JPH0241913A - Damping force variable type liquid pressure shock absorber - Google Patents

Damping force variable type liquid pressure shock absorber

Info

Publication number
JPH0241913A
JPH0241913A JP19515488A JP19515488A JPH0241913A JP H0241913 A JPH0241913 A JP H0241913A JP 19515488 A JP19515488 A JP 19515488A JP 19515488 A JP19515488 A JP 19515488A JP H0241913 A JPH0241913 A JP H0241913A
Authority
JP
Japan
Prior art keywords
pressure
liquid chamber
damping force
compression
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19515488A
Other languages
Japanese (ja)
Inventor
Fumiyuki Yamaoka
史之 山岡
Shinobu Kakizaki
柿崎 忍
Shigeru Kikushima
菊島 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP19515488A priority Critical patent/JPH0241913A/en
Priority to US07/388,006 priority patent/US4961483A/en
Priority to GB8917622A priority patent/GB2222226B/en
Priority to DE3925763A priority patent/DE3925763A1/en
Publication of JPH0241913A publication Critical patent/JPH0241913A/en
Priority to GB9221422A priority patent/GB2258904B/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/464Control of valve bias or pre-stress, e.g. electromagnetically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/184Semi-Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/602Signal noise suppression; Electronic filtering means high pass

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To make comfortability and a travel stability quality coexist, by detecting by means of two piezoelectric elements pressures at liquid chambers on the extension side and on the pressure side which are different in pressure size in opposition to the movement direction of the piston of a liquid pressure shock absorber, and arranging so that an operation direction may be decided by its result. CONSTITUTION:Liquid pressure at an expansion side liquid chamber 14 or at a pressure side liquid chamber 15 which is inputted through disk values 56, 57 opposing the movement direction of a piston 5 which is in the process of shock absorbing action, and liquid pressures on the sides of the back surfaces of opposing disk valves 56, 57, are detected by means of the 1st and 2nd piezoelectric elements 80, 90, and liquid pressure singnals Sp, Ss which are in accordance with liquid pressures are inputted into a controller 100. The controller 100 decides the operation direction of a shock absorber 1 by means of the sizes of liquid pressure signals Sp, Ss to be inputted, and outputs controlling signals SA, SB into piezoelectric elements 80, 90. As a result, comfortability and a travel stability quality can be made to coexist.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等車両の減衰力可変型液圧緩衝器に係
り、詳しくは、2個の圧電素子で圧側および伸側の減衰
力を独立して可変できる減衰力可変型液圧緩衝器に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a variable damping force type hydraulic shock absorber for vehicles such as automobiles, and more specifically, the present invention relates to a variable damping force type hydraulic shock absorber for vehicles such as automobiles. This invention relates to a variable damping force hydraulic shock absorber that can be varied independently.

(従来の技術) 一般に、ショックアブソーバには、通常走行時路面の凹
凸によるバンブを低い圧側減衰力で吸収して乗心地を充
たし、その後の、リバウンドを伸側減衰力を高めて吸収
する他、車体のロール等の発生時には高い圧側減衰力で
車体の傾斜を防止して走行安定性を充たすことが要求さ
れる。そのため、走行状態に応じて減衰力を増減操作し
、通常走行時には乗心地を良くする低い減衰力を、車体
のダイブ発生時には走行安定性を冨めるような高い減衰
力をそれぞれ発生する減衰力可変型液圧緩衝器も普及し
ている。
(Prior Art) In general, shock absorbers absorb bumps caused by irregularities on the road surface during normal driving with a low compression side damping force to provide a comfortable ride, and then absorb the subsequent rebound by increasing the rebound side damping force. When vehicle body roll occurs, a high compression damping force is required to prevent the vehicle body from tilting to ensure running stability. Therefore, the damping force can be increased or decreased depending on the driving condition, producing a low damping force that improves riding comfort during normal driving, and a high damping force that increases driving stability when the car body dives. Variable hydraulic shock absorbers are also popular.

従来のこの種の減衰力可変型液圧緩衝器としては、例え
ば特開昭61−85210号公報に記載のものが知られ
ている。この装置では、減衰力可変型のショックアブソ
ーバ内に設けられた単一の圧電素子が路面振動に応じた
シリンダ内の液圧を検出して検出信号を出力し、コント
ローラが検出信号の大きさに基づいて前記圧電素子に電
圧を印加して圧行程、伸行程に拘らず減衰力を一律にソ
フl−からハードに切り換える。なお、減衰力のソフト
とハードの切り換えは、検出信号の大きさが設定値を超
えると行われ、所定時間維持される。
As a conventional variable damping force type hydraulic shock absorber of this type, the one described in, for example, Japanese Patent Application Laid-open No. 85210/1983 is known. In this device, a single piezoelectric element installed in a variable damping force shock absorber detects the hydraulic pressure in the cylinder in response to road vibration and outputs a detection signal, and the controller adjusts the magnitude of the detection signal. Based on this, a voltage is applied to the piezoelectric element to uniformly switch the damping force from soft l- to hard regardless of the compression stroke or extension stroke. Note that switching between soft and hard damping force is performed when the magnitude of the detection signal exceeds a set value, and is maintained for a predetermined period of time.

すなわち、減衰力は所定時間内は圧行程、伸行程に拘ら
ずハードに維持され、所定時間内において液圧は検出さ
れない。
That is, the damping force is maintained hard regardless of the pressure stroke or extension stroke within the predetermined time, and no hydraulic pressure is detected within the predetermined time.

(発明が解決しようとする課題) しかしながら、このような従来の減衰力可変型液圧緩衝
装置にあっては、単一の圧電素子で液圧の絶対値を検出
して圧行程、伸行程を問わす液圧の絶対値に応じた検出
信号を出力する構成となっていたため、行程に拘らず一
律に出力される検出信号の大きさから圧行程および伸行
程を判別できないことから、圧行程、伸行程それぞれに
独立した制御が行えず、路面振動に対して圧側および伸
側減衰力を適切に制御できないという問題点があった。
(Problem to be solved by the invention) However, in such a conventional variable damping force hydraulic shock absorber, a single piezoelectric element detects the absolute value of the hydraulic pressure and determines the pressure stroke and extension stroke. Since the configuration was such that a detection signal was output according to the absolute value of the hydraulic pressure being questioned, pressure stroke and extension stroke could not be determined from the magnitude of the detection signal that was uniformly output regardless of the stroke. There was a problem in that independent control could not be performed for each extension stroke, and compression side and rebound side damping forces could not be appropriately controlled against road vibration.

例えば、凹凸路において、路面振動を減衰するために検
出信号に応じて減衰力を所定期間ハードに切り換えると
、連続した振動人力のうち伸側の振動入力に対する走行
安定性は充たされるものの、圧側の振動入力に対しては
高い減衰力が逆に加振源となって乗心地が悪化し、結局
、乗心地と走行安定性の両立が図れない。
For example, on a bumpy road, if the damping force is switched to hard for a predetermined period of time in response to a detection signal in order to attenuate road surface vibrations, running stability will be satisfied against vibration input on the extension side of the continuous human vibration input, but on the compression side. In response to vibration input, the high damping force conversely becomes a source of vibration, worsening ride comfort, and ultimately making it impossible to achieve both ride comfort and running stability.

(発明の目的) そこで本発明は、ピストンの移動方向に対応して大きさ
の異なる伸側および圧側液室の液圧力を2個の圧電素子
で同時に検出することにより、圧電素子の出力に基づい
てピストンの移動方向を正確に判別して、減衰力を圧側
および伸側に対してそれぞれ独立して適切に変化させる
ことを目的としている。
(Objective of the Invention) Therefore, the present invention uses two piezoelectric elements to simultaneously detect the hydraulic pressures of the expansion side and compression side liquid chambers, which have different sizes in accordance with the moving direction of the piston, and thereby detects the hydraulic pressure based on the output of the piezoelectric element. The purpose of this invention is to accurately determine the direction of movement of the piston and appropriately change the damping force on the compression side and the expansion side, respectively, independently.

(課題を解決するための手段) 本発明による減衰力可変型液圧緩衝器は上記目的達成の
ため、作動液の充填されたシリンダと、シリンダの一端
から挿入されたピストンロッドの先端に設けられ、シリ
ンダ内を液圧緩衝器の伸側行程時容積減少される伸側液
室とその圧側行程時容積減少される圧側液室とに画成す
るピストンと、前記伸側液室の作動液を伸側行程時に伸
側液室から流出させる伸側流路および前記圧側液室の作
動液を圧側行程時に圧側液室から流出させる圧側流路と
、伸側流路および圧側流路におのおの設けられ、その曲
げ剛性に応じた減衰力を発生する伸側ディスクバルブお
よび圧側ディスクバルブと、対応する伸側ディスクバル
ブまたは圧側ディスクバルブの曲げ剛性を変化させて発
生減衰力を変化させ、かつ、対応するディスクバルブを
介して入力される伸側液室または圧側液室の液圧力、な
らびに、対応するディスクバルブの背面側の圧側液室ま
たは伸側液室の液圧力に応じて出力信号を発生する第1
および第2の圧電素子と、を備え、第1および第2の圧
電素子からの出力信号により、液圧緩衝器の作動方向を
判定して、第1および第2の圧電素子を駆動制御してい
る。
(Means for Solving the Problems) In order to achieve the above object, the variable damping force type hydraulic shock absorber according to the present invention includes a cylinder filled with hydraulic fluid and a tip of a piston rod inserted from one end of the cylinder. a piston that defines the inside of the cylinder into a rebound side liquid chamber whose volume is decreased during the expansion side stroke of the hydraulic pressure buffer and a pressure side liquid chamber whose volume is decreased during its compression side stroke; A compression side flow path for causing the working fluid in the compression side liquid chamber to flow out from the compression side liquid chamber during the compression side stroke; , an expansion side disc valve and a compression side disc valve that generate a damping force according to their bending rigidity, and a corresponding expansion side disc valve or compression side disc valve that changes the generated damping force by changing the bending rigidity, and responds accordingly. A second valve that generates an output signal in response to the hydraulic pressure in the expansion side liquid chamber or the pressure side liquid chamber inputted via the disc valve, and the hydraulic pressure in the compression side liquid chamber or the expansion side liquid chamber on the rear side of the corresponding disc valve. 1
and a second piezoelectric element, the operation direction of the hydraulic shock absorber is determined based on the output signals from the first and second piezoelectric elements, and the drive control of the first and second piezoelectric elements is performed. There is.

(作用) 本発明では、ピストンの移動方向に対応するディスクバ
ルブを介して入力される伸側液室または圧側液室の液圧
力、ならびに、対応するディスクバルブの背面側の圧側
液室または伸側液室の液圧力が第1および第2の圧電素
子で検出され、液圧力に応じて大きさの異なる液圧信号
が出力され、液圧信号に基づいて液圧緩衝器の作動方向
が判別され、第1および第2の圧電素子に駆動電圧が印
加されて圧側および伸側の減衰力が制御される。
(Function) In the present invention, the hydraulic pressure in the expansion side liquid chamber or the pressure side liquid chamber input via the disc valve corresponding to the moving direction of the piston, as well as the hydraulic pressure in the compression side liquid chamber or the expansion side on the back side of the corresponding disc valve. The hydraulic pressure in the liquid chamber is detected by the first and second piezoelectric elements, a hydraulic pressure signal having a different magnitude is output depending on the hydraulic pressure, and the operating direction of the hydraulic shock absorber is determined based on the hydraulic pressure signal. , a driving voltage is applied to the first and second piezoelectric elements to control the damping force on the compression side and the expansion side.

したがって、路面振動に応じて圧側および伸側の減衰力
がそれぞれ独立して増減操作され、路面振動に対して乗
心地と走行安定性を両立できる。
Therefore, the compression-side and rebound-side damping forces are independently increased or decreased in response to road vibrations, making it possible to achieve both ride comfort and driving stability against road vibrations.

なお、実用新案登録請求の範囲にいう圧側行程、伸側行
程とはシリンダに対してピストンが圧縮する向きに移動
する場合、および伸びる向きに移動する場合のことであ
り、以下、単に圧行程、伸行程および圧側、伸側と略称
して用いることもある。
In addition, the compression side stroke and the expansion side stroke referred to in the claims of the utility model registration refer to the cases where the piston moves in the direction of compression and the case where the piston moves in the direction of extension with respect to the cylinder. It is sometimes abbreviated as extension stroke, compression side, and extension side.

また、実用新案登録請求の範囲にいう液圧緩衝器の作動
方向とは、シリンダに対してピストンが移動する方向の
ことであり、以下、単にピストンの移動方向ということ
もある。
Furthermore, the operating direction of the hydraulic shock absorber referred to in the claims of the utility model registration refers to the direction in which the piston moves relative to the cylinder, and hereinafter may also simply be referred to as the moving direction of the piston.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第1〜6図は本発明に係る減衰力可変型液圧緩衝器の一
実施例を示す図である。
1 to 6 are diagrams showing an embodiment of a variable damping force type hydraulic shock absorber according to the present invention.

まず、構成を説明する。第1図はショックアブソーバの
全体構成図、第2図はその要部断面図、第3図はシステ
ムの全体構成図、第4図はその一系統の制御回路を示す
図である。
First, the configuration will be explained. FIG. 1 is an overall configuration diagram of the shock absorber, FIG. 2 is a sectional view of its main parts, FIG. 3 is an overall configuration diagram of the system, and FIG. 4 is a diagram showing one system of the control circuit.

第1図において、1は減衰力可変型のショックアブソー
バである。ショックアブソーバ1は密封された外筒2と
、外筒2に内蔵されたシリンダ3と、シリンダ3の一端
から挿入されたピストンロッド4と、ピストンロッド4
の先端に設けられ、シリンダ3の内壁を軸方向に摺動す
るピストン5と、シリンダ3の下端に設けられたボトム
バルブ6と、外筒2の内壁およびシリンダ3によって形
成されるリザーバ室7と、ピストンロッド4を支持する
ロントガイド8と、ロントガイド8の上部に設けられた
オイルシール9と、外筒2の上部ヲ閉止するストッパプ
レート10と、を含んで構成されている。外筒2は有底
筒状を成し、シリンダ3、ロッドガイド8およびオイル
シール9を収容し、上端を加締めて形成されている。ま
た、外筒2の下端部には、車両の車軸等に取り付けるた
めのアイブツシュ11およびアイ12が固着されている
。ピストン5はシリンダ3の内部をショックアブソーバ
1の伸側行程時(以下、伸行程という)に内部容積が減
少される伸側液室14と、その圧側行程時(以下、圧行
程という)に内部容積が減少される圧側液室15と、に
画成する。伸側液室14および圧側液室15内の圧力は
路面振動の大きさに応じて発生し、その圧力を検出すれ
ば路面振動の入力状況、すなわち走行状態を検出できる
。シリンダ3は上端開口部がロッドガイド8で閉塞され
、下端に連通孔16を有するボトムボディ17を備えて
おり、ボトムボディ17にはボトムバルブ6が取付られ
ている。ボトムバルブ6は伸行程で開くチエツクバルブ
18と、チエツクバルブ18が開くとき作動液を流入さ
せるポート19と、圧行程で開く圧側バルブ20と、圧
側バルブ20が開くとき減衰力を発生させるオリフィス
21と、チエツクバルブ18の開度を規制するストッパ
プレート22と、ボトムボディ12にチエ・7クバルブ
18等を固定するカシメビン23と、を含んで構成され
る。伸行程において、リザーバ室7内の作動液は圧側液
室15内の負圧力によりチエツクバルブ18を開き、圧
側液室15に流入する。このとき、チエツクバルブ18
はストッパプレート22によってその開度が規制される
。また、圧行程では、圧側液室15内の作動液は圧側バ
ルブ20を開き、オリフィス21で圧側液室15内の正
圧力に対応した減衰力を発生し、連通孔16を通ってリ
ザーバ室7に流入する。ピストン5の外周部にはテフロ
ン等の低摩擦材料で形成されたシール部材24が設けら
れ、シール部材24はシリンダ3の内壁に接して摺動す
る。また、ピストンロッド4にはリテーナ25が固定さ
れ、リテーナ25は上部に設けられた弾性体のリバウン
ドストッパ26とともに、ピストン5とロントガイド8
との衝突を緩和させる。オイルシール9の内周部には、
ピストンロッド4に弾接し、内部の液密を維持するメイ
ンリップ27と、外部からの泥水等を阻止するダストリ
ップ28とが形成されている。ストッパプレート10は
シリンダ3の上端に下部が嵌合し、中央の貫通孔10a
内の図示しないブツシュでピストンロッド4を摺動自在
にガイドする。ピストンロッド4の上端から引き出され
た配線30はコントロールユニット100に接続されて
いる。
In FIG. 1, reference numeral 1 denotes a variable damping force type shock absorber. The shock absorber 1 includes a sealed outer cylinder 2, a cylinder 3 built into the outer cylinder 2, a piston rod 4 inserted from one end of the cylinder 3, and a piston rod 4.
A piston 5 provided at the tip of the cylinder 3 and sliding in the axial direction on the inner wall of the cylinder 3, a bottom valve 6 provided at the lower end of the cylinder 3, and a reservoir chamber 7 formed by the inner wall of the outer cylinder 2 and the cylinder 3. , a front guide 8 that supports the piston rod 4, an oil seal 9 provided on the top of the front guide 8, and a stopper plate 10 that closes the top of the outer cylinder 2. The outer cylinder 2 has a cylindrical shape with a bottom, houses the cylinder 3, the rod guide 8, and the oil seal 9, and is formed by crimping the upper end. Furthermore, an eye bush 11 and an eye 12 are fixed to the lower end of the outer cylinder 2 for attachment to a vehicle axle or the like. The piston 5 connects the inside of the cylinder 3 to a rebound side fluid chamber 14 whose internal volume is reduced during the shock absorber 1's rebound stroke (hereinafter referred to as the extension stroke) and an internal volume during the compression side stroke (hereinafter referred to as the pressure stroke). and a pressure side liquid chamber 15 whose volume is reduced. The pressure in the expansion side liquid chamber 14 and the pressure side liquid chamber 15 is generated according to the magnitude of road vibration, and by detecting the pressure, it is possible to detect the input state of road vibration, that is, the driving state. The cylinder 3 has a bottom body 17 whose upper end opening is closed by a rod guide 8 and has a communication hole 16 at its lower end, and a bottom valve 6 is attached to the bottom body 17. The bottom valve 6 includes a check valve 18 that opens during the extension stroke, a port 19 that allows hydraulic fluid to flow in when the check valve 18 opens, a pressure side valve 20 that opens during the pressure stroke, and an orifice 21 that generates a damping force when the pressure side valve 20 opens. , a stopper plate 22 for regulating the opening degree of the check valve 18 , and a caulking pin 23 for fixing the check valve 18 and the like to the bottom body 12 . During the extension stroke, the hydraulic fluid in the reservoir chamber 7 opens the check valve 18 due to the negative pressure in the pressure side fluid chamber 15, and flows into the pressure side fluid chamber 15. At this time, check valve 18
The opening degree is regulated by the stopper plate 22. In addition, in the pressure stroke, the hydraulic fluid in the pressure side liquid chamber 15 opens the pressure side valve 20, generates a damping force corresponding to the positive pressure in the pressure side liquid chamber 15 at the orifice 21, and passes through the communication hole 16 to the reservoir chamber 7. flows into. A seal member 24 made of a low-friction material such as Teflon is provided on the outer circumference of the piston 5, and the seal member 24 slides in contact with the inner wall of the cylinder 3. Further, a retainer 25 is fixed to the piston rod 4, and the retainer 25 is connected to the piston 5 and the front guide 8 together with a rebound stopper 26 of an elastic body provided at the upper part.
Alleviate conflicts with. On the inner circumference of the oil seal 9,
A main lip 27 that comes into elastic contact with the piston rod 4 and maintains internal liquid tightness, and a dust lip 28 that prevents muddy water and the like from coming in from the outside are formed. The stopper plate 10 has a lower part fitted to the upper end of the cylinder 3, and a through hole 10a in the center.
The piston rod 4 is slidably guided by a bushing (not shown) inside. A wiring 30 drawn out from the upper end of the piston rod 4 is connected to a control unit 100.

第2図はピストン5周辺の断面を示しており、図中上方
が車体側であり、図中下方が車輪側である。同図におい
て、ピストンロッド4の中央には配線30を収容する配
線通路41が形成され、配線通路41は徐々に拡大して
下端のネジ部41aでピストン5と螺合する。ピストン
5はピストンロッド4に螺合する本体42と、本体42
の下端部に螺合するスリーブ43と、を有し、スリーブ
43の下端部にはアジャストナツト44が螺合固定され
ている。本体42には中空部45と、連通孔46.47
とが形成されており、伸側液室14および下側液圧室1
5内の作動液は中空部45および連通孔46.47を経
由して相互に流動する。スリーブ43には連通孔48が
形成されている。また、ピストン5の内部には円形断面
の収容孔49.50が形成されており、収容孔49.5
0は中空部45と連通している。中空部45の内部には
、バルブボディ51が摺動自在に挿入され、バルブボデ
ィS1は中空部45を伸側液室14に連通した上部液室
52と、圧側液室15に連通した下部液室53とに区画
する。また、バルブボディ51には上部液室52および
下部液室53を別個に連通させる伸側流路54および圧
側流路55が設けられ、伸側流路54は伸側液室14の
作動液を伸側行程時に伸側液室14より流出させ、圧側
流路55は圧側液室15の作動液を圧側行程時に圧側液
室15より流出させる。伸側流路54および圧側流路5
5には伸側ディスクバルブ56および圧側ディスクバル
ブ57がおのおの設けられ、伸側および圧側ディスクバ
ルブ5G、57は複数枚の薄板で形成されて所定の曲げ
剛性を有し、曲げ剛性に応じてバルブボディ51に密着
して伸側流路54および圧側流路55を閉塞する。また
、伸側および圧側ディスクバルブ56.57は表裏両面
におのおの所定の受圧面積を有し、ボトムバルブ51側
の面から受ケる伸側液室14および圧側液室15内の液
圧力に応じて開き、その曲げ剛性に応じて伸側流路54
および圧側流路55の開口面積を変化させ、開口面積に
応じた所定の減衰力を発生させる。なお、伸側および圧
側ディスクバルブ56.57の両側にはスライダ58お
よびバルブコア59が配設され、スライダ58およびバ
ルブコア59はバルブボディ51とともに伸側および圧
側ディスクバルブ56.57を把持し、図中上下方向か
ら押圧されると伸側および圧側ディスクバルブ56.5
7の曲げ剛性を変化させ、その曲げ剛性に応じて伸側流
路54および圧側流路55の開口面積を減らして発生減
衰力を増加させる。また、スライダ58およびバルブコ
ア59はプレート61.62を介して第1の圧電素子8
0および第2の圧電素子90に当接する。圧行程におい
て、スライダ58は圧側ディスクバルブ57から伝えら
れる圧側液室15内の液圧力を第1の圧電素子80に伝
達する。また、スライダ58には圧側ディスクバルブ5
7よりも受圧面積の小さな受圧面53aが設けられてお
り、伸行程に、おいて、スライダ58は伸側液室14内
の液圧力を受圧面58aで受圧して背面側にある第1の
圧電素P80に伝達する。伸行程において、バルブコア
59は伸側ディスクバルブ56から伝えられる伸側液室
14内の液圧力を受け、液圧力を第2の圧電素子90に
伝達する。また、バルブコア59には伸側ディスクバル
ブ56側に所定の受圧面積を存する受圧面59aが設け
られており、バルブコア59は圧行程において、圧側液
室15内の液圧力を受圧面59aで受圧して背面側にあ
る第2の圧電素子90に伝達する。
FIG. 2 shows a cross section around the piston 5, with the upper side of the figure being the vehicle body side and the lower side of the figure being the wheel side. In the figure, a wiring passage 41 for accommodating the wiring 30 is formed in the center of the piston rod 4, and the wiring passage 41 gradually expands and is screwed into the piston 5 at a threaded portion 41a at the lower end. The piston 5 includes a main body 42 that is screwed onto the piston rod 4, and a main body 42.
A sleeve 43 is screwed to the lower end of the sleeve 43, and an adjustment nut 44 is screwed and fixed to the lower end of the sleeve 43. The main body 42 has a hollow part 45 and communication holes 46 and 47.
are formed, an extension side liquid chamber 14 and a lower side liquid pressure chamber 1.
The hydraulic fluid in 5 flows into each other via the hollow part 45 and the communicating holes 46,47. A communication hole 48 is formed in the sleeve 43 . Further, a housing hole 49.50 having a circular cross section is formed inside the piston 5.
0 communicates with the hollow portion 45. A valve body 51 is slidably inserted into the hollow part 45, and the valve body S1 has an upper liquid chamber 52 which communicates the hollow part 45 with the expansion side liquid chamber 14, and a lower liquid chamber 52 which communicates with the compression side liquid chamber 15. It is divided into a chamber 53. Further, the valve body 51 is provided with a growth side flow path 54 and a pressure side flow path 55 that separately communicate the upper liquid chamber 52 and the lower liquid chamber 53. The hydraulic fluid in the compression side liquid chamber 15 is caused to flow out from the expansion side liquid chamber 14 during the extension stroke, and the pressure side flow path 55 causes the hydraulic fluid in the compression side liquid chamber 15 to flow out from the compression side liquid chamber 15 during the compression side stroke. Growth side flow path 54 and compression side flow path 5
5 is provided with a growth-side disc valve 56 and a compression-side disc valve 57, respectively, and the growth-side and compression-side disc valves 5G and 57 are formed of a plurality of thin plates and have a predetermined bending rigidity. It comes into close contact with the body 51 and closes the growth side flow path 54 and the compression side flow path 55. In addition, the expansion side and compression side disc valves 56 and 57 each have a predetermined pressure receiving area on both the front and back surfaces, and respond to the liquid pressure in the expansion side liquid chamber 14 and the compression side liquid chamber 15 that are received from the surface on the bottom valve 51 side. The extension side flow path 54 is opened according to its bending rigidity.
Then, the opening area of the pressure side flow path 55 is changed to generate a predetermined damping force according to the opening area. In addition, a slider 58 and a valve core 59 are arranged on both sides of the expansion side and compression side disc valves 56.57, and the slider 58 and the valve core 59 grip the expansion side and compression side disc valves 56.57 together with the valve body 51. When pressed from above and below, the expansion side and compression side disc valves 56.5
7, and the opening areas of the expansion side flow path 54 and the compression side flow path 55 are reduced in accordance with the bending rigidity to increase the generated damping force. Further, the slider 58 and the valve core 59 are connected to the first piezoelectric element 8 via the plates 61 and 62.
0 and the second piezoelectric element 90. In the pressure stroke, the slider 58 transmits the hydraulic pressure in the pressure side liquid chamber 15 transmitted from the pressure side disc valve 57 to the first piezoelectric element 80 . The slider 58 also includes a pressure side disc valve 5.
A pressure-receiving surface 53a having a smaller pressure-receiving area than 7 is provided, and during the extension stroke, the slider 58 receives the liquid pressure in the extension-side liquid chamber 14 with the pressure-receiving surface 58a and transfers the pressure to the first The signal is transmitted to piezoelectric element P80. During the extension stroke, the valve core 59 receives the hydraulic pressure in the expansion side liquid chamber 14 transmitted from the expansion side disc valve 56 and transmits the hydraulic pressure to the second piezoelectric element 90 . Further, the valve core 59 is provided with a pressure receiving surface 59a having a predetermined pressure receiving area on the expansion side disc valve 56 side, and the valve core 59 receives the liquid pressure in the pressure side liquid chamber 15 on the pressure receiving surface 59a during the pressure stroke. and is transmitted to the second piezoelectric element 90 on the back side.

第1の圧電素子80はプレート63、キャップ64およ
びスライダ58によって支持され、第2の圧電素子はバ
ルブコア59およびキャンプ65によって支持されてい
る。
The first piezoelectric element 80 is supported by the plate 63, cap 64 and slider 58, and the second piezoelectric element is supported by the valve core 59 and camp 65.

第1の圧電素子80および第2の圧電素子90は所定の
セラミックス(以下、圧電材料という)の圧電効果およ
び逆圧電効果(電歪効果ともいう)を利用しており、一
対の電極を有する薄い圧電材料を多数枚(例えば、10
0枚程度)積層して形成される。圧電効果とは、圧電材
料の電極に電圧を印加すると、印加電圧の変化に応じて
圧電材料が図中上下方向に伸縮する(以下、変位という
)現象をいい、圧電材料に特有の現象である。
The first piezoelectric element 80 and the second piezoelectric element 90 utilize the piezoelectric effect and inverse piezoelectric effect (also called electrostrictive effect) of a predetermined ceramic (hereinafter referred to as piezoelectric material). A large number of piezoelectric materials (for example, 10
(approximately 0 sheets) is formed by laminating them. The piezoelectric effect is a phenomenon in which when a voltage is applied to the electrodes of a piezoelectric material, the piezoelectric material expands and contracts in the vertical direction in the figure (hereinafter referred to as displacement) in response to changes in the applied voltage, and is a phenomenon unique to piezoelectric materials. .

すなわち、伸行程において、第1の圧電素子80は印加
電圧に応じた所定の変位力を発生してスライダ58を押
圧し、伸側ディスクバルブ56の曲げ剛性を変えて伸側
流路54の開口面積を凍らし、所定の減衰力(以下、ソ
フトという)を増加して高減衰力(以下、ハードという
)に切り換える。一方、圧行程において、第2の圧電素
子90は印加電圧に応じた所定の変位力を発生してバル
ブコア59を押圧し、圧側ディスクバルブ57の曲げ剛
性を変えて圧側流路55の開口面積を減らし、減衰力を
ソフトからハードに切り換える。
That is, in the extension stroke, the first piezoelectric element 80 generates a predetermined displacement force according to the applied voltage to press the slider 58, change the bending rigidity of the extension side disc valve 56, and open the extension side flow path 54. The area is frozen, a predetermined damping force (hereinafter referred to as "soft") is increased, and the damping force is switched to a high damping force (hereinafter referred to as "hard"). On the other hand, in the compression stroke, the second piezoelectric element 90 generates a predetermined displacement force according to the applied voltage to press the valve core 59, and changes the bending rigidity of the compression side disc valve 57 to increase the opening area of the compression side flow path 55. reduce the damping force and switch the damping force from soft to hard.

また、圧電材料の上下方向に圧力若しくは変位力が加え
られると圧電材料に変位が生じ、圧電材料は変位に応じ
て起電力を発生する。この現象を逆圧電現象といい、こ
の起電力の大きさから逆に圧電材料に加わっている圧力
著しくは変位力の大きさを検出することが可能である。
Furthermore, when pressure or displacement force is applied to the piezoelectric material in the vertical direction, the piezoelectric material is displaced, and the piezoelectric material generates an electromotive force in response to the displacement. This phenomenon is called an inverse piezoelectric phenomenon, and from the magnitude of this electromotive force, it is possible to detect the magnitude of the pressure or displacement force applied to the piezoelectric material.

すなわち、圧行程において、第1の圧電素子80はスラ
イダ58を介して圧側ディスクバルブ57の受圧面積に
応じて伝達される圧側液室15内の液圧力を検出し、受
圧面積および液圧力に応じた圧側信号Spを出力する。
That is, in the pressure stroke, the first piezoelectric element 80 detects the hydraulic pressure in the pressure side liquid chamber 15 that is transmitted via the slider 58 according to the pressure receiving area of the pressure side disc valve 57, and detects the hydraulic pressure in the pressure side liquid chamber 15 that is transmitted according to the pressure receiving area and the hydraulic pressure. outputs a pressure side signal Sp.

同時に、第2の圧電素子90は対応する伸側ディスクバ
ルブ56の背面側の圧側液室15内の液圧力をバルブコ
ア59の受圧面積に応じて受け、圧側ディスクバルブ5
7より小さな受圧面積および液圧力に応じて圧側信号S
pを出力する。
At the same time, the second piezoelectric element 90 receives the hydraulic pressure in the pressure side liquid chamber 15 on the back side of the corresponding expansion side disc valve 56 according to the pressure receiving area of the valve core 59, and the pressure side disc valve 56
Pressure side signal S according to pressure receiving area smaller than 7 and liquid pressure
Output p.

すなわち、圧行程においては第1の圧電素子80が受圧
面積に応じて第2の圧電素子90よりも大きな出力信号
を出力する。
That is, in the pressure stroke, the first piezoelectric element 80 outputs a larger output signal than the second piezoelectric element 90 depending on the pressure receiving area.

一方、伸行程において、第2の圧電素子90はバルブコ
ア59を介して伸側ディスクバルブ56の受圧面積に応
じて伝達される伸側液室14内の液圧力を検出し、受圧
面積および液圧力に応じた伸側信号Ssを出力する。同
時に、第1の圧電素子80は対応する圧側ディスクバル
ブ57の背面側にある伸側液室14内の液圧力をスライ
ダ58の受圧面積に応じて受け、伸側ディスクバルブ5
6よりも小さな受圧面積および液圧力に応じた伸側信号
Ssを出力する。すなわち、伸行程においては第2の圧
電素子90が受圧面積に応じて第1の圧電素子80より
も大きな出力信号を出力する。
On the other hand, in the extension stroke, the second piezoelectric element 90 detects the hydraulic pressure in the expansion side liquid chamber 14 that is transmitted via the valve core 59 according to the pressure receiving area of the expansion side disc valve 56, and detects the pressure receiving area and the hydraulic pressure. The extension side signal Ss corresponding to the output is output. At the same time, the first piezoelectric element 80 receives the hydraulic pressure in the expansion side liquid chamber 14 on the back side of the corresponding compression side disc valve 57 according to the pressure receiving area of the slider 58, and the expansion side disc valve 57
The expansion side signal Ss is output in accordance with the pressure receiving area smaller than 6 and the hydraulic pressure. That is, in the extension stroke, the second piezoelectric element 90 outputs a larger output signal than the first piezoelectric element 80 depending on the pressure receiving area.

言い換えると、第1および第2の圧電素子80.90は
伸側液室14および圧側液室15内の液圧力を検出する
液圧センサとしての機能を有するとともに、減衰力を増
減するアクチュエータとしての機能を有し、これら両機
能を交互に切り換えて使用される。なお、第1の圧電素
子80のコード81.82は第2の圧電素子90のコー
ド91.92と一緒に配線30を形成し、配線30はコ
ントロールユニッ) 1004.1続されている。また
、収容孔49の内部には調整機構67が収容されており
、調整機構67は本体42の上端に形成されたアジャス
トスクリュ68と、アジャストスクリュ68に螺合する
アジャストナツト69とで構成され、アジャストナツト
53は回動されると図中上下方向に移動し、第1の圧電
素子80の軸方向の位置を変化させる。また、ピストン
5の外部には伸行程で減衰力を発生する伸側バルブ70
および伸側バルブ70を上方に付勢するスプリング71
が設けられており、スプリング71の下端はアジャスト
ナツト72およびロックナツト73によってピストン5
に固定されている。伸行程において、伸側液室14内の
液圧に応じて下部液室53の液圧が上昇し、下部液室5
3内の作動液は連通孔48を通って伸側バルブ70を押
圧し、スプリング71の付勢力に打ち勝って伸側バルブ
70を下方に移動させ、伸側バルブ70で液圧に応じて
所定の減衰力を発生させる。
In other words, the first and second piezoelectric elements 80.90 have a function as a hydraulic pressure sensor that detects the hydraulic pressure in the expansion side liquid chamber 14 and the pressure side liquid chamber 15, and also function as an actuator that increases or decreases the damping force. It has two functions and is used by switching between these two functions alternately. Note that the cords 81 and 82 of the first piezoelectric element 80 form the wiring 30 together with the cords 91 and 92 of the second piezoelectric element 90, and the wiring 30 is connected to the control unit 1004.1. Further, an adjustment mechanism 67 is housed inside the accommodation hole 49, and the adjustment mechanism 67 is composed of an adjustment screw 68 formed at the upper end of the main body 42, and an adjustment nut 69 screwed into the adjustment screw 68. When the adjustment nut 53 is rotated, it moves in the vertical direction in the figure and changes the position of the first piezoelectric element 80 in the axial direction. Additionally, an extension valve 70 is provided outside the piston 5 to generate a damping force during the extension stroke.
and a spring 71 that urges the expansion side valve 70 upward.
The lower end of the spring 71 is connected to the piston 5 by an adjustment nut 72 and a lock nut 73.
is fixed. In the extension stroke, the liquid pressure in the lower liquid chamber 53 increases in accordance with the liquid pressure in the extension side liquid chamber 14, and the lower liquid chamber 5
The hydraulic fluid in 3 passes through the communication hole 48 and presses the expansion-side valve 70, overcomes the biasing force of the spring 71, moves the expansion-side valve 70 downward, and the expansion-side valve 70 moves to a predetermined level according to the hydraulic pressure. Generates damping force.

第1および第2の圧電素子70.90からの出力信号は
コントロールユニット100に入力されており、コント
ロールユニット100は第1および第2の圧電素子90
の出力信号の大きさによってショックアブソーバlの作
動方向(圧行程および伸行程)を判定し、圧側および伸
側信号Sp、S−sの大きさに応じて制御信号SA、S
Rを出力し、第1および第2の圧電素子70.90を駆
動制御する。
The output signals from the first and second piezoelectric elements 70.90 are input to the control unit 100, and the control unit 100 connects the first and second piezoelectric elements 90.
The operating direction (compression stroke and extension stroke) of the shock absorber l is determined based on the magnitude of the output signal of
R is output to drive and control the first and second piezoelectric elements 70.90.

コントロールユニット100の内部を説明するため第3
図に移る。同図において、コントロールユニット100
はI10ポート101と、入力回路110と、演算回路
120と、駆動回路130と、駆動用電源回路140と
、を備えている。I10ポート101にはショックアブ
ソーバlが配線30を介して接続されており、各々コン
トロールユニット100と信号の授受を行っている。
To explain the inside of the control unit 100, the third
Moving on to the figure. In the figure, a control unit 100
includes an I10 port 101, an input circuit 110, an arithmetic circuit 120, a drive circuit 130, and a drive power supply circuit 140. A shock absorber l is connected to the I10 port 101 via wiring 30, and signals are exchanged with the control unit 100, respectively.

この詳細を説明するため第4図に移る。同図において、
ショックアブソーバ1は内部に第1および第2の圧電素
子80.90を有し、第1および第2の圧電素子80.
90の一方のコード81.91は接地され、他方のコー
ド82.92はI10ポート101と接続されている。
In order to explain this in detail, we turn to FIG. 4. In the same figure,
The shock absorber 1 has first and second piezoelectric elements 80.90 inside, and the first and second piezoelectric elements 80.90.
One cord 81.91 of 90 is grounded and the other cord 82.92 is connected to I10 port 101.

第1の圧電素子80は液圧を検出して圧側信号Spを出
力し、I10ポート101のコンデンザCは圧側信号s
pの直流成分を遮断し、交流成分を通過させる。入力回
路110のバッファ112は圧側信号Spの交流成分を
増幅し、演算回路120に出力する。演算回路120は
例えばマイクロコンピュータ等で構成され、内部メモリ
に書き込まれたプログラムに従って外部データを取り込
み、これら取り込まれたデータおよび内部メモリに書き
込まれているデータなどに基づいて、減衰力の可変制御
に必要な処理値を演算する。すなわち、演算回路120
は伸側信号S、の大きさに基づいて伸側減衰力を制御す
る制御値を演算し、該制御値に応じた伸側制御信号S、
を駆動回路130に出力する。駆動回路130はバッフ
ァ131に伸側制御信号SAが入力されるとトランジス
タTr、をONとし、駆動用電源回路140の駆動電圧
をI10ボート101のダイオードD+を介して第1の
圧電素子80に印加し、減衰力をソフトからハードに切
り換える。また、駆動回路130はバッファ 132に
伸側制御信号SAが入力されると1−ランジスタTr2
をONとし、第1の圧電素子80の電荷をI10ボート
101のダイオードD2を介して放電し、減衰力をハー
ドからソフトに戻す。駆動用電源回路140は例えばD
C−DCコンバータで形成され、第1および第2の圧電
素子70.90を伸長可能な直流の高電圧(以下、駆動
電圧という)を出力する。
The first piezoelectric element 80 detects the hydraulic pressure and outputs the pressure side signal Sp, and the capacitor C of the I10 port 101 outputs the pressure side signal s.
Blocks the DC component of p and allows the AC component to pass. The buffer 112 of the input circuit 110 amplifies the AC component of the pressure side signal Sp and outputs it to the arithmetic circuit 120. The arithmetic circuit 120 is composed of, for example, a microcomputer, and takes in external data according to a program written in an internal memory, and performs variable control of the damping force based on the taken data and the data written in the internal memory. Calculate the necessary processing values. That is, the arithmetic circuit 120
calculates a control value for controlling the rebound damping force based on the magnitude of the rebound signal S, and generates a rebound control signal S, corresponding to the control value.
is output to the drive circuit 130. When the expansion side control signal SA is input to the buffer 131, the drive circuit 130 turns on the transistor Tr, and applies the drive voltage of the drive power supply circuit 140 to the first piezoelectric element 80 via the diode D+ of the I10 boat 101. and switch the damping force from soft to hard. Further, when the expansion side control signal SA is input to the buffer 132, the drive circuit 130 connects the 1-transistor Tr2.
is turned ON, the electric charge of the first piezoelectric element 80 is discharged through the diode D2 of the I10 boat 101, and the damping force is returned from hard to soft. The driving power supply circuit 140 is, for example, D
It is formed by a C-DC converter and outputs a direct current high voltage (hereinafter referred to as drive voltage) that can extend the first and second piezoelectric elements 70,90.

なお、第2の圧電素子90と接続する回路には上記と同
一番号を付し、その説明を省略する。
Note that the circuits connected to the second piezoelectric element 90 are given the same numbers as above, and the description thereof will be omitted.

また、圧電素子の位置調整は次のように行われる。すな
わち、圧電素子に所定の電圧を印加後放電させ、アジャ
ストナツト53を回動し、減衰手段60を圧迫すること
によって生ずる圧電素子からの電圧がある一定値となる
まで調整する。なお、伸側、圧側共に同じ手順によって
調整する。
Moreover, the position adjustment of the piezoelectric element is performed as follows. That is, after applying a predetermined voltage to the piezoelectric element, it is discharged, and the adjusting nut 53 is rotated to compress the damping means 60, thereby adjusting the voltage from the piezoelectric element until it reaches a certain constant value. The same procedure is used to adjust both the extension and compression sides.

次に、作用を第5図に基づいて説明する。Next, the operation will be explained based on FIG.

同図はバルブボディ51周辺の寸法を示しており、図中
上方には第1の圧電素子80が、図中下方には第2の圧
電素子90がそれぞれ配設されている。伸行程において
、ピストン3の移動に伴って伸側液室14内に液圧力P
が発生すると、伸側液室14内の作動液が連通孔46を
通って上部液室52に流入し、対応する伸側ディスクバ
ルブ56が液圧力Pに応じて開き、その曲げ剛性に応じ
て伸側流路54の開口面積が変わって所定の減衰力(ソ
フト)が発生ずる。このとき、伸側ディスクバルブ56
でその受圧面積Ay7に応じた押圧力F、が発生し、バ
ルブコア59を介して第2の圧電素子90に伝達され、
押圧力F、に応した出力信号V、が出力される。同時に
、対応するディスクバルブの背面側にある伸側液室14
内の液圧力Pによってスライダ58の受圧面積A、cc
に応した押圧力F、が発生してスライダ58から第1の
圧電素子80に伝達され、押圧力F、に応じた出力信号
V、が出力される。
The figure shows the dimensions around the valve body 51, with a first piezoelectric element 80 disposed in the upper part of the figure, and a second piezoelectric element 90 arranged in the lower part of the figure. In the extension stroke, as the piston 3 moves, a hydraulic pressure P is generated in the extension side liquid chamber 14.
When this occurs, the hydraulic fluid in the expansion side liquid chamber 14 flows into the upper liquid chamber 52 through the communication hole 46, the corresponding expansion side disc valve 56 opens according to the hydraulic pressure P, and the hydraulic fluid in the expansion side liquid chamber 14 flows according to its bending rigidity. The opening area of the expansion side flow path 54 changes, and a predetermined damping force (soft) is generated. At this time, the expansion side disc valve 56
A pressing force F corresponding to the pressure receiving area Ay7 is generated and transmitted to the second piezoelectric element 90 via the valve core 59,
An output signal V corresponding to the pressing force F is output. At the same time, the expansion side liquid chamber 14 on the back side of the corresponding disc valve
The pressure receiving area A, cc of the slider 58 due to the hydraulic pressure P within
A pressing force F corresponding to the pressing force F is generated and transmitted from the slider 58 to the first piezoelectric element 80, and an output signal V corresponding to the pressing force F is output.

ここで、スライダ58の受圧面58aの受圧面積Acc
および伸側ディスクバルブ56の受圧面積ATTは次式
で表される。すなわち、 ACC−π/ 4 (Dcz” −Dc+” )A、ア
=π/4 (DT、” −Dtz” )+、tz L、
I)C2ニスライダ58の外径、Dc、:受圧面58a
の内径、 DT4:伸側ディスクバルブ56の外径、D、3=伸側
デイスクバルブ5Gの内径、また、スライダ58の受圧
面積A((および伸側ディスクバルブ56の受圧面積A
CTに応じて発生ずる押圧力F。および押圧力F、はそ
れぞれ次式のように示される。
Here, the pressure receiving area Acc of the pressure receiving surface 58a of the slider 58
The pressure receiving area ATT of the expansion side disc valve 56 is expressed by the following formula. That is, ACC-π/4 (Dcz"-Dc+") A, A=π/4 (DT, "-Dtz")+, tz L,
I) Outer diameter of C2 varnish slider 58, Dc: Pressure receiving surface 58a
DT4: Outer diameter of the growth side disc valve 56, D, 3 = Inner diameter of the growth side disc valve 5G, and pressure receiving area A of the slider 58 ((and pressure receiving area A of the growth side disc valve 56)
Pressure force F generated according to CT. and pressing force F are respectively expressed by the following equations.

FT =PXA、ア 押圧力F、および押圧力F、はそれぞれ第1の圧電素子
80および第2の圧電素子90に伝達され、押圧力にほ
ぼ相当する出力信号■、およびVTが出力される。ここ
で、同図から分かるように伸側ディスクバルブ56の受
圧面積AToはスライダ53の受圧面積A((より太き
(形成されており、上記2式の間には次の関係がある。
FT = PXA, A pressing force F, and pressing force F are transmitted to the first piezoelectric element 80 and the second piezoelectric element 90, respectively, and output signals (2) and VT approximately corresponding to the pressing force are output. Here, as can be seen from the figure, the pressure receiving area ATo of the expansion side disc valve 56 is thicker than the pressure receiving area A((()) of the slider 53, and the following relationship exists between the above two equations.

Aアア〉A、c・・・・・・(2) 前記(1)、(2)弐から分かるように、受圧面積の大
きさに対応して押圧力Fアは押圧力Fcよりも大きいの
で出力信号V1は出力信号V、よりも大きい。したがっ
て、伸行程においては第2の圧電素子90の方が第1圧
電素子80よりも大きな出力信号を出力する。
Aa〉A, c... (2) As can be seen from (1) and (2) above, the pressing force Fa is larger than the pressing force Fc in accordance with the size of the pressure receiving area. Output signal V1 is greater than output signal V. Therefore, in the extension stroke, the second piezoelectric element 90 outputs a larger output signal than the first piezoelectric element 80.

一方、圧行程において、ピストン3の移動に伴って圧側
液室15内に液圧力Pが発生すると、圧側液室15内の
作動液が連通孔47を通って上部液室52に流入し、対
応する圧側ディスクバルブ57が液圧力Pに応じて開き
、その曲げ剛性に応じて圧側流路55の開口面積が変わ
って所定の減衰力(ソフト)が発生する。このとき、圧
側ディスクバルブ57でその受圧面積A(7に応じた押
圧力F、が発生し、スライダ58を介して第1の圧電素
子80に伝達され、押圧力F、に応じた出力信号vcが
出力される。同時に、対応するディスクバルブの背面側
にある圧側液室15内の液圧力Pによってバルブコア5
9の受圧面積ATCに応じた押圧力Ftが発生してバル
ブコア59から第2の圧電素子90に伝達され、押圧力
F7に応じた出力信号VTが出力される。
On the other hand, in the pressure stroke, when hydraulic pressure P is generated in the pressure side liquid chamber 15 as the piston 3 moves, the hydraulic fluid in the pressure side liquid chamber 15 flows into the upper liquid chamber 52 through the communication hole 47, and The pressure-side disc valve 57 opens in response to the hydraulic pressure P, and the opening area of the pressure-side flow path 55 changes in accordance with its bending rigidity to generate a predetermined damping force (soft). At this time, a pressing force F corresponding to the pressure receiving area A (7) is generated in the pressure side disc valve 57, and is transmitted to the first piezoelectric element 80 via the slider 58, and an output signal vc corresponding to the pressing force F is generated. At the same time, the valve core 5 is
A pressing force Ft corresponding to the pressure receiving area ATC of 9 is generated and transmitted from the valve core 59 to the second piezoelectric element 90, and an output signal VT corresponding to the pressing force F7 is output.

ここで、圧側ディスクバルブ57の受圧面積AcTおよ
びバルブコア59の受圧面59aの受圧面積A y (
は次式で表される。すなわち、 A、ア=π/ 4 (Dtz”  DTl2)A7.=
π/ 4  (DC42DC:l”  )但し、D、2
:圧側ディスクバルブ57の外径、DTl:圧側ディス
クバルブ57の内径、DC4:バルブコア59の外径、 I)ci:受圧面59aの内径、 また、圧側ディスクバルブ57の受圧面積A(7および
バルブコア59の受圧面積Aア、に応じた押圧力F、お
よび押圧力F1は次式のように示される。
Here, the pressure receiving area AcT of the pressure side disc valve 57 and the pressure receiving area A y (
is expressed by the following formula. That is, A, A=π/4 (Dtz” DTl2) A7.=
π/4 (DC42DC:l”) However, D, 2
: outer diameter of the pressure side disc valve 57, DTl: inner diameter of the pressure side disc valve 57, DC4: outer diameter of the valve core 59, I)ci: inner diameter of the pressure receiving surface 59a, and pressure receiving area A of the pressure side disc valve 57 (7 and valve core The pressing force F and the pressing force F1 corresponding to the pressure receiving area Aa of 59 are expressed by the following equation.

FT=PXA4C 押圧力FCおよび押圧力Fアはそれぞれ第1の圧電素子
80および第2の圧電素子90に伝達され、押圧力にほ
ぼ相当する出力信号VCおよび出力信号V7が出力され
る。ここで、同図から分かるように、圧側ディスクバル
ブ57の受圧面積ATTはバルブコア59の受圧面積A
rcよりも大きく形成されており、上記2式の間には次
の関係がある。
FT=PXA4C The pressing force FC and the pressing force FA are transmitted to the first piezoelectric element 80 and the second piezoelectric element 90, respectively, and an output signal VC and an output signal V7 substantially corresponding to the pressing force are output. Here, as can be seen from the figure, the pressure receiving area ATT of the pressure side disc valve 57 is the pressure receiving area A of the valve core 59.
It is formed larger than rc, and the following relationship exists between the above two equations.

ACT>ATc・・・・−(4) 上記(3)、(4)式から分かるように、受圧面積の大
きさに対応して押圧力F7は押圧力F。
ACT>ATc...-(4) As can be seen from equations (3) and (4) above, the pressing force F7 is the pressing force F corresponding to the size of the pressure receiving area.

よりも大きいので出力信号V7は出力信号■。よりも大
きい。したがって、圧行程においては第1圧電素子80
が第2の圧電素子90よりも大きな出力信号を出力する
。このように、本実施例ではシリンダ3内の液圧力を対
応するディスクバルブの受圧面積およびディスクバルブ
の背面側にあるスライダ58、バルブコア59の受圧面
積に応じて受け、2個の圧電素子から受圧゛面積に応じ
た出力信号をそれぞれ出力しているので、これらの出力
信号に基づいてショックアブソーバ1の作動方向全正確
に判別することができる。したがって、出力信号に基づ
いて路面振動の作動方向を正確に判定することができ、
路面振動に応じて減衰力を適切に制御できる。
Since it is larger than , the output signal V7 is the output signal ■. larger than Therefore, in the pressure stroke, the first piezoelectric element 80
outputs a larger output signal than the second piezoelectric element 90. In this way, in this embodiment, the hydraulic pressure in the cylinder 3 is received according to the pressure receiving area of the corresponding disc valve and the pressure receiving area of the slider 58 and the valve core 59 on the back side of the disc valve, and the pressure is received from the two piezoelectric elements. Since output signals corresponding to the area are outputted, the operating direction of the shock absorber 1 can be accurately determined based on these output signals. Therefore, the operating direction of road vibration can be accurately determined based on the output signal.
Damping force can be appropriately controlled according to road vibration.

これを具体的なタイミングチャートにすると第6図のよ
うに示される。この図において、横軸は振動の中心、縦
軸は振動の振幅に対応する。
A concrete timing chart of this is shown in FIG. 6. In this figure, the horizontal axis corresponds to the center of vibration, and the vertical axis corresponds to the amplitude of vibration.

同図のように仲行程において、伸側液室14内の液圧力
が第1および第2の圧電素子80.90で同時に検出さ
れ、それぞれの受圧面積と液圧力に応じた第1の圧電素
子80の出力信号V、および第2の圧電素子90の、出
力信号Vt  (伸側信号Ss)が出力される。このと
き、受圧面積の大きさに応じて出力信号■、が出力信号
■、より大きいことから、演算回路120で伸行程であ
ると判別され、伸側信号Ss(第2の圧電素子90の出
力信号Vt)の大きさに応じてコントロールユニット 
100から第1の圧電素子80に駆動電圧が印加され、
印加電圧に応じて所定の変位力が生じて伸側ディスクバ
ルブ56の曲げ剛性が変わり、伸側流路54の開口面積
が減少して伸側減衰力がソフトからハードに切り換えら
れる。
As shown in the figure, in the middle stroke, the hydraulic pressure in the expansion side liquid chamber 14 is simultaneously detected by the first and second piezoelectric elements 80 and 90, and the first piezoelectric element is detected according to the pressure receiving area and hydraulic pressure of each. The output signal V of 80 and the output signal Vt (expansion side signal Ss) of the second piezoelectric element 90 are output. At this time, since the output signal ■ is larger than the output signal ■ according to the size of the pressure receiving area, the arithmetic circuit 120 determines that it is the extension stroke, and the extension side signal Ss (the output of the second piezoelectric element 90 control unit depending on the magnitude of the signal Vt).
A driving voltage is applied from 100 to the first piezoelectric element 80,
A predetermined displacement force is generated in accordance with the applied voltage, the bending rigidity of the growth side disc valve 56 changes, the opening area of the growth side flow path 54 is reduced, and the growth side damping force is switched from soft to hard.

一方、圧行程において、圧側液室15内の液圧力が第1
および第2の圧電素子80.90で同時に検出され、そ
れぞれの受圧面積と液圧力に応じた第1の圧電素子80
の出力信号VCおよび第2の圧電素子90の出力信号V
T(圧側信号Sp)が出力される。このとき、受圧面積
の大きさに応じて出力信号■。が出力信号V、より大き
いことから、演算回路120で圧行程であると判別され
、圧側信号Sp(第1の圧電素子80の出力信号VC)
の大きさに応じてコントロールユニット100から第2
の圧電素子90に駆動電圧が印加され、印加電圧に応じ
て所定の変位力が生じて圧側ディスクバルブ57の曲げ
剛性が変わり、圧側流路55の開口面積が減少して圧側
減衰力がソフトからハードに切り換えられる。
On the other hand, in the pressure stroke, the liquid pressure in the pressure side liquid chamber 15 is
and the second piezoelectric element 80 and 90 simultaneously, and the first piezoelectric element 80 corresponds to the respective pressure receiving area and liquid pressure.
The output signal VC of the second piezoelectric element 90 and the output signal V of the second piezoelectric element 90
T (compression side signal Sp) is output. At this time, the output signal ■ corresponds to the size of the pressure receiving area. Since it is larger than the output signal V, the arithmetic circuit 120 determines that it is a pressure stroke, and the pressure side signal Sp (output signal VC of the first piezoelectric element 80)
from the control unit 100 depending on the size of the second
A driving voltage is applied to the piezoelectric element 90, and a predetermined displacement force is generated according to the applied voltage, changing the bending rigidity of the compression side disc valve 57, reducing the opening area of the compression side flow path 55, and changing the compression side damping force from soft to soft. Can be switched to hard.

このように、本実施例では2個の圧電素子で伸側液室1
4および圧側液室15内の液圧力を同時に検出するとと
もに、受圧面積に応じて圧電素子の発生ずる出力信号の
大きさを変えているので、これら圧電素子の出力信号か
らピストン5の移動方向を正確に判定して圧側および伸
側の減衰力を制御することができる。また、本実施例で
は2個の圧電素子を液圧検出のセンサおよび減衰力制御
のアクチュエータとに切り換えて使用しているので、出
力信号の大きさに基づいて圧側および伸側の減衰力をそ
れぞれ独立して増減操作することができ、路面振動に応
じて減衰力を適切に制御して乗心地および走行安定性を
両立できる。
In this way, in this embodiment, the expansion side liquid chamber 1 is controlled by two piezoelectric elements.
4 and the pressure side liquid chamber 15 are simultaneously detected, and the magnitude of the output signal generated by the piezoelectric element is changed depending on the pressure receiving area. Therefore, the moving direction of the piston 5 can be determined from the output signals of these piezoelectric elements. It is possible to accurately determine and control the damping force on the compression side and the rebound side. In addition, in this embodiment, two piezoelectric elements are used as a sensor for detecting hydraulic pressure and as an actuator for controlling damping force, so the damping force on the compression side and the expansion side can be adjusted based on the magnitude of the output signal. The damping force can be increased or decreased independently, and the damping force can be appropriately controlled according to road vibrations to achieve both ride comfort and driving stability.

なお、本実施例では減衰手段の両側に圧電素子を配設し
ているが、これに限らず、圧電素子の配置および構成方
法は上記実施例に限定されるものではない。
Although piezoelectric elements are disposed on both sides of the damping means in this embodiment, the arrangement and construction method of the piezoelectric elements are not limited to this.

また、本実施例では減衰力をソフトとハードの2段階に
切り換えているが、これに限らず、例えば無段階に変化
させるものであってもよい。
Further, in this embodiment, the damping force is switched between two stages, soft and hard, but the damping force is not limited to this, and may be changed steplessly, for example.

(効果) 本考案によれば、2個の圧電素子でピストンの移動方向
に対応するディスクバルブおよびディスクバルブの背面
側の受圧面より受圧面積に応じて圧側液室および伸側液
室内の液圧力を検出しているので、これら圧電素子の出
力信号からピストンの移動方向を正確に判定することが
でき、路面振動に応じて圧側および伸側の減衰力を適切
に増減操作して走行安定性および乗心地を両立できる。
(Effect) According to the present invention, the liquid pressure in the pressure side liquid chamber and the expansion side liquid chamber is adjusted according to the pressure receiving area from the disk valve corresponding to the moving direction of the piston and the pressure receiving surface on the back side of the disk valve using two piezoelectric elements. The piston movement direction can be accurately determined from the output signals of these piezoelectric elements, and the damping force on the compression and rebound sides can be increased or decreased appropriately in response to road vibrations to improve driving stability and Both ride comfort can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は本発明に係る減衰力可変型液圧緩。 重器の一実施例を示す図であり、第1図はそのショック
アブソーバの全体構成を示す断面図、第2図はその要部
断面構成図、第3図はそのシステムの全体構成図、第4
図はその一部分の回路図、第5図はその要部の寸法を示
す図、第6図はその作用を示す図である。 ■・・・・・・ショックアブソーバ、 3・・・・・・シリンダ、 4・・・・・・ピストンロッド、 5・・・・・・ピストン、 14・・・・・・伸側液室、 15・・・・・・圧側液室、 45・・・・・・中空部、 51・・・・・・バルブボディ、 52・・・・・・上部液室、 53・・・・・・下部液室、 54・・・・・・伸側流路、 55・・・・・・圧側流路、 56・・・・・・伸側ディスクバルブ、57・・・・・
・圧側ディスクバルブ、53・・・・・・スライダ、 59・・・・・・バルブコア、 80・・・・・・第1の圧電素子、 9o・・・・・・第2の圧電素子、 100・・・・・・コントロールユニット。 代 理 人 弁理士 有我軍一部 第 図 第 図 /I OC
Figures 1 to 6 show variable damping force type hydraulic relaxation according to the present invention. FIG. 1 is a cross-sectional view showing the overall structure of the shock absorber, FIG. 2 is a cross-sectional view of the main parts, and FIG. 4
The figure is a partial circuit diagram, FIG. 5 is a diagram showing the dimensions of the main part, and FIG. 6 is a diagram showing its operation. ■... Shock absorber, 3... Cylinder, 4... Piston rod, 5... Piston, 14... Rebound side liquid chamber, 15...Pressure side liquid chamber, 45...Hollow part, 51...Valve body, 52...Upper liquid chamber, 53...Lower part Liquid chamber, 54... Growth side flow path, 55... Pressure side flow path, 56... Growth side disc valve, 57...
- Compression side disc valve, 53...Slider, 59...Valve core, 80...First piezoelectric element, 9o...Second piezoelectric element, 100 ······control unit. Agent Patent Attorney Ugagun Partial Diagram/IOC

Claims (1)

【特許請求の範囲】 作動液の充填されたシリンダと、該シリンダの一端から
挿入されたピストンロッドの先端に設けられ、シリンダ
内を液圧緩衝器の伸側行程時容積減少される伸側液室と
その圧側行程時容積減少される圧側液室とに画成するピ
ストンと、前記伸側液室の作動液を伸側行程時に伸側液
室から流出させる伸側流路および前記圧側液室の作動液
を圧側行程時に圧側液室から流出させる圧側流路と、伸
側流路および圧側流路におのおの設けられ、その曲げ剛
性に応じた減衰力を発生する伸側ディスクバルブおよび
圧側ディスクバルブと、対応する伸側ディスクバルブま
たは圧側ディスクバルブの曲げ剛性を変化させて発生減
衰力を変化させ、かつ、対応するディスクバルブを介し
て入力される伸側液室または圧側液室の液圧力、ならび
に、対応するディスクバルブの背面側の圧側液室または
伸側液室の液圧力に応じて出力信号を発生する第1およ
び第2の圧電素子と、 を備え、第1および第2の圧電素子からの出力信号によ
り、液圧緩衝器の作動方向を判定して、第1および第2
の圧電素子を駆動制御することを特徴とする減衰力可変
型液圧緩衝器。
[Claims] A cylinder filled with hydraulic fluid, and a rebound fluid provided at the tip of a piston rod inserted from one end of the cylinder, whose volume is reduced during the rebound stroke of the hydraulic shock absorber inside the cylinder. a piston defined by a chamber and a compression side liquid chamber whose volume is reduced during the compression side stroke; a rebound side flow path through which the working fluid in the expansion side liquid chamber flows out from the expansion side liquid chamber during the expansion side stroke; and the pressure side liquid chamber. A compression side flow path that causes the hydraulic fluid to flow out from the compression side liquid chamber during the compression side stroke, and a compression side disc valve and a compression side disc valve that are provided in the expansion side flow path and the compression side flow path, respectively, and generate a damping force according to the bending rigidity of the expansion side flow path and the compression side flow path. and, the generated damping force is changed by changing the bending rigidity of the corresponding expansion side disc valve or the compression side disc valve, and the hydraulic pressure of the expansion side liquid chamber or the compression side liquid chamber is inputted via the corresponding disc valve, and first and second piezoelectric elements that generate an output signal in accordance with the hydraulic pressure of the pressure side liquid chamber or the expansion side liquid chamber on the back side of the corresponding disc valve, the first and second piezoelectric elements The direction of operation of the hydraulic shock absorber is determined based on the output signal from the first and second
A variable damping force hydraulic shock absorber characterized by driving and controlling a piezoelectric element.
JP19515488A 1988-08-03 1988-08-03 Damping force variable type liquid pressure shock absorber Pending JPH0241913A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19515488A JPH0241913A (en) 1988-08-03 1988-08-03 Damping force variable type liquid pressure shock absorber
US07/388,006 US4961483A (en) 1988-08-03 1989-08-01 Variable damping characteristics shock absorber with feature of generation of piston stroke direction indicative signal
GB8917622A GB2222226B (en) 1988-08-03 1989-08-02 Variable damping characteristics shock absorber with feature of generation of piston stroke direction indicative signal
DE3925763A DE3925763A1 (en) 1988-08-03 1989-08-03 SHOCK ABSORBER DEVICE WITH VARIABLE DAMPING CHARACTERISTICS, ESPECIALLY FOR MOTOR VEHICLES
GB9221422A GB2258904B (en) 1988-08-03 1992-10-13 Variable damping characteristics shock absorber with feature of generation of piston stroke direction indicative signal.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19515488A JPH0241913A (en) 1988-08-03 1988-08-03 Damping force variable type liquid pressure shock absorber

Publications (1)

Publication Number Publication Date
JPH0241913A true JPH0241913A (en) 1990-02-13

Family

ID=16336330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19515488A Pending JPH0241913A (en) 1988-08-03 1988-08-03 Damping force variable type liquid pressure shock absorber

Country Status (1)

Country Link
JP (1) JPH0241913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240425A (en) * 1989-03-13 1990-09-25 Monroe Auto Equip Co Device and method for limiting buffer
JPH04504397A (en) * 1990-04-16 1992-08-06 モンロー・オート・イクイプメント・カンパニー Method and device for controlling shock absorption device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240425A (en) * 1989-03-13 1990-09-25 Monroe Auto Equip Co Device and method for limiting buffer
JPH04504397A (en) * 1990-04-16 1992-08-06 モンロー・オート・イクイプメント・カンパニー Method and device for controlling shock absorption device

Similar Documents

Publication Publication Date Title
JP2752668B2 (en) Suspension system
US4790522A (en) Electroviscous fluid control device
US6024366A (en) Suspension apparatus
JPH10252803A (en) Shock absorber
US6332622B1 (en) Suspension apparatus having two interconnected shock absorbers
JPH0413568B2 (en)
US5509512A (en) Shock absorber with adjustable damping with controlled damping characteristics
JPH02142942A (en) Hydraulic shock absorber
US4722546A (en) Rear suspension controller
JPH06330977A (en) Damping force regulation type hydraulic buffer
JPH05162527A (en) Adjusting apparatus for vehicle supporting mechanism
JPH04296234A (en) Hydraulic shock absorber
JPH0241913A (en) Damping force variable type liquid pressure shock absorber
JP2002295566A (en) Damping force adjustable hydraulic shock absorber
JPH10339346A (en) Hydraulic shock absorber
JP4318071B2 (en) Hydraulic shock absorber
JP2741030B2 (en) Variable damping force type hydraulic shock absorber
JPH0742820Y2 (en) Suspension system
JPH0154202B2 (en)
JPH0747210Y2 (en) Variable damping force type hydraulic shock absorber
JPH0714008Y2 (en) Variable damping force hydraulic shock absorber
JP2000097277A (en) Variable damping force damper
JP2752664B2 (en) Suspension system
JP2576222Y2 (en) Suspension system
JPH0717523Y2 (en) Variable damping force hydraulic shock absorber