereby maintaining the stop state on the slope. ing.
 時刻t13で運転者がブレーキペダル57を緩めると、時刻t3のタイミングでブレーキ液圧Bが所定値未満となってアイドルストップ解除条件が成立する。この後の動きは図10と同じである。 When the driver loosens the brake pedal 57 at time t13, the brake hydraulic pressure B becomes less than a predetermined value at the timing of time t3, and the idle stop cancellation condition is satisfied. The subsequent movement is the same as in FIG.
 このように、比較例では、牽引状態、非牽引状態に関係なく坂道走行時にアイドルストップを許可するので、牽引状態での坂道走行時にもエンジン2の燃費を向上させることができる。しかしながら、牽引状態での坂道走行時には非牽引状態での坂道走行時よりも被牽引車両を含めた車両全体の重量が増加する分だけヒルホールド機能が低下する。このヒルホールド機能の低下を補うため、比較例では図11に示したように運転者がブレーキペダル57を踏み増しして車両が後方にずり下がったり前方にずり落ちたりしないようにしなければならず、商品性が低下してしまう。 Thus, in the comparative example, the idling stop is permitted when traveling on the slope regardless of the traction state or the non-traction state, so that the fuel efficiency of the engine 2 can be improved even when traveling on the slope in the traction state. However, when traveling on a slope in the towing state, the hill hold function is lowered by an amount corresponding to an increase in the weight of the entire vehicle including the towed vehicle, compared to when traveling on a slope in the non-towing state. In order to compensate for the decrease in the hill hold function, in the comparative example, as shown in FIG. 11, the driver has to step on the brake pedal 57 so that the vehicle does not slide backward or slide forward. The merchantability will be reduced.
 一方、図12は、第2実施形態における牽引状態での坂道走行時の様子を示すタイムチャートである。 On the other hand, FIG. 12 is a time chart showing a state during traveling on a slope in the towing state in the second embodiment.
 ここで、牽引時の許可ブレーキ液圧B1及び非牽引時の許可ブレーキ液圧B2を図11の第3段目に記載したとき、実際のブレーキ液圧BはB1とB2との間にある。そして、実線で示した実際のブレーキ液圧B(実際の制動力に相当する)は、B1よりも小さい。 Here, when the permitted brake fluid pressure B1 during traction and the permitted brake fluid pressure B2 during non-traction are described in the third row in FIG. 11, the actual brake fluid pressure B is between B1 and B2. The actual brake fluid pressure B (corresponding to the actual braking force) indicated by the solid line is smaller than B1.
 そのため、前述した〈1〉~〈6〉の許可条件が全て成立していても、ブレーキ液圧BがB1未満となっているので、ブレーキ液圧許可条件が成立しない。したがって、アイドルストップ許可条件が成立せず、アイドルストップは行われない。 Therefore, even if all of the above-described permission conditions <1> to <6> are satisfied, the brake fluid pressure permission condition is not satisfied because the brake fluid pressure B is less than B1. Therefore, the idle stop permission condition is not satisfied, and the idle stop is not performed.
 このように、第2実施形態では、牽引状態での坂道走行時にアイドルストップを行ったのではアイドルストップ後にクリープトルクが喪失して車両1のずり下がりやずり落ちが生じ、ブレーキペダル57の踏み増しを行うことが必要となる場合にアイドルストップが禁止される。これにより、比較例のようにアイドルストップ後にブレーキペダル57の踏み増しを行わなければならなくなる事態を回避することができる。 As described above, in the second embodiment, if the idling stop is performed during the hill running in the towing state, the creep torque is lost after the idling stop, and the vehicle 1 slips or falls, and the brake pedal 57 is further depressed. Idle stop is prohibited when it is necessary to perform. As a result, it is possible to avoid a situation where the brake pedal 57 must be increased after the idle stop as in the comparative example.
 図13は、第2実施形態における牽引状態での坂道走行時の様子を示すタイムチャートであり、図12よりも実際のブレーキ液圧Bが大きい場合の様子を示すタイムチャートである。 FIG. 13 is a time chart showing a state when traveling on a hill in the towing state in the second embodiment, and is a time chart showing a state when the actual brake fluid pressure B is larger than that in FIG.
 図13の第3段目に、B1とB2とを記載すると、図12の場合と異なり、実際のブレーキ液圧BはB1よりも大きい。 If B1 and B2 are described in the third row of FIG. 13, unlike the case of FIG. 12, the actual brake fluid pressure B is larger than B1.
 この状態では、図12の場合と異なり、坂道走行時にアイドルストップを行って、アイドルストップ後にクリープトルクが喪失したとしても、ブレーキペダル57の踏み増しを行う事態は生じない。 In this state, unlike the case of FIG. 12, even if the idling stop is performed when traveling on a slope and the creep torque is lost after the idling stop, the brake pedal 57 does not increase.
 このため、第2実施形態では、牽引状態での坂道走行時にアイドルストップを行ったとしても、アイドルストップ後にブレーキペダル57の踏み増しを行う事態は生じないと判断する。つまり、実際のブレーキ液圧Bが、牽引時の許可ブレーキ液圧B1以上となっているので、ブレーキ液圧許可条件が成立していると判定する。 For this reason, in the second embodiment, it is determined that there is no situation where the brake pedal 57 is stepped up after the idling stop even if the idling stop is performed when traveling on the slope in the towing state. That is, since the actual brake fluid pressure B is equal to or higher than the permitted brake fluid pressure B1 during traction, it is determined that the brake fluid pressure permission condition is satisfied.
 このため、時刻t2でアイドルストップ許可条件が成立し、アイドルストップが行われる。これにより、燃費が向上する。 Therefore, the idle stop permission condition is satisfied at time t2, and the idle stop is performed. Thereby, fuel consumption improves.
 以下、第2実施形態によるアイドルストップ制御の作用効果について説明する。 Hereinafter, the effect of the idle stop control according to the second embodiment will be described.
 第2実施形態では、ブレーキ液圧許可条件(ヒルホールド制動力許可条件)、すなわち「ブレーキ液圧Bが所定値以上であること」をアイドルストップ許可条件の一つとし、ブレーキ液圧Bが所定値(B1、B2)以上であるとき、ブレーキ液圧許可条件が成立したと判定し、アイドルストップを許可する。 In the second embodiment, the brake fluid pressure permission condition (hill hold braking force permission condition), that is, “the brake fluid pressure B is greater than or equal to a predetermined value” is one of the idle stop permission conditions, and the brake fluid pressure B is predetermined. When the value is equal to or greater than the values (B1, B2), it is determined that the brake fluid pressure permission condition is satisfied, and the idle stop is permitted.
 これにより、牽引状態での坂道走行時にもアイドルストップの実施を可能にしたので、牽引状態での坂道走行時であってもエンジン2の燃費を向上させることができる。 This makes it possible to perform idle stop even when traveling on a slope in the towing state, so that the fuel efficiency of the engine 2 can be improved even when traveling on a slope in the towing state.
 なお、非牽引状態での坂道走行時に停車する場合と、牽引状態での坂道走行時に停車する場合とを比較すると、牽引状態での坂道走行時に停車するほうが非牽引時より被牽引車両を含めた全体の車両重量が増加する分だけヒルホールド機能が低下する。このような状態でアイドルストップを行ったのでは、アイドルストップ後にブレーキペダル57を踏み増しして車両が後方にずり下がったり前方にずり落ちたりしないようにしなければならず、商品性が低下する。 In addition, comparing the case of stopping when driving on a hill in a non-traction state and the case of stopping when driving on a hill in a traction state, the vehicle that was towed when traveling on a hill in the traction state included the towed vehicle rather than the case of non-traction. The hill hold function decreases as the overall vehicle weight increases. If the idle stop is performed in such a state, it is necessary to increase the brake pedal 57 after the idle stop so that the vehicle does not slide backward or slide forward, and the merchantability is reduced.
 そこで第2実施形態では、ブレーキ液圧許可条件の許可閾値である所定値(B1、B2)を牽引時と被牽引時とで変化させた。具体的には、同一勾配のときは、牽引時の所定値B1を、被牽引時の所定値B2よりも大きい値とした(B1>B2)。 Therefore, in the second embodiment, the predetermined values (B1, B2), which are permission threshold values of the brake fluid pressure permission condition, are changed between towing and towing. Specifically, when the gradient is the same, the predetermined value B1 at the time of towing is set to a value larger than the predetermined value B2 at the time of towing (B1> B2).
 つまり、牽引状態での坂道走行時に停車したときにアイドルストップを許可する制動力範囲(B≧B1)を、非牽引状態での坂道走行時に停車したときにアイドルストップを許可する制動力範囲(B≧B2)よりも狭くした。 In other words, the braking force range (B ≧ B1) that permits idling stop when the vehicle stops during hill driving in the towing state, and the braking force range (B ≧ B1) that permits idling stop when the vehicle stops during hill driving in the non-traction state. Narrower than B2).
 このように、非牽引状態での坂道走行時は、必要な制動力が相対的に大きい急な坂道でもアイドルストップを許可するのに対し、牽引状態での坂道走行時は、必要な制動力が相対的に小さい緩やかな坂道でしかアイドルストップを許可しない。 As described above, when running on a slope in a non-traction state, idle stop is permitted even on a steep slope where the required braking force is relatively large. Allow idle stop only on relatively small and gentle slopes.
 これにより、牽引状態での坂道停車時にアイドルストップを行ったとき、アイドルストップ後にブレーキペダル57を踏み増しして車両が後方にずり下がったり前方にずり落ちたりしないようにする必要がなくなり、商品性を向上させることができる。また、第2実施形態によっても、第1実施形態と同様に、牽引状態での坂道走行時であっても、エンジン2の燃費を向上させつつ、坂道での停車時に十分なヒルホールド機能を発生させることができる。 This eliminates the need to increase the brake pedal 57 after the idle stop so that the vehicle does not slide backward or slide forward when the vehicle stops idling when the vehicle is towed. Can be improved. Also, according to the second embodiment, as in the first embodiment, a sufficient hill hold function is generated when the vehicle stops on the slope while improving the fuel efficiency of the engine 2 even when traveling on the slope in the towing state. Can be made.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 第2実施形態では、ブレーキ液圧Bを保持することによって、牽引状態での坂道走行時に停車するときにヒルホールド制動力を発生させていた。 In the second embodiment, by holding the brake fluid pressure B, the hill hold braking force is generated when the vehicle stops when traveling on a hill in the towing state.
 しかしながら、牽引状態での坂道走行時に停車するときにヒルホールド制動力を発生させる方法はこれに限られるものでない。例えば、自動変速機9をインターロックするインターロック機能を設けてもよい。このインターロック機能を作動させることにより、自動変速機の出力軸の回転を強制的に阻止することができる。 However, the method of generating the hill hold braking force when the vehicle is stopped when traveling on a slope in the towing state is not limited to this. For example, an interlock function for interlocking the automatic transmission 9 may be provided. By operating this interlock function, the rotation of the output shaft of the automatic transmission can be forcibly blocked.
 坂道走行時に自動変速機9の出力軸の回転を強制的に阻止すれば、ブレーキペダル57を踏み込まなくても、坂道での停車状態を維持できるのである。従って、インターロック機能を設けているものでは、インターロック機能を作動させて自動変速機9の出力軸の回転を強制的に阻止することによって、牽引状態での坂道停車時にヒルホールド制動力を発生させ得る。 If the rotation of the output shaft of the automatic transmission 9 is forcibly blocked when traveling on a hill, the stop state on the hill can be maintained without the brake pedal 57 being depressed. Therefore, if an interlock function is provided, the interlock function is activated to forcibly prevent the output shaft of the automatic transmission 9 from rotating, thereby generating a hill hold braking force when the hill is stopped in a traction state. Can be.
 なお、具体的なインターロック機能は、特開平7-108853号公報に開示されている。例えば、自動変速機9内にギア比の異なる2以上の回転駆動力伝達経路を強制的に形成してやれば自動変速機9の出力軸が回転できない状態となり、ヒルホールド制動力を発生させることができる。また、自動変速機9をパーキング状態にして自動変速機9の出力軸回りの回転系をロックしてやれば、自動変速機9の出力軸が回転できない状態となり、ヒルホールド制動力を発生させることができる。 A specific interlock function is disclosed in JP-A-7-108853. For example, if two or more rotational driving force transmission paths having different gear ratios are forcibly formed in the automatic transmission 9, the output shaft of the automatic transmission 9 cannot be rotated, and a hill hold braking force can be generated. . Further, if the automatic transmission 9 is parked and the rotation system around the output shaft of the automatic transmission 9 is locked, the output shaft of the automatic transmission 9 cannot be rotated and a hill hold braking force can be generated. .
 また、第2実施形態において、B1及びB2を算出するときに使用するブレーキ液圧Bを、ヒルホールド制御によって発生させられる所定のブレーキ液圧に固定しても良い。 In the second embodiment, the brake fluid pressure B used when calculating B1 and B2 may be fixed to a predetermined brake fluid pressure generated by hill hold control.
 本願は、2013年4月11日に日本国特許庁に出願された特願2013-83199号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-83199 filed with the Japan Patent Office on April 11, 2013, the entire contents of which are incorporated herein by reference.

Claims (6)

  1.  坂道での停車時にヒルホールド制動力を発生させるヒルホールド制動力発生手段と、
     エンジンの自動停止を許可するための複数の許可条件が成立したか否かを判定する自動停止許可判定手段と、
     前記自動停止許可条件が成立したときに、エンジンの自動停止を実行する自動停止実行手段と、
    を備えた車両の制御装置において、
     前記自動停止許可判定手段は、
      前記複数の許可条件の一つに路面勾配許可条件を含み、路面勾配の絶対値が所定勾配以下のときに、前記勾配許可条件が成立したと判定するとともに、牽引時には非牽引時より前記所定勾配を小さくするか、
     又は、
      前記複数の許可条件の一つにヒルホールド制動力許可条件を含み、前記ヒルホールド制動力が所定制動力以上のときに、前記ヒルホールド制動力許可条件が成立したと判定するとともに、牽引時には非牽引時より前記所定制動力を大きくする、
    車両の制御装置。
    Hill hold braking force generating means for generating hill hold braking force when stopping on a slope,
    Automatic stop permission determining means for determining whether or not a plurality of permission conditions for permitting automatic engine stop are satisfied;
    Automatic stop execution means for executing an automatic stop of the engine when the automatic stop permission condition is satisfied;
    In a vehicle control device comprising:
    The automatic stop permission determining means includes
    One of the plurality of permission conditions includes a road surface gradient permission condition, and when the absolute value of the road surface gradient is equal to or less than a predetermined gradient, it is determined that the gradient permission condition is satisfied, and the predetermined gradient is greater than during non-traction when towing. Or make it smaller
    Or
    One of the plurality of permission conditions includes a hill hold braking force permission condition, and when the hill hold braking force is equal to or greater than a predetermined braking force, it is determined that the hill hold braking force permission condition is satisfied, and when traction is not performed Increase the predetermined braking force than when towing,
    Vehicle control device.
  2.  前記牽引時又は前記非牽引時のいずれにあるかを判定する牽引状態判定手段を備え、
     前記牽引状態判定手段は、
      自動変速機の推定駆動力を算出する推定駆動力算出手段と、坂道走行時の実際の車両加速度を検出するかまたは算出する車両加速度検出・算出手段とを備える場合において前記推定駆動力に対して実際の車両加速度が小さいときに牽引時であると判定する、
    請求項1に記載の車両の制御装置。
    A traction state determining means for determining whether the traction is in the towing or non-towing state,
    The traction state determination means includes
    In the case of including estimated driving force calculation means for calculating the estimated driving force of the automatic transmission and vehicle acceleration detection / calculation means for detecting or calculating actual vehicle acceleration when traveling on a slope, It is determined that the vehicle is towing when the actual vehicle acceleration is small.
    The vehicle control device according to claim 1.
  3.  前記牽引時又は前記非牽引時のいずれにあるかを判定する牽引状態判定手段を備え、
     前記牽引状態判定手段は、
      被牽引車両と接続するための牽引コネクタと、牽引コネクタが接続されたか否かを検出する牽引コネクタ接続検出センサとを備える場合において、前記牽引コネクタ接続検出センサより牽引コネクタが接続されたことを検出したときに牽引時であると判定する、
    請求項1に記載の車両の制御装置。
    A traction state determining means for determining whether the traction is in the towing or non-towing state,
    The traction state determination means includes
    When a traction connector for connecting to a towed vehicle and a traction connector connection detection sensor for detecting whether or not the traction connector is connected, the traction connector connection detection sensor detects that the traction connector is connected. To determine that it is during towing,
    The vehicle control device according to claim 1.
  4.  前記牽引時又は前記非牽引時のいずれにあるかを判定する牽引状態判定手段を備え、
     前記牽引状態判定手段は、
      変速用マップを切換えるための牽引スイッチを備える場合において、前記牽引スイッチがONになったときに牽引時であると判定する、
    請求項1に記載の車両の制御装置。
    A traction state determining means for determining whether the traction is in the towing or non-towing state,
    The traction state determination means includes
    In the case where a traction switch for switching the shift map is provided, it is determined that the traction is being performed when the traction switch is turned ON.
    The vehicle control device according to claim 1.
  5.  前記推定駆動力に対して実際の車両加速度が小さいか否かを判定する手段は、
      前記推定駆動力と路面勾配から、所定のテーブルを検索することにより坂道走行時かつ非牽引時の基本車両加速度を推定する基本車両加速度推定手段と、
      前記推定した基本車両加速度と前記実際の車両加速度の差を算出する差算出手段と、
      前記差の絶対値と予め定めた許容値を比較し、差の絶対値が許容値を超えているときに、自動変速機の推定駆動力に対し実際の車両加速度が小さいと判定する判定手段と、
    を備える請求項2に記載の車両の制御装置。
    Means for determining whether the actual vehicle acceleration is small with respect to the estimated driving force,
    Basic vehicle acceleration estimation means for estimating a basic vehicle acceleration when traveling on a slope and not towed by searching a predetermined table from the estimated driving force and the road surface gradient;
    A difference calculating means for calculating a difference between the estimated basic vehicle acceleration and the actual vehicle acceleration;
    A determination means for comparing the absolute value of the difference with a predetermined allowable value and determining that the actual vehicle acceleration is small with respect to the estimated driving force of the automatic transmission when the absolute value of the difference exceeds the allowable value; ,
    The vehicle control device according to claim 2.
  6.  坂道での停車時にヒルホールド制動力を発生させるヒルホールド制動力発生工程と、
     エンジンの自動停止を許可するための複数の許可条件が成立したか否かを判定する自動停止許可判定工程と、
     前記自動停止許可条件が成立したときに、エンジンの自動停止を実行する自動停止実行工程と、
    を備えた車両の制御方法において、
     前記自動停止許可判定工程は、
      前記複数の許可条件の一つに路面勾配許可条件を含み、路面勾配の絶対値が所定勾配以下のときに、前記勾配許可条件が成立したと判定するとともに、牽引時には非牽引時より前記所定勾配を小さくするか、
     又は、
      前記複数の許可条件の一つにヒルホールド制動力を含み、前記ヒルホールド制動力が所定制動力以上のときに、前記ヒルホールド制動力が成立したと判定するとともに、牽引時には非牽引時より前記所定制動力を大きくする、
    車両の制御方法。
    Hill hold braking force generation process for generating hill hold braking force when stopping on a slope,
    An automatic stop permission determination step for determining whether or not a plurality of permission conditions for permitting automatic engine stop are satisfied;
    An automatic stop execution step of executing an automatic stop of the engine when the automatic stop permission condition is satisfied;
    In a vehicle control method comprising:
    The automatic stop permission determination step includes
    One of the plurality of permission conditions includes a road surface gradient permission condition, and when the absolute value of the road surface gradient is equal to or less than a predetermined gradient, it is determined that the gradient permission condition is satisfied, and the predetermined gradient is greater than during non-traction when towing. Or make it smaller
    Or
    The hill hold braking force is included in one of the plurality of permission conditions, and when the hill hold braking force is equal to or greater than a predetermined braking force, it is determined that the hill hold braking force is established, and at the time of towing the non-towing at the time of the above Increase the predetermined braking force,
    Vehicle control method.
PCT/JP2014/058900 2013-04-11 2014-03-27 Vehicle control device and control method WO2014168016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013083199 2013-04-11
JP2013-083199 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014168016A1 true WO2014168016A1 (en) 2014-10-16

Family

ID=51689428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058900 WO2014168016A1 (en) 2013-04-11 2014-03-27 Vehicle control device and control method

Country Status (1)

Country Link
WO (1) WO2014168016A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045787A (en) * 2018-09-18 2020-03-26 株式会社Subaru Vehicle control device
US11338732B1 (en) 2021-04-30 2022-05-24 Toyota Motor Engineering & Manufacturing North America, Inc. Hitch cross path alert systems
US11414078B2 (en) * 2019-08-06 2022-08-16 Subaru Corporation Vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266074A (en) * 1988-04-18 1989-10-24 Fuji Heavy Ind Ltd Method for controlling rear wheel of four-wheel steering vehicle
JP2001041070A (en) * 1999-07-29 2001-02-13 Toyota Motor Corp Drive source control device and vehicle control device
JP2009041599A (en) * 2007-08-06 2009-02-26 Toyota Motor Corp Control device for vehicular power transmission device
JP2010236634A (en) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd Control device of automatic transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266074A (en) * 1988-04-18 1989-10-24 Fuji Heavy Ind Ltd Method for controlling rear wheel of four-wheel steering vehicle
JP2001041070A (en) * 1999-07-29 2001-02-13 Toyota Motor Corp Drive source control device and vehicle control device
JP2009041599A (en) * 2007-08-06 2009-02-26 Toyota Motor Corp Control device for vehicular power transmission device
JP2010236634A (en) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd Control device of automatic transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045787A (en) * 2018-09-18 2020-03-26 株式会社Subaru Vehicle control device
US11485345B2 (en) 2018-09-18 2022-11-01 Subaru Corporation Vehicle control apparatus
US11414078B2 (en) * 2019-08-06 2022-08-16 Subaru Corporation Vehicle
US11338732B1 (en) 2021-04-30 2022-05-24 Toyota Motor Engineering & Manufacturing North America, Inc. Hitch cross path alert systems

Similar Documents

Publication Publication Date Title
US9969383B2 (en) Methods and system for starting an engine of a hybrid vehicle
JP5853690B2 (en) Automatic engine stop control device for vehicle
US9358969B2 (en) Load-based vehicle operating control
US8042632B2 (en) Creep mode propulsion for stop-start hybrid vehicles
US20150259008A1 (en) Vehicular control apparatus
US20150039167A1 (en) Control device for hybrid vehicle
US20130296107A1 (en) Method and apparatus for starting a turbocharged engine in a hybrid vehicle
US20180194341A1 (en) Hybrid electric vehicle controller and method
JP6369549B2 (en) Vehicle control apparatus and vehicle control method
KR20140010191A (en) Control device for hybrid vehicle
JP2007331599A (en) Transmission status switching controller for hybrid vehicle
JP3588673B2 (en) Idle stop vehicle
JP2008168836A (en) Engine misfire detection control device for hybrid vehicle
JP2014173454A (en) Control device of idle stop vehicle
WO2014168016A1 (en) Vehicle control device and control method
EP3339612B1 (en) Vehicle traveling control method and vehicle traveling control device
JP4998436B2 (en) Control device for hybrid vehicle
JP2012218689A (en) Vehicle controller
JP2012202350A (en) Engine automatic stop control device for vehicle
JP3945312B2 (en) Vehicle control device
US20240101102A1 (en) Hybrid vehicle control system
JP5834608B2 (en) Automatic engine stop control device for vehicle
JP6638356B2 (en) Hybrid vehicle control method and control device
JP6641213B2 (en) Vehicle control device
JP2011230612A (en) Control device of four-wheel-drive vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP