JPH01266014A - Variable damping force type hydraulic shock absorber - Google Patents

Variable damping force type hydraulic shock absorber

Info

Publication number
JPH01266014A
JPH01266014A JP9280088A JP9280088A JPH01266014A JP H01266014 A JPH01266014 A JP H01266014A JP 9280088 A JP9280088 A JP 9280088A JP 9280088 A JP9280088 A JP 9280088A JP H01266014 A JPH01266014 A JP H01266014A
Authority
JP
Japan
Prior art keywords
damping force
shock absorber
rate
hydraulic pressure
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9280088A
Other languages
Japanese (ja)
Other versions
JP2748121B2 (en
Inventor
Shinobu Kakizaki
柿崎 忍
Fumiyuki Yamaoka
史之 山岡
Shigeru Kikushima
菊島 茂
Junichi Emura
江村 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP9280088A priority Critical patent/JP2748121B2/en
Priority to US07/337,349 priority patent/US4984819A/en
Priority to EP19890303704 priority patent/EP0337797B1/en
Priority to DE1989619510 priority patent/DE68919510T2/en
Publication of JPH01266014A publication Critical patent/JPH01266014A/en
Application granted granted Critical
Publication of JP2748121B2 publication Critical patent/JP2748121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/202Piston speed; Relative velocity between vehicle body and wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means

Abstract

PURPOSE:To make the riding comfortableness of a car compatible with its travelling steadiness even against continuous vibration by determining the rate of variation in hydraulic pressure on the each hydraulic pressure on compression and elongation sides in a variable damping force type shock absorber, and minutely varying the damping force according to the above-mentioned rate of variation. CONSTITUTION:Detecting means (a), (b) detect each hydraulic pressure on compression and elongation sides in a variable damping force type shook absorber respectively. Each output of the means (a), (b) is inputted into a controlling means C, which determines the rate of variation in the hydraulic pressure, and then computes control value to make the shock absorber turn into a fixed high damping force when the rate of variation has attained extreme value and a fixed low damping force when the rate of variation has lowered to a fixed value. After that, operating means (d), (e) vary the each damping force on the compression and elongation sides in the shock absorber according to the output of the controlling means C respectively. Thus the damping force can be minutely varied to make the riding comfortableness of a car compatible with its travelling steadiness even against continuous vibration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等車両の減衰力可変型液圧緩衝装置に
係り、詳しくは、路面振動のサイクル毎に減衰力を可変
できる減衰力可変型液圧緩衝装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a variable damping force type hydraulic shock absorber for vehicles such as automobiles, and more specifically, to a variable damping force type hydraulic shock absorber that can vary the damping force for each cycle of road vibration. The present invention relates to a type hydraulic shock absorber.

(従来の技術) 近時、車両の走行状態に応じて減衰力を増減操作し、通
常走行時には乗心地を良くする低い減衰力を、車体のロ
ール発生時には走行安定性を高めるような高い減衰力を
それぞれ発生する減衰力可変型液圧緩衝装置が普及して
いる。
(Prior technology) Recently, the damping force is increased or decreased depending on the driving condition of the vehicle, and a low damping force is used to improve ride comfort during normal driving, and a high damping force is used to improve driving stability when the vehicle body rolls. Variable damping force type hydraulic shock absorbers that generate each of these are becoming popular.

従来のこの種の減衰力可変型液圧緩衝装置としては、例
えば特開昭61−85210号公報に記載のものが知ら
れている。この装置では、4本のショックアブソーバ内
に各々設けられた単一の圧電素子(すなわち、4個)が
路面振動に応じて発生するシリンダ内の液圧を検出し、
コントローラが検出信号の大きさに基づいて圧電素子に
電圧を印加して減衰力をソフトからハードに切換える。
As a conventional variable damping force type hydraulic shock absorber of this type, one described in, for example, Japanese Patent Laid-Open No. 61-85210 is known. In this device, a single piezoelectric element (i.e., four pieces) installed in each of the four shock absorbers detects the hydraulic pressure in the cylinder that is generated in response to road vibration.
The controller applies a voltage to the piezoelectric element based on the magnitude of the detection signal to switch the damping force from soft to hard.

減衰力のソフトとハートの切換は、車体の変位が生じる
ような低い振動周波数で、かつ4個の圧電素子のうち2
個で発生する起電力の大きさが設定値を越えると行われ
、所定時間維持される。
The damping force is switched between soft and heart at a vibration frequency low enough to cause displacement of the vehicle body, and when two of the four piezoelectric elements
This occurs when the magnitude of the electromotive force generated by the individual exceeds a set value, and is maintained for a predetermined period of time.

すなわち、減衰力は所定時間内は圧行程、伸行程に拘ら
ず、ハードに維持され、所定時間内において液圧は検出
されない。
That is, the damping force is hard maintained within the predetermined time regardless of the pressure stroke or the extension stroke, and no hydraulic pressure is detected within the predetermined time.

(発明が解決しようとする課題) しかしながら、このような従来の減衰力可変型液圧緩衝
装置にあっては、単一の圧電素子を液圧のセンシングと
電圧印加による減衰力増減のアクチュエータとに切換え
て使用し、かつ検出信号に応じて所定時間は減衰力特性
をハードにする構成となっていたため、上記所定時間内
でハードを選択したときにはセンシング機能を使えない
ことから、路面からの連続入力につき2つ目以降の入力
振動に対して十分な制御が行えないという問題点があっ
た。例えば、初回入力と逆方向の入力に対しては高い減
衰力が逆に加振源となり、制振性が悪化し、結局、乗心
地と走行安定性の両立が図れない。
(Problem to be Solved by the Invention) However, in such a conventional variable damping force hydraulic shock absorber, a single piezoelectric element is used to sense the liquid pressure and act as an actuator for increasing or decreasing the damping force by applying a voltage. The damping force characteristic was configured to be hard for a predetermined period of time according to the detection signal, and the sensing function could not be used when hard was selected within the predetermined period of time, so continuous input from the road surface was not possible. However, there is a problem in that sufficient control cannot be performed for the second and subsequent input vibrations. For example, in response to an input in the direction opposite to the initial input, a high damping force becomes a vibration source, deteriorating vibration damping performance, and ultimately making it impossible to achieve both ride comfort and running stability.

言い換えれば、従来装置の場合、一定時間を゛いわゆる
見込み制御によって平均的に減衰力置換えているもので
あり、リアルタイムでの精密制御はできない。また、圧
行程、伸行程それぞれに独立した制御が行えない。なお
、圧行程、伸行程とはシリンダに対してピストンが圧縮
する向きに移動する場合、および伸びる向きに移動する
場合のことであり、以下、単に圧側、伸側と略称して用
いることもある。
In other words, in the case of the conventional device, the damping force is replaced on an average basis over a certain period of time by so-called prospective control, and precise control in real time is not possible. In addition, independent control cannot be performed for each of the compression stroke and extension stroke. Note that the compression stroke and extension stroke are when the piston moves in the direction of compression and in the direction of extension with respect to the cylinder, and hereinafter may be simply referred to as compression side and expansion side. .

(発明の目的) そこで本発明は、圧側および伸側の液圧を別個に検出し
、その変化率に基づいて減衰力を可変することにより、
路面振動のサイクル毎に減衰力を精密に変化させ、連続
的な振動入力に対しても乗心地と走行安定性を両立させ
ることを目的としている。
(Objective of the Invention) Therefore, the present invention detects the compression side and expansion side hydraulic pressures separately and varies the damping force based on the rate of change.
The aim is to precisely change the damping force with each cycle of road vibration, achieving both ride comfort and driving stability even in the face of continuous vibration input.

(課題を解決するための手段) 本発明による減衰力可変型液圧緩衝装置は上記目的達成
のため、その基本概念図を第1図に示すように、減衰力
可変型ショックアブソーバの圧側の液圧を検出する第1
の検出手段aと、減衰力可変型ショックアブソーバの伸
側の液圧を検出する第2の検出手段すと、第1の検出手
段aおよび第2の検出手段すの出力から液圧の変化率を
求め、該変化率が極値となったときショックアブソーバ
を所定の高減衰力とし、変化率が所定値まで低下すると
所定の低減衰力とするような制御値を演算する制御手段
Cと、制御手段の出力に基づいて圧側の減衰力を変える
第1の操作手段dと、制御手段Cの出力に基づいて伸側
の減衰力を変える第2の操作手段eと、を備えている。
(Means for Solving the Problem) In order to achieve the above object, the variable damping force type hydraulic shock absorber according to the present invention has a basic conceptual diagram shown in FIG. The first to detect pressure
and a second detection means for detecting the hydraulic pressure on the extension side of the variable damping force shock absorber.The rate of change in hydraulic pressure is determined from the outputs of the first detection means a and the second detection means A. a control means C that calculates a control value that sets the shock absorber to a predetermined high damping force when the rate of change reaches an extreme value, and sets the shock absorber to a predetermined low damping force when the rate of change decreases to a predetermined value; The first operating means d changes the damping force on the compression side based on the output of the control means, and the second operating means e changes the damping force on the rebound side based on the output of the control means C.

(作用) 本発明では、圧側および伸側の液圧を別個に検出して液
圧の変化率が求められ、該変化率が極値になったとき減
衰力のハードが選択され、変化率が所定値まで低下する
と、ソフトに切換えられる。
(Function) In the present invention, the rate of change in the hydraulic pressure is determined by separately detecting the hydraulic pressure on the compression side and the expansion side, and when the rate of change reaches an extreme value, the hard damping force is selected, and the rate of change is determined. When it drops to a predetermined value, it is switched to soft.

したがって、路面振動のサイクル毎に減衰力の増減が伸
側および圧側それぞれ独立にリアルタイムできめ細かく
行われることとなり、乗心地と走行安定性を両立できる
Therefore, the damping force is finely increased or decreased in real time for each cycle of road vibration, independently on the rebound side and the compression side, making it possible to achieve both ride comfort and running stability.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜7図は本発明に係る減衰力可変型液圧緩衝装置の
一実施例を示す図である。
2 to 7 are diagrams showing an embodiment of a variable damping force type hydraulic shock absorber according to the present invention.

まず、構成を説明する。第2図はショックアブソーバの
全体構成図、第3図はその要部断面図、第4図はシステ
ムの全体構成図、第5図はその一系統の制御回路を示す
図である。
First, the configuration will be explained. FIG. 2 is an overall configuration diagram of the shock absorber, FIG. 3 is a sectional view of its essential parts, FIG. 4 is an overall configuration diagram of the system, and FIG. 5 is a diagram showing one system of the control circuit.

第2図において、1は減衰力可変型のショックアブソー
バである。ショックアブソーバ1は密封された外筒2と
、外筒2に内蔵されたシリンダ3と、シリンダ3の内壁
を軸方向に摺動するピストン4と、シリンダ3の下端に
設けられたボトムバルブ5と、ピストン4を支持するピ
ストンロッド6と、外筒2の内壁およびシリンダ3によ
って形成されるリザーバ室7と、ピストンロッド6を支
持するロントガイド8と、ロントガイド8の上部に設け
られたピストンシール9と、外筒2の上部を閉止するス
トッパプレート10と、を含んで構成されている。
In FIG. 2, reference numeral 1 denotes a variable damping force type shock absorber. The shock absorber 1 includes a sealed outer cylinder 2, a cylinder 3 built into the outer cylinder 2, a piston 4 that slides on the inner wall of the cylinder 3 in the axial direction, and a bottom valve 5 provided at the lower end of the cylinder 3. , a piston rod 6 that supports the piston 4, a reservoir chamber 7 formed by the inner wall of the outer cylinder 2 and the cylinder 3, a front guide 8 that supports the piston rod 6, and a piston seal provided on the top of the front guide 8. 9 and a stopper plate 10 that closes the upper part of the outer cylinder 2.

シリンダ3は下端に連通孔11を有するボトムボディ1
2を備え、上端開口部がロッドガイド8で閉塞されてい
る。シリンダ3の内部はピストン4によって上側液室1
4および下側液室15の2室に区画され、該2室内の作
動液はピストン4に設けられた後述の連通孔46〜48
を介して相互に流動する。
The cylinder 3 has a bottom body 1 having a communication hole 11 at the lower end.
2, the upper end opening of which is closed by a rod guide 8. The inside of the cylinder 3 is connected to the upper liquid chamber 1 by the piston 4.
The hydraulic fluid in these two chambers is divided into two chambers, a lower liquid chamber 15 and a lower liquid chamber 15.
mutually flowing through.

ピストン4には伸行程で減衰力を発生する伸側バルブ1
6および伸側バルブ16を上方に付勢するスプリング1
7が設けられている。スプリング17の下端はアジャス
トナンド18およびロソクナソ目9によってピストン4
に固定され、ピストン4の下端にはアジャストナンド2
0が螺合されている。
The piston 4 has an extension valve 1 that generates damping force during the extension stroke.
6 and the spring 1 that urges the expansion side valve 16 upward.
7 is provided. The lower end of the spring 17 is connected to the piston 4 by an adjusting pad 18 and a clockwise counter 9.
is fixed to the lower end of the piston 4.
0 is screwed together.

ボトムバルブ5は伸行程で開くチエツクバルブ21と、
チエツクバルブ21が開くとき作動液を流入させるボー
ト22と、圧行程で開く圧側バルブ23と、圧側バルブ
23が開くとき減衰力を発生させるオリフィス24と、
チエツクバルブ21の開度を規制するストッパプレート
25と、ボトムボディ12にチエツクバルブ21等を固
定するカシメピン26と、を含んで構成される。伸行程
において、リザーバ室7内の作動液は下側液室15内の
負圧力によりチエ・ツクバルブ21を開き、下側液室1
5に流入する。このとき、チエツクバルブ21はストッ
パプレート25によっである一定以上に開かないよう規
制される。また、圧行程では、下側液室15内の作動液
は圧側バルブ23を開き、オリフィス24で下側液室1
5内の正圧力に対応した減衰力を発生し、連通孔11を
通ってリザーバ室7に流入する。上側液室14および下
側液室15内の圧力は外部からの路面振動の大きさに応
じて発生し、その圧力を検出すれば路面振動の入力状況
、すなわち走行状態を検出できる。
The bottom valve 5 includes a check valve 21 that opens during the extension stroke.
A boat 22 that allows hydraulic fluid to flow in when the check valve 21 opens, a pressure side valve 23 that opens during the pressure stroke, and an orifice 24 that generates a damping force when the pressure side valve 23 opens.
It is configured to include a stopper plate 25 that regulates the opening degree of the check valve 21, and a caulking pin 26 that fixes the check valve 21 and the like to the bottom body 12. In the extension stroke, the hydraulic fluid in the reservoir chamber 7 opens the check valve 21 due to the negative pressure in the lower fluid chamber 15, and the hydraulic fluid in the lower fluid chamber 1
5. At this time, the check valve 21 is regulated by a stopper plate 25 so as not to open beyond a certain level. In addition, in the pressure stroke, the hydraulic fluid in the lower liquid chamber 15 opens the pressure side valve 23 and flows through the orifice 24 into the lower liquid chamber 1.
A damping force corresponding to the positive pressure inside 5 is generated, and the damping force flows into the reservoir chamber 7 through the communication hole 11. The pressure in the upper liquid chamber 14 and the lower liquid chamber 15 is generated depending on the magnitude of road vibration from the outside, and by detecting this pressure, it is possible to detect the input condition of the road vibration, that is, the driving condition.

また、ピストンロッド6にはリテーナ27が固定され、
リテーナ27は上部に設けられた弾性体のリバウンドス
トッパ28とともに、ピストン4と口・ノドガイド8と
の衝突を緩和させる。
Further, a retainer 27 is fixed to the piston rod 6,
The retainer 27, together with a rebound stopper 28 of an elastic body provided on the upper part, alleviates the collision between the piston 4 and the mouth/nod guide 8.

ストッパプレート10はシリンダ3の上端に下部が嵌合
し、中央の貫通孔10a内の図示しないブツシュでピス
トンロッド6を摺動自在にガイドする。
The stopper plate 10 has a lower portion fitted into the upper end of the cylinder 3, and slidably guides the piston rod 6 with a bush (not shown) in a central through hole 10a.

外筒2は有底筒状を成し、シリンダ3、ロントガイド8
およびピストンシール9を収容し、上端を加締めて形成
されている。ピストンシール9の内周部には、ピストン
ロッド6に弾接し、内部の液密を維持するメインリフブ
29と、外部からの泥水等を阻止するダストリップ30
とが形成されている。
The outer cylinder 2 has a cylindrical shape with a bottom, and includes a cylinder 3 and a front guide 8.
and a piston seal 9, and is formed by crimping the upper end. On the inner circumference of the piston seal 9, there are a main rift 29 that comes into elastic contact with the piston rod 6 and maintains internal liquid tightness, and a dust lip 30 that prevents muddy water etc. from entering from the outside.
is formed.

また、外筒2の下端部には、車両の車軸等に取り付ける
ためのインシュレータ31および取付リング32が固着
されている。
Furthermore, an insulator 31 and a mounting ring 32 are fixed to the lower end of the outer cylinder 2 for mounting on a vehicle axle or the like.

また、ピストンロッド6の上端から引き出された配線3
5はコントロールユニット100と接続されている。
Also, the wiring 3 pulled out from the upper end of the piston rod 6
5 is connected to a control unit 100.

第3図はピストン4周辺の断面を示しており、図中上方
が車体側であり、図中下方が車輪側である。同図におい
て、ピストンロッド6の中央には配線35を収容する配
線通路41が設けられ、配線通路41は徐々に拡大して
下端のネジ部41aでピストン4と螺合する。ピストン
4はピストンロッド6と螺合する本体42と、本体42
の下端部と上端部で螺合するスリーブ43と、を有し、
スリーブ43の下端部にはアジャストナツト20が螺合
固定されている。本体42の外周部にはテフロン等の低
摩擦材料で形成されるシール部材44が設けられ、シー
ル部材44はシリンダ3の内壁に接して摺動する。本体
42には空間45と、連通孔46.47と、が形成され
ており、上側液室14および下側液圧室15内の作動液
が連通孔46.47を通って流動する。スリーブ43に
は連通孔48が形成されており、空間45内の作動液は
連通孔48を通り、伸側バルブ16で減衰力を発生させ
ながら流動する。伸側バルブ16は連通孔48をi1!
l遇する作動液の液圧が高まるとスプリング17の付勢
力に打ち勝って下方に移動し、液圧に減衰力・を発生さ
せる。また、ピストン4の内部には円形断面の収容孔4
9.50が形成されており、収容孔49.50は空間4
5と連通している。
FIG. 3 shows a cross section around the piston 4, with the upper side of the figure being the vehicle body side and the lower side of the figure being the wheel side. In the figure, a wiring passage 41 for accommodating the wiring 35 is provided at the center of the piston rod 6, and the wiring passage 41 gradually expands and is screwed into the piston 4 at a threaded portion 41a at the lower end. The piston 4 includes a main body 42 that is threadedly engaged with the piston rod 6, and a main body 42.
a sleeve 43 screwed together at the lower end and upper end of the
An adjustment nut 20 is screwed and fixed to the lower end of the sleeve 43. A sealing member 44 made of a low-friction material such as Teflon is provided on the outer periphery of the main body 42, and the sealing member 44 slides in contact with the inner wall of the cylinder 3. A space 45 and communication holes 46.47 are formed in the main body 42, and the hydraulic fluid in the upper liquid chamber 14 and the lower hydraulic pressure chamber 15 flows through the communication holes 46.47. A communication hole 48 is formed in the sleeve 43, and the hydraulic fluid in the space 45 flows through the communication hole 48 while generating a damping force at the extension valve 16. The expansion side valve 16 connects the communication hole 48 to i1!
When the hydraulic pressure of the operating fluid increases, it overcomes the biasing force of the spring 17 and moves downward, generating a damping force in the hydraulic pressure. Further, inside the piston 4, there is a housing hole 4 having a circular cross section.
9.50 is formed, and the accommodation hole 49.50 is the space 4.
It communicates with 5.

収容孔49.50および空間45の内部には、調整機構
51と第1の圧電素子60と、第1の圧電素子60の下
端と当接する減衰手段70と、減衰手段70の下端と当
接する第2の圧電素子90と、第2の圧電素子90を支
持するキャップ94と、が収容されている。
Inside the accommodation hole 49 , 50 and the space 45 , an adjustment mechanism 51 , a first piezoelectric element 60 , a damping means 70 abutting the lower end of the first piezoelectric element 60 , and a first piezoelectric element 70 abutting the lower end of the damping means 70 . Two piezoelectric elements 90 and a cap 94 that supports the second piezoelectric elements 90 are housed.

調整機構51は本体42の上端に形成されたアジャスト
スクリュ52と、アジャストスクリュ52に螺合するア
ジャストナツト53とで、構成され、アジャストナツト
53は回動されると軸方向に移動し、第1の圧電素子6
0の軸方向の位置を変化させる。アジャストナツト53
はプレート54およびキャンプ55を介してプレート5
6と当接し、プレート56は第1の圧電素子60の上端
に固着されている。第1の圧電素子60はキャンプ55
および減衰手段70によって支持されており、収容孔4
9内を上下に移動する。
The adjustment mechanism 51 is composed of an adjustment screw 52 formed at the upper end of the main body 42 and an adjustment nut 53 that is screwed into the adjustment screw 52. When the adjustment nut 53 is rotated, it moves in the axial direction and the first piezoelectric element 6
Change the axial position of 0. Adjust nut 53
passes through plate 54 and camp 55 to plate 5
6, and the plate 56 is fixed to the upper end of the first piezoelectric element 60. The first piezoelectric element 60 is a camp 55
and damping means 70, and is supported by the receiving hole 4
Move up and down within 9.

第1の圧電素子60のコード61.62は第2の圧電素
子90のコード91.92と一緒に配線35を形成し、
配線35はコントロールユニット100に接続されてい
る。また、第1の圧電素子60はプレート59を介して
減衰手段70の一部を構成するスライダ71と当接し、
伸側制御信号S、に応じた伸びを減衰手段70に伝達す
る。
The cord 61.62 of the first piezoelectric element 60 together with the cord 91.92 of the second piezoelectric element 90 forms the wiring 35;
Wiring 35 is connected to control unit 100. Further, the first piezoelectric element 60 comes into contact with a slider 71 that constitutes a part of the damping means 70 via the plate 59,
The elongation corresponding to the elongation side control signal S is transmitted to the damping means 70.

減衰手段70はスライダ71と、スライダ71の中心部
71aに先端部が嵌合するバルブコア72と、バルブコ
ア72に取付けられたバルブボディ73と、バルブボデ
ィ73とスライダ71に挟持された圧側バルブ74と、
バルブコア72とバルブボディ73に挟持された伸側バ
ルブ75と、を含んで構成される。バルブボディ73に
はオリフィス76.77が形成されており、オリフィス
76の上側は弾性を有する圧側バルブ74−により閉止
され、オリフィス77の下側は弾性を有する伸側バルブ
75によって閉止されている。オリフィス76は空間4
5の内壁とバルブボディ73の上面によって画成される
空間(以下、第1の液室という)79と連通孔47を連
通し、圧行程において圧側バルブ74が曲がって開くと
所定の減衰力を発生する。オリフィス76は伸行程には
閉じて作動液は通過しない。オリフィス77は空間45
の内壁とバルブボディ73の下面によって画成される空
間(以下、第2の液室という)80と第1の液室79を
連通し、伸行程において、伸側バルブ75が曲がって間
々と所定の減衰力を発生する。オリフィス77は圧行程
には閉じて作動液は通過しない。
The damping means 70 includes a slider 71, a valve core 72 whose tip fits into the center 71a of the slider 71, a valve body 73 attached to the valve core 72, and a pressure side valve 74 held between the valve body 73 and the slider 71. ,
It is configured to include a valve core 72 and an expansion side valve 75 held between a valve body 73. Orifices 76 and 77 are formed in the valve body 73, and the upper side of the orifice 76 is closed by a pressure side valve 74- which has elasticity, and the lower side of the orifice 77 is closed by an expansion side valve 75 which has elasticity. Orifice 76 is space 4
A space 79 defined by the inner wall of the valve body 5 and the upper surface of the valve body 73 (hereinafter referred to as the first liquid chamber) communicates with the communication hole 47, and when the pressure side valve 74 bends and opens during the pressure stroke, a predetermined damping force is applied. Occur. The orifice 76 is closed during the extension stroke and no hydraulic fluid passes therethrough. Orifice 77 is space 45
A space defined by the inner wall of the valve body 73 and the lower surface of the valve body 73 (hereinafter referred to as the second liquid chamber) communicates with the first liquid chamber 79. generates a damping force of The orifice 77 is closed during the pressure stroke and no hydraulic fluid passes therethrough.

圧側パルプ74および伸側バルブ75は複数枚の薄板で
形成され、所定の弾性を有している。減衰手段70は伸
行程にあるとき第1の圧電素子60の伸びによって圧迫
を受け、伸側バルブ75の開度を変えてオリフィス77
の開口面積を減らし、所定の減衰力(以下、ソフトとい
う)を増加して高減衰力(以下、ハードという)に切換
える。
The compression side pulp 74 and the expansion side valve 75 are formed of a plurality of thin plates and have a predetermined elasticity. During the extension stroke, the damping means 70 is compressed by the extension of the first piezoelectric element 60, and changes the opening degree of the extension valve 75 to open the orifice 77.
The opening area of the damping force is reduced, a predetermined damping force (hereinafter referred to as "soft") is increased, and a predetermined damping force (hereinafter referred to as "hard") is switched to a high damping force (hereinafter referred to as "hard").

一方、減衰手段70は圧行程にあるとき第2の圧電素子
90の伸びによって圧迫を受け、圧側バルブ74の開度
を変えてオリフィス76の開口面積を減らし、減衰力を
ソフトからハードに切換える。
On the other hand, the damping means 70 is compressed by the expansion of the second piezoelectric element 90 during the compression stroke, changes the opening degree of the compression side valve 74 to reduce the opening area of the orifice 76, and switches the damping force from soft to hard.

また、減衰手段70はプレート88を介して、第2の圧
電素子90と当接し、伸行程では第1の液室79内の液
圧を第2の圧電素子90に伝達する。第2の圧電素子は
下端がキャップ94と当接し、圧行程においてキャップ
94から伝達される上方への変位(下側液室15内の液
圧に相当)を減衰手段70および第1の圧電素子に伝達
する。キャップ94は圧行程においてアジャストナンド
20の孔95から流入する作動液の液圧を下面に受けて
上方向に変位し、変位を第2の圧電素子90に伝達する
Further, the damping means 70 comes into contact with the second piezoelectric element 90 via the plate 88, and transmits the hydraulic pressure in the first liquid chamber 79 to the second piezoelectric element 90 during the extension stroke. The lower end of the second piezoelectric element is in contact with the cap 94, and the upward displacement (corresponding to the liquid pressure in the lower liquid chamber 15) transmitted from the cap 94 during the pressure stroke is applied to the damping means 70 and the first piezoelectric element. to communicate. During the pressure stroke, the cap 94 receives on its lower surface the hydraulic pressure of the hydraulic fluid flowing in from the hole 95 of the adjusting nand 20 and is displaced upward, and transmits the displacement to the second piezoelectric element 90 .

第1の圧電素子60および第2の圧電素子90は所定の
セラミックス(以下、圧電材料という)の圧電効果およ
び逆圧電効果(電歪効果ともいう)を利用しており、一
対の電極を有する薄い圧電材料を多数枚(例えば、10
0枚程度)積層して形成される。圧電効果とは、圧電材
料の電極に電圧を印加すると、印加電圧の変化に応じて
圧電材料が図中上下方向に伸縮する(以下、機械的歪と
いう)現象をいい、圧電材料に特有の現象である。
The first piezoelectric element 60 and the second piezoelectric element 90 utilize the piezoelectric effect and inverse piezoelectric effect (also called electrostrictive effect) of a predetermined ceramic (hereinafter referred to as piezoelectric material). A large number of piezoelectric materials (for example, 10
(approximately 0 sheets) is formed by laminating them. The piezoelectric effect is a phenomenon in which when a voltage is applied to the electrodes of a piezoelectric material, the piezoelectric material expands and contracts in the vertical direction in the figure in response to changes in the applied voltage (hereinafter referred to as mechanical strain), and is a phenomenon unique to piezoelectric materials. It is.

一方、圧電材料の上下方向に圧力若しくは変位が加えら
れると圧電材料に機械的歪が生じ、圧電材料は機械的歪
の変化に応じて起電力を発生する。
On the other hand, when pressure or displacement is applied to the piezoelectric material in the vertical direction, mechanical strain is generated in the piezoelectric material, and the piezoelectric material generates an electromotive force in response to changes in the mechanical strain.

この現象を逆圧電現象といい、この起電力の大き′ さ
から逆に圧電材料に加わっている圧力若しくは変位の大
きさを検出することが可能である。
This phenomenon is called an inverse piezoelectric phenomenon, and the magnitude of the pressure or displacement applied to the piezoelectric material can be detected from the magnitude of this electromotive force.

第1の圧電素子60は伸行程において、伸側制御信号S
Aがコントロールユニット100から出力されると伸縮
し、減衰手段70に変位を与えて減衰力を増減する。第
2の圧電素子90は圧行程において、圧側制御信号SS
がコントロールユニット100から出力されると伸縮し
、減衰手段70に変位を与えて減衰力を増減する。
During the extension stroke, the first piezoelectric element 60 receives the extension side control signal S.
When A is output from the control unit 100, it expands and contracts, giving displacement to the damping means 70 and increasing or decreasing the damping force. The second piezoelectric element 90 receives the pressure side control signal SS in the pressure stroke.
When output from the control unit 100, it expands and contracts, giving displacement to the damping means 70 and increasing or decreasing the damping force.

第1の圧電素子60は圧工程において、減衰手段70か
ら伝達される下側液室15内の液圧を検出し、圧側信号
Spを出力する。
During the pressure stroke, the first piezoelectric element 60 detects the hydraulic pressure in the lower liquid chamber 15 transmitted from the damping means 70 and outputs a pressure side signal Sp.

第2の圧電素子90は伸行程において、減衰手段70か
ら伝達される第1の液室79内の液圧を検出し、伸側信
号Ssを出力する。
During the extension stroke, the second piezoelectric element 90 detects the hydraulic pressure in the first liquid chamber 79 transmitted from the damping means 70 and outputs an extension side signal Ss.

前記第1の圧電素子60は第1の検出手段としての機能
を有し、減衰手段70と共に第2の操作手段を構成する
。また、第2の圧電素子90は第2の検出手段としての
機能を有し、減衰手段70と共に第1の操作手段を構成
する。
The first piezoelectric element 60 has a function as a first detection means, and together with the damping means 70 constitutes a second operating means. Further, the second piezoelectric element 90 has a function as a second detection means, and together with the damping means 70 constitutes a first operation means.

第1および第2の圧電素子60.90からの信号はコン
トロールユニット100に入力されており、コントロー
ルユニット100は制御手段としての機能を有する。ま
た、コントロールユニット100は第1の圧電素子60
からの信号の有無によって圧側および伸側信号Sp、S
sの判別を行い、信号の変化率を演算し、変化率の大き
さに対応して制御信号SA、SBを出力する。
Signals from the first and second piezoelectric elements 60.90 are input to the control unit 100, and the control unit 100 has a function as a control means. The control unit 100 also includes a first piezoelectric element 60
Compression side and expansion side signals Sp, S depending on the presence or absence of signals from
s is determined, the rate of change of the signal is calculated, and control signals SA and SB are output in accordance with the magnitude of the rate of change.

コントロールユニット100の内部を説明するため第4
図に移る。同図において、コントロールユニット100
はI10ボート101と、入力回路110と、演算回路
120と、駆動回路130と、駆動用電源回路140と
、を備えている。I10ボート101にはショックアブ
ソーバ1が配線35を介して接続されており、各々コン
トロールユニット100と信号の授受を行っている。
The fourth section describes the inside of the control unit 100.
Moving on to the figure. In the figure, a control unit 100
includes an I10 board 101, an input circuit 110, an arithmetic circuit 120, a drive circuit 130, and a drive power supply circuit 140. The shock absorber 1 is connected to the I10 boat 101 via wiring 35, and signals are exchanged with the control unit 100, respectively.

この詳細を説明するため第5図に移る。同図において、
ショックアブソーバ1は内部に一対の圧電素子60.9
0を有し、圧電素子60.90の一方のコード61.9
1は接地され、他方のコード62.92はI10ボート
101と接続されている。第1の圧電素子60は液圧を
検出して圧側信号Spを出力し、I10ボート101の
コンデンサCは圧側信号Spの直流成分を遮断し、交流
成分を通過させる。入力回路110のバッファ112は
圧信号Spの交流成分を増幅し、演算回路120に出力
する。演算回路120は例えばマイクロコンピュータ等
で構成され、内部メモリに書き込まれたプログラムに従
って外部データを取り込み、これら取り込まれたデータ
および内部メモリに書き込まれているデータなどに基づ
いて、減衰力の可変制御に必要な処理値を演算する。
In order to explain this in detail, we turn to FIG. In the same figure,
The shock absorber 1 has a pair of piezoelectric elements 60.9 inside.
0 and one code 61.9 of the piezoelectric element 60.90
1 is grounded, and the other cord 62.92 is connected to the I10 boat 101. The first piezoelectric element 60 detects the hydraulic pressure and outputs the pressure side signal Sp, and the capacitor C of the I10 boat 101 blocks the DC component of the pressure side signal Sp and allows the AC component to pass. The buffer 112 of the input circuit 110 amplifies the AC component of the pressure signal Sp and outputs it to the arithmetic circuit 120. The arithmetic circuit 120 is composed of, for example, a microcomputer, and takes in external data according to a program written in an internal memory, and performs variable control of the damping force based on the taken data and the data written in the internal memory. Calculate the necessary processing values.

すなわち、演算回路120は入力信号に基づいて入力信
号の変化率を演算し、変化率が極値であるとぎ、変化率
の大きさに相当する伸側制御信号S。
That is, the calculation circuit 120 calculates the rate of change of the input signal based on the input signal, and when the rate of change is an extreme value, the expansion side control signal S corresponding to the magnitude of the rate of change is generated.

を駆動回路130に出力する。駆動回路130はバッフ
ァ131に伸側制御信号SAが入力されるとトランジス
タTr、をONとし、駆動用電源回路140の駆動電圧
をI10ボート101のダイオードD。
is output to the drive circuit 130. When the expansion side control signal SA is input to the buffer 131, the drive circuit 130 turns on the transistor Tr, and applies the drive voltage of the drive power supply circuit 140 to the diode D of the I10 port 101.

を介して第1の圧電素子60に印加し、減衰力をソフト
からハードに切換える。また、駆動回路130はバッフ
ァ132に伸側制御信号SAが入力されるとトランジス
タTr、をONとし、第1の圧電素子60の電荷をI/
○ボート101のダイオードD2を介して放電し、減衰
力をハードからソフトに戻す。駆動用電源回路140は
例えばDC−DCコンバータで形成され、第1および第
2の圧電素子60.90を伸長可能な直流の高電圧(以
下、駆動電圧という)を出力する。なお、第2の圧電素
子9oと接続する回路には上記と同一番号を付し、その
説明を省略する。
is applied to the first piezoelectric element 60 via the damping force to switch the damping force from soft to hard. Further, when the expansion side control signal SA is input to the buffer 132, the drive circuit 130 turns on the transistor Tr, and transfers the charge of the first piezoelectric element 60 to I/O.
○Discharge occurs through the diode D2 of the boat 101, returning the damping force from hard to soft. The driving power supply circuit 140 is formed of, for example, a DC-DC converter, and outputs a high DC voltage (hereinafter referred to as driving voltage) that can extend the first and second piezoelectric elements 60, 90. Note that the circuits connected to the second piezoelectric element 9o are given the same numbers as above, and the explanation thereof will be omitted.

なお、圧電素子の位置調整は次のように行われる。すな
わち、圧電素子に所定の電圧を印加後放電させ、アジャ
ストナツト53を回動し、減衰手段70を圧迫すること
によって生ずる圧電素子からの電圧がある一定値になる
まで調整する。なお、伸側・圧側共に同じ手順により調
整する。
Note that the position adjustment of the piezoelectric element is performed as follows. That is, after applying a predetermined voltage to the piezoelectric element, it is discharged, and the adjusting nut 53 is rotated to compress the damping means 70, thereby adjusting the voltage from the piezoelectric element until it reaches a certain constant value. The same procedure is used to adjust both the extension and compression sides.

次に、作用を説明する。Next, the effect will be explained.

第6図は減衰力可変制御のプログラムを示すフローチャ
ートであり0、本プログラムは所定時間毎に一度実行さ
れる。なお、ここでは−例として圧行程の場合について
説明するが、伸行程でも同様のプロセスで行われる。
FIG. 6 is a flowchart showing a program for variable damping force control, and this program is executed once every predetermined time. Note that, although the compression stroke will be described as an example here, the same process is performed in the extension stroke.

まず、P、で圧側信号Spを読み込む。圧側信号Spは
外部からの振動入力に対応し、シリンダ3内の液圧は第
1の圧電素子6oでリアルタイムで検出される。
First, the pressure side signal Sp is read at P. The pressure side signal Sp corresponds to external vibration input, and the hydraulic pressure inside the cylinder 3 is detected in real time by the first piezoelectric element 6o.

次いで、P2で圧側信号Spの変化率を演算する。圧側
信号Spの変化率(以下、変化率という)は圧側信号S
pを時間微分して得られ、振動の速度に対応する。振動
の速度は振幅の小さい振動の中心付近で最大となり、振
幅の大きい振動の頂点(圧行程と伸行程の境界)で0と
なる。また、振動の速度は振幅が大きい程大きく、振動
の周期が短い程大きくなる。そこで、変化率(振動の速
度)を振動情報として利用すれば、振動の初期段階でそ
の振幅が大きいか否かの判断を下すことができる。
Next, in P2, the rate of change of the pressure side signal Sp is calculated. The rate of change of the pressure side signal Sp (hereinafter referred to as the rate of change) is the pressure side signal S.
It is obtained by time differentiating p and corresponds to the speed of vibration. The speed of vibration is maximum near the center of vibration with small amplitude, and becomes 0 at the peak of vibration with large amplitude (boundary between compression stroke and extension stroke). Furthermore, the speed of vibration increases as the amplitude increases, and the speed of vibration increases as the period of vibration decreases. Therefore, if the rate of change (velocity of vibration) is used as vibration information, it can be determined whether the amplitude is large or not at the initial stage of vibration.

次いで、P3で変化率が極値であるか否かを判定する。Next, in P3, it is determined whether the rate of change is an extreme value.

極値の判定を行う理由は、短時間(短周期)で進行する
振幅の大きな振動を判別するためである。ここで、振幅
の大きな振動とは、例えばロール、スフオート(尻下が
り現象)およびダイブ(前のめり現象)等、車体が急に
傾いて走行安定性が損なわれるような振動を意味する。
The reason for determining the extreme value is to determine vibrations with large amplitudes that progress in a short period of time (short period). Here, vibrations with large amplitudes refer to vibrations that cause the vehicle body to suddenly lean and impair running stability, such as roll, swivel, and dive.

走行安定性は車体が水平状態のとき最良で操縦性が良く
、車体の傾斜が大きいときや、車体が急激に傾くとき最
悪となって操縦性が忠化する。
Driving stability is best when the car body is in a horizontal state, and maneuverability is good, and it is worst when the car body is tilted significantly or sharply, and maneuverability is poor.

P3で極値であるときはP4で圧側制御信号Slを出力
し、第2の圧電素子90に駆動電圧を印加して減衰力を
ソフトからハードに切換える。ここで、高減衰力(ハー
ド)の値は駆動電圧に対応し、駆動電圧の設定によって
は無段階のものにすることも可能である。次いで、P、
で駆動電圧レベルに達したか否かを判定する。ここで、
駆動電圧レベルとは駆動電圧が印加され、減衰力がハー
ドに切換ったときの電圧値を意味する。駆動電圧レベル
に達していなければ、P4に戻り、P4で再び駆動電圧
を印加し、駆動電圧レベルに達すると今回のルーチンを
終了する。ステップP、〜P、の実行によって振動の初
期に振幅の大きな振動を判別することができ、従来例と
異なり、直ちに減衰力をハードに切換えることができる
When the value is at the extreme value at P3, the compression side control signal Sl is output at P4, and a drive voltage is applied to the second piezoelectric element 90 to switch the damping force from soft to hard. Here, the value of the high damping force (hard) corresponds to the drive voltage, and depending on the setting of the drive voltage, it can be made stepless. Then P,
It is determined whether the drive voltage level has been reached. here,
The driving voltage level means the voltage value when the driving voltage is applied and the damping force is switched to hard. If the drive voltage level has not been reached, the process returns to P4, the drive voltage is applied again at P4, and when the drive voltage level is reached, the current routine ends. By executing steps P and ~P, vibrations with large amplitude can be determined at the initial stage of vibration, and unlike the conventional example, the damping force can be immediately switched to hard.

一方、P3で変化率が極値でないときはP6に移り、P
6で変化率が0であるか否かを判定する。
On the other hand, if the rate of change is not an extreme value at P3, move to P6, and P
In step 6, it is determined whether the rate of change is 0 or not.

振動の振幅が頂点(圧行程と伸行程の境界地点)に達す
ると振動の速度、すなわち変化率がOとなる。そこで、
変化率がOであるか否かを判定すれば、圧行程が終了し
たか否かを判定することができ、振動サイクルの圧行程
と伸行程を容易に判別できる。P、で変化率がOでなけ
れば圧行程が終了していないと判断して今回のルーチン
を終了する。圧行程が終了していないときは前回のルー
チンで設定された減衰力によって振動の減衰を行い、減
衰力の切換は行わない。
When the amplitude of the vibration reaches the peak (the boundary point between the compression stroke and the extension stroke), the speed of the vibration, that is, the rate of change becomes O. Therefore,
By determining whether the rate of change is O, it is possible to determine whether the compression stroke has ended or not, and it is possible to easily distinguish between the compression stroke and the extension stroke of the vibration cycle. If the rate of change is not O at P, it is determined that the pressure stroke has not ended, and the current routine is ended. If the compression stroke has not been completed, the vibration is damped using the damping force set in the previous routine, and the damping force is not switched.

一方、P6で変化率がOであれば圧行程が終了したと判
断してP7に移り、P7で圧側制御信号S8を出力し、
第2の圧電素子90の電荷を放電する。次いで、P6で
圧側信号Spを所定値と比較し、所定値以下でなければ
P7に戻り、P7で再び電荷を放電し、放電が十分行わ
れると今回のルーチンを終了する。ここで、所定値とは
圧電素子の長さが本来の長さに復帰し、減衰力がハード
からソフトに災るような電圧値をいい、電荷が所定値以
下で第2の圧電素子90は検出手段としての機能を回復
する。また、減衰力が最初からソフトのときは減衰力は
変化しない。
On the other hand, if the rate of change is O at P6, it is determined that the pressure stroke has ended, and the process moves to P7, where the pressure side control signal S8 is outputted,
The charge on the second piezoelectric element 90 is discharged. Next, in P6, the pressure side signal Sp is compared with a predetermined value, and if it is not less than the predetermined value, the process returns to P7, and the charge is discharged again in P7, and when the discharge is sufficiently performed, the current routine is ended. Here, the predetermined value refers to a voltage value at which the length of the piezoelectric element returns to its original length and the damping force changes from hard to soft, and when the charge is below the predetermined value, the second piezoelectric element 90 Restores its function as a detection means. Furthermore, if the damping force is soft from the beginning, the damping force will not change.

ステップP、〜P、の実行によって、圧行程が終了した
かあるいは伸側の振動が入力されたことが判別され、路
面振動の圧行程と伸行程においてそれぞれ独立して減衰
力を制御できる。すなわち、圧行程でハード、伸行程で
ソフトという切換が行われる。
By executing steps P and ~P, it is determined that the compression stroke has ended or that vibration on the expansion side has been input, and the damping force can be independently controlled in the compression stroke and extension stroke of road surface vibration. That is, switching is performed between hard in the compression stroke and soft in the extension stroke.

このように、本実施例では圧側および伸側の液圧をリア
ルタイムで検出しているので、検出信号の変化率に基づ
いて減衰力を制御することができ、振動サイクルの圧行
程、伸行程に対して独立した制御を行うことができる。
In this way, in this example, the hydraulic pressure on the compression side and the extension side is detected in real time, so the damping force can be controlled based on the rate of change of the detection signal, and the damping force can be controlled in the compression stroke and extension stroke of the vibration cycle. can be controlled independently.

これを具体的なタイミングチャートにすると第7図のよ
うになる。同図において、横軸は振動の中心、縦軸は振
動の振幅に対応する。同図(C)に示すようにA地点で
振幅の大きな振動が入力され、変化率が極値になると直
ちに減衰力がソフトからハードに切換えられる(H区間
)。このため、シリンダ3内の液圧(検出信号)は−点
鎖線のように減衰力の増加分(駆動電圧)分だけ上昇し
、点線で示すソフトと同様に変化する(同図(b)参照
)。このとき、ピストン4は高減衰力、すなわち高い流
動抵抗によって動きが規制され、B地点までソフトを維
持する従来例より、その振幅が減少する。
A concrete timing chart of this is shown in FIG. 7. In the figure, the horizontal axis corresponds to the center of vibration, and the vertical axis corresponds to the amplitude of vibration. As shown in FIG. 5C, a large amplitude vibration is input at point A, and as soon as the rate of change reaches an extreme value, the damping force is switched from soft to hard (section H). Therefore, the hydraulic pressure (detection signal) in the cylinder 3 rises by the amount of increase in damping force (drive voltage) as shown by the -dotted chain line, and changes in the same way as the software shown by the dotted line (see figure (b)). ). At this time, the movement of the piston 4 is restricted by a high damping force, that is, a high flow resistance, and its amplitude is reduced compared to the conventional example in which the piston 4 maintains a soft state up to point B.

また、F地点では変化率がOとなり、正工程での減衰力
がソフトに切換えられて、低い流動抵抗によってピスト
ンが振動の中心まで速やかに戻る(区間FG)。したが
って、本実施例では路面振動によるショックアブソーバ
1の伸長は従来例より少なく、かつ速やかに回復するこ
とになり、車体の傾斜が未然に抑えられて走行安定性が
向上する(区間AG)。
Further, at point F, the rate of change becomes O, the damping force in the normal process is switched to soft, and the piston quickly returns to the center of vibration due to low flow resistance (section FG). Therefore, in this embodiment, the expansion of the shock absorber 1 due to road vibration is smaller than in the conventional example, and the shock absorber 1 recovers quickly, thereby preventing the vehicle from tilting and improving running stability (section AG).

また、本実施例ではB地点以降所定期間ハードを維持す
る従来例と異なり、伸側減衰力をハードに維持する期間
中(区間AG)であっても、連続的な振動入力に対して
圧側の減衰力をソフトとすることができ、割振性を向上
して乗心地を向上できる。(区間BCおよびDE)。こ
れは、低い流動抵抗によってスプリングが十分に振動を
吸収できるためであり、一般に、圧側減衰力は伸側減衰
力よりも低く設定される。
In addition, in this embodiment, unlike the conventional example in which the hard force is maintained for a predetermined period after point B, even during the period (section AG) in which the rebound damping force is maintained hard, the compression side damping force is maintained hard against continuous vibration input. The damping force can be made softer, and the damping force can be improved to improve the ride comfort. (Intervals BC and DE). This is because the spring can sufficiently absorb vibrations due to low flow resistance, and generally the compression side damping force is set lower than the rebound side damping force.

このように、本実施例では圧側および伸側の液圧を別個
の圧電素子でリアルタイムで検出し、変化率の大きさに
応じて減衰力を制御しているので、圧側および伸側での
独立した減衰力の制御を行うことができ、連続的な路面
振動に対しても乗心地と走行安定性を両立できる。
In this way, in this example, the hydraulic pressure on the compression side and the expansion side are detected in real time using separate piezoelectric elements, and the damping force is controlled according to the magnitude of the rate of change, so that the hydraulic pressure on the compression side and the expansion side can be detected independently. The damping force can be controlled to achieve both ride comfort and driving stability even in the face of continuous road vibration.

また、本実施例では第1の圧電素子60および第2の圧
電素子90を第1および第2の検出手段と第1および第
2の操作手段に切換えているが、これに限らず、第1お
よび第2の検出手段と第1および第2の操作手段の構成
方法および取付位置は上記実施例に限定されるものでは
なく、例えば全て別個に設けても良いのは勿論である。
Further, in this embodiment, the first piezoelectric element 60 and the second piezoelectric element 90 are switched to the first and second detection means and the first and second operation means, but the present invention is not limited to this. Also, the construction method and mounting position of the second detection means and the first and second operation means are not limited to those in the above embodiment, and of course, for example, they may all be provided separately.

なお、特許請求の範囲にいう所定値とはOを含む概念で
あり、本実施例ではこの所定値をOとしているが、これ
に限るものではなく、例えば不惑帯のように所定範囲を
有するものであっても良い。
Note that the predetermined value referred to in the claims is a concept that includes O, and in this embodiment, this predetermined value is O, but is not limited to this. It may be.

(効果) 本発明によれば、圧側および伸側の液圧を別個に検出し
て変化率を求め、該変化率が極値になったときハードの
減衰力を選択し、変化率が所定値まで低下すると減衰力
をソフトに切換えているので、路面振動のサイクル毎に
減衰力の増減を圧側および伸側にそれぞれ独立にきめ細
かく行うことができ、乗心地と走行安定性を両立できる
(Effects) According to the present invention, the hydraulic pressure on the compression side and the expansion side are detected separately to determine the rate of change, and when the rate of change reaches an extreme value, hard damping force is selected, and the rate of change is set to a predetermined value. Since the damping force is switched to soft mode when the damping force decreases to 100%, the damping force can be finely increased or decreased on the compression side and the rebound side for each cycle of road vibration, allowing both ride comfort and running stability to be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜7図は本発明に係
る減衰力可変型液圧緩衝装置の一実施例を示す図であり
、第2図はそのショックアブソーバの全体構成を示す断
面図、第3図はその要部断面構成図、第4図はそのシス
テムの全体構成図、第5図はその一部分の回路図、第6
図はその減衰力可変制御のプログラムを示すフローチャ
ート、第7図はその作用を説明するための図である。 1・・・・・・ショックアブソーバ、 3・・・・・・シリンダ、 4・・・・・・ピストン、 60・・・・・・第1の圧電素子(第1の検出手段、第
2の操作手段)、 70・・・・・・減衰手段(第1の操作手段、第2の操
作手段)、 90・・・・・・第2の圧電素子(第2の検出手段、第
1の操作手段)、 94・・・・・・キャップ、 100・・・・・・コントロールユニソ) (制御手段
)。
Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 to 7 are diagrams showing an embodiment of a variable damping force type hydraulic shock absorber according to the present invention, and Fig. 2 shows the overall structure of the shock absorber. 3 is a cross-sectional diagram of the main parts, FIG. 4 is an overall configuration diagram of the system, FIG. 5 is a partial circuit diagram, and FIG.
The figure is a flowchart showing a program for variable damping force control, and FIG. 7 is a diagram for explaining its operation. DESCRIPTION OF SYMBOLS 1... Shock absorber, 3... Cylinder, 4... Piston, 60... First piezoelectric element (first detection means, second operation means), 70... damping means (first operation means, second operation means), 90... second piezoelectric element (second detection means, first operation means), 90... second piezoelectric element (second detection means, first operation means) means), 94...cap, 100...control unit) (control means).

Claims (1)

【特許請求の範囲】 a)減衰力可変型ショックアブソーバの圧側の液圧を検
出する第1の検出手段と、 b)減衰力可変型ショックアブソーバの伸側の液圧を検
出する第2の検出手段と、 c)第1の検出手段および第2の検出手段の出力から液
圧の変化率を求め、該変化率が極値となったときショッ
クアブソーバを所定の高減衰力とし、変化率が所定値ま
で低下すると、所定の低減衰力とするような制御値を演
算する制御手段と、 d)制御手段の出力に基づいて圧側の減衰力を変える第
1の操作手段と、 e)制御手段の出力に基づいて伸側の減衰力を変える第
2の操作手段と、 を備えたことを特徴とする減衰力可変型液圧緩衝装置。
[Scope of Claims] a) A first detection means for detecting hydraulic pressure on the compression side of the variable damping force type shock absorber, and b) A second detection means for detecting hydraulic pressure on the rebound side of the variable damping force type shock absorber. c) Determine the rate of change in hydraulic pressure from the outputs of the first detection means and the second detection means, and when the rate of change reaches an extreme value, set the shock absorber to a predetermined high damping force, and set the rate of change to a predetermined high damping force. a control means that calculates a control value such that the damping force becomes a predetermined low damping force when the damping force decreases to a predetermined value; d) a first operating means that changes the compression side damping force based on the output of the control means; e) a control means A variable damping force type hydraulic shock absorber comprising: a second operating means for changing the damping force on the rebound side based on the output of the damping force variable hydraulic shock absorber.
JP9280088A 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber Expired - Lifetime JP2748121B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9280088A JP2748121B2 (en) 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber
US07/337,349 US4984819A (en) 1988-04-14 1989-04-13 Automotive suspension system and shock absorber therefor
EP19890303704 EP0337797B1 (en) 1988-04-14 1989-04-14 Automotive suspension system with variable suspension characteristics and variable damping force shock absorber therefor
DE1989619510 DE68919510T2 (en) 1988-04-14 1989-04-14 Motor vehicle suspension system with variable suspension characteristics and shock absorbers with variable damping force therefor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280088A JP2748121B2 (en) 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JPH01266014A true JPH01266014A (en) 1989-10-24
JP2748121B2 JP2748121B2 (en) 1998-05-06

Family

ID=14064490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280088A Expired - Lifetime JP2748121B2 (en) 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2748121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504397A (en) * 1990-04-16 1992-08-06 モンロー・オート・イクイプメント・カンパニー Method and device for controlling shock absorption device
CN104121319A (en) * 2013-04-26 2014-10-29 日立汽车系统株式会社 Hydraulic shock absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504397A (en) * 1990-04-16 1992-08-06 モンロー・オート・イクイプメント・カンパニー Method and device for controlling shock absorption device
CN104121319A (en) * 2013-04-26 2014-10-29 日立汽车系统株式会社 Hydraulic shock absorber

Also Published As

Publication number Publication date
JP2748121B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP2752668B2 (en) Suspension system
JP2749856B2 (en) Fluid shock absorber
EP1659007B1 (en) Air suspension and electronically controlled suspension system
JPH02142942A (en) Hydraulic shock absorber
JPS61135810A (en) Shock absorber controller
JPH01266014A (en) Variable damping force type hydraulic shock absorber
JPH01266013A (en) Variable damping force type hydraulic shock absorber
JPH0714009Y2 (en) Variable damping force hydraulic shock absorber
JPH0714008Y2 (en) Variable damping force hydraulic shock absorber
JPH0717523Y2 (en) Variable damping force hydraulic shock absorber
JPH0714007Y2 (en) Variable damping force hydraulic shock absorber
JP2752664B2 (en) Suspension system
JPH0742820Y2 (en) Suspension system
JPH0241913A (en) Damping force variable type liquid pressure shock absorber
JP2576222Y2 (en) Suspension system
JPH0524832Y2 (en)
JP3085048B2 (en) Air suspension
JP2505228Y2 (en) Variable damping force hydraulic shock absorber
JP2576651B2 (en) Suspension control device
JP2505229Y2 (en) Variable damping force hydraulic shock absorber
JPH08290713A (en) Suspension control device
JP3082358B2 (en) Variable damping force shock absorber controller
JPH0632132A (en) Damping force variable shock absorber and control device thereof
JP2505231Y2 (en) Variable damping force hydraulic shock absorber
JP2505232Y2 (en) Variable damping force hydraulic shock absorber