JPH01266013A - Variable damping force type hydraulic shock absorber - Google Patents

Variable damping force type hydraulic shock absorber

Info

Publication number
JPH01266013A
JPH01266013A JP9309988A JP9309988A JPH01266013A JP H01266013 A JPH01266013 A JP H01266013A JP 9309988 A JP9309988 A JP 9309988A JP 9309988 A JP9309988 A JP 9309988A JP H01266013 A JPH01266013 A JP H01266013A
Authority
JP
Japan
Prior art keywords
damping force
shock absorber
rate
value
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9309988A
Other languages
Japanese (ja)
Other versions
JP2741030B2 (en
Inventor
Shinobu Kakizaki
柿崎 忍
Fumiyuki Yamaoka
史之 山岡
Shigeru Kikushima
菊島 茂
Junichi Emura
江村 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP9309988A priority Critical patent/JP2741030B2/en
Priority to US07/337,349 priority patent/US4984819A/en
Publication of JPH01266013A publication Critical patent/JPH01266013A/en
Application granted granted Critical
Publication of JP2741030B2 publication Critical patent/JP2741030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/202Piston speed; Relative velocity between vehicle body and wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means

Abstract

PURPOSE:To improve initial responsibility, the riding comfortableness and travelling steadiness of a car even against continuous vibration by determining the rate of variation in hydraulic pressure on the each hydraulic pressure on compression and elongation sides in a variable damping force type shock absorber, and varying the damping force according to the above mentioned rate of variation. CONSTITUTION:Detecting means (a), (b) detect each hydraulic pressure on compression and elongation sides in a variable damping force type shock absorber respectively. Each output of the means (a), (b) is inputted into a controlling means C, which determines the rate of variation in the hydraulic pressure, and then computes control value to make the shock absorber turn into high damping force and to determine the value of the high damping force according to extreme value when the rate of variation has attained the extreme value, and to make the shock absorber turn into a fixed low damping force when the rate of variation has lowered to a fixed value. After that, operating means (d), (e) very the damping force on the compression and elongation sides in the shock absorber according to the output of the controlling means C respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等車両の減衰力可変型液圧緩衝装置に
係り、詳しくは、路面振動のサイクル毎に減衰力を可変
できる減衰力可変型液圧緩衝装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a variable damping force type hydraulic shock absorber for vehicles such as automobiles, and more specifically, to a variable damping force type hydraulic shock absorber that can vary the damping force for each cycle of road vibration. The present invention relates to a type hydraulic shock absorber.

(従来の技術) 近時、車両に対する要求の高度化に伴い快適さおよび走
行安定性の両立が求められる傾向にある。
(Prior Art) In recent years, as demands for vehicles have become more sophisticated, there has been a trend toward a need for both comfort and running stability.

そのため、走行状態に応じて減衰力を増減操作し、通常
走行時には乗心地を良くする低い減衰力を、車体のロー
ル発生時には走行安定性を高めるような高い減衰力をそ
れぞれ発生する減衰力可変型液圧緩衝装置も普及してい
る。
Therefore, the damping force variable type increases or decreases the damping force depending on the driving condition, producing a low damping force that improves riding comfort during normal driving, and a high damping force that increases driving stability when the vehicle body rolls. Hydraulic shock absorbers are also popular.

従来のこの種の減衰力可変型液圧緩衝装置としては、例
えば特開昭61−85210号公報に記載のものが知ら
れている。この装置では、4本のショックアブソーバ内
に各々設けられた単一の圧電素子(すなわち、4個)が
路面振動に応じて発生するシリンダ内の液圧を検出し、
コントローラが検出信号の大きさに基づいて圧電素子に
電圧を印加して減衰力をソフトからハードに切り換える
As a conventional variable damping force type hydraulic shock absorber of this type, one described in, for example, Japanese Patent Laid-Open No. 61-85210 is known. In this device, a single piezoelectric element (i.e., four pieces) installed in each of the four shock absorbers detects the hydraulic pressure in the cylinder that is generated in response to road vibration.
The controller applies a voltage to the piezoelectric element based on the magnitude of the detection signal to switch the damping force from soft to hard.

減衰力のソフトとハードの切り換えは、車体の変位が生
じるような低い振動周波数で、かつ4個の圧電素子のう
ち2個で発生する起電力の大きさが設定値を越えると行
われ、所定時間維持される。
The damping force is switched between soft and hard when the vibration frequency is low enough to cause displacement of the vehicle body and the electromotive force generated in two of the four piezoelectric elements exceeds a set value. Time is maintained.

すなわち、減衰力は所定時間内は圧行程、伸行程に拘ら
ずハードに維持され、所定時間内において液圧は検出さ
れない。
That is, the damping force is maintained hard regardless of the pressure stroke or extension stroke within the predetermined time, and no hydraulic pressure is detected within the predetermined time.

(発明が解決しようとする課題) しかしながら、このような従来の減衰力可変型液圧緩衝
装置にあっては、液圧の大きさ、すなわち振動の振幅を
振動情報として利用して振動の大小判別を行っていたた
め、実際に振幅が大きくなって初めて大小判別が可能と
なることから、路面振動の初期段階での制御を行うこと
ができず、場合によっては車体の傾斜を生じ、走行安定
性が損なわれるという問題点があった。
(Problem to be Solved by the Invention) However, in such conventional variable damping force hydraulic shock absorbers, the magnitude of vibration is determined by using the magnitude of hydraulic pressure, that is, the amplitude of vibration, as vibration information. As a result, it is only possible to distinguish between large and small vibrations when the amplitude actually increases, making it impossible to control road vibrations at the initial stage. There was a problem with it being damaged.

例えば、車体のロールが始まると、実際にショックアブ
ソーバが圧縮されてから減衰力がハードに切り換わるこ
とから、圧縮状態からの回復が遅れて車体の傾斜を許容
し、傾斜が回復するまでの間走行安定性が損なわれてし
まう。
For example, when the car body begins to roll, the shock absorber is actually compressed and then the damping force is switched to hard, so the recovery from the compression state is delayed and the car body is allowed to tilt, and until the slope recovers, the damping force is switched to hard. Running stability will be impaired.

さらに、単一の圧電素子を液圧検出のセンサおよび電圧
印加による減衰力増減のアクチュエータとして切り換え
て使用し、検出信号に応じて所定時間ハードを維持する
構成となっていたため、上記所定時間内ではセンシング
できないことから、初期応答性の悪さと相俟って連続的
な振動入力に対してリアルタイムでの適切な制御を行え
ない。
Furthermore, a single piezoelectric element is used as a sensor for detecting fluid pressure and as an actuator for increasing or decreasing damping force by voltage application, and is configured to maintain hardness for a predetermined period of time according to a detection signal. Since sensing is not possible, the initial response is poor, and appropriate control cannot be performed in real time against continuous vibration input.

例えば、上記時間内での初回入力と反対方向の入力に対
して高い減衰力が逆に加振源となり、制振性が悪下して
乗心地の悪下を招き、結局、乗心地と走行安定性を両立
できない。
For example, in response to an input in the opposite direction to the first input within the above time period, a high damping force becomes a source of vibration, resulting in poor damping performance and poor riding comfort. Stability cannot be achieved at the same time.

言い換えれば、従来装置の場合、一定時間をいわゆる見
込み制御によって平均的に減衰力を換えているものであ
り、圧行程、伸行程それぞれに独立した制御が行えない
。なお、圧行程、伸行程とはシリンダに対してピストン
が圧縮する向きに移動する場合、および伸びる向きに移
動する場合のことであり、以下、単に圧側、伸側と略称
して用いることもある。
In other words, in the case of the conventional device, the damping force is changed on the average by so-called prospective control over a certain period of time, and independent control cannot be performed for each of the compression stroke and extension stroke. Note that the compression stroke and extension stroke are when the piston moves in the direction of compression and in the direction of extension with respect to the cylinder, and hereinafter may be simply referred to as compression side and expansion side. .

(発明の目的) そこで本発明は、圧側および伸側の液圧を別個に検出し
、その変化率に基づいて減衰力を可変することにより、
初期応答性を向上して、路面振動のサイクル毎に減衰力
を精密に変化させ、連続的な振動入力に対しても乗心地
と走行安定性を両立させることを目的としている。
(Objective of the Invention) Therefore, the present invention detects the compression side and expansion side hydraulic pressures separately and varies the damping force based on the rate of change.
The aim is to improve initial response, precisely change the damping force for each cycle of road vibration, and achieve both ride comfort and driving stability even in the face of continuous vibration input.

(課題を解決するための手段) 本発明による減衰力可変型液圧緩衝装置は上記目的達成
のため、減衰力可変型ショックアブソーバの圧側の液圧
を検出する第1の検出手段aと、減衰力可変型ショック
アブソーバの伸側の液圧を検出する第2の検出手段すと
、第1の検出手段aおよび第2の検出手段すの出力から
液圧の変化率を求め、該変化率が極値となったときショ
ックアブソーバを所定の高減衰力とするとともに、該高
減衰力の値を極値に応じて決定し、変化率が所定値まで
低下すると、所定の低減衰力とするような制御値を演算
する制御手段Cと、制御手段Cの出力に基づいて圧側の
減衰力を変える第1の操作手段dと、制御手段Cの出力
に基づいて伸側の減衰力を変える第2の操作手段eと、
を備えている。
(Means for Solving the Problems) In order to achieve the above object, the variable damping force type hydraulic shock absorber according to the present invention includes a first detection means a for detecting the hydraulic pressure on the pressure side of a variable damping force type shock absorber, and a damping force variable type hydraulic shock absorber. The second detection means for detecting the hydraulic pressure on the extension side of the variable force shock absorber calculates the rate of change in the hydraulic pressure from the outputs of the first detection means a and the second detection means A, and determines whether the rate of change is When an extreme value is reached, the shock absorber is set to a predetermined high damping force, and the value of the high damping force is determined according to the extreme value, and when the rate of change decreases to a predetermined value, the shock absorber is set to a predetermined low damping force. a control means C that calculates a control value; a first operation means d that changes the damping force on the compression side based on the output of the control means C; and a second operation means d that changes the damping force on the rebound side based on the output of the control means C. an operating means e;
It is equipped with

(作用) 本発明では、圧側および伸側の液圧を別個に検出して液
圧の変化率が求められ、変化率が極値となったとき減衰
力のハードが選択されるとともにハード時の減衰力の値
が極値に応じて決定され、振動の頂点で変化率が所定値
まで低下すると減衰力がソフトに切り換えられる。この
ため、ハード時の減衰力の値は振動入力に対応したもの
となり、制振性が向上されるとともに、圧行程および伸
行程の境界である振動の頂点で減衰力がソフトに切り換
えられる。
(Function) In the present invention, the hydraulic pressure on the compression side and the rebound side are detected separately to determine the rate of change in the hydraulic pressure, and when the rate of change reaches an extreme value, the hard damping force is selected, and the hard damping force is selected. The value of the damping force is determined according to the extreme value, and when the rate of change decreases to a predetermined value at the peak of vibration, the damping force is switched to soft. Therefore, the value of the damping force in the hard state corresponds to the vibration input, improving damping performance, and the damping force is switched to a soft state at the peak of vibration, which is the boundary between the compression stroke and the extension stroke.

したがって、初期応答性が向上して路面振動のサイクル
毎に減衰力の増減が圧側および伸側それぞれ独立にリア
ルタイムできめ細かく行われることになり、連続的な振
動入力に対しても乗心地と走行安定性を両立できる。
Therefore, the initial response is improved, and the damping force is finely increased or decreased in real time for each cycle of road vibration independently on the compression side and the rebound side, improving ride comfort and driving stability even in the face of continuous vibration input. You can balance your sexuality.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜7図は本発明に係る減衰力可変型液圧緩衝装置の
一実施例を示す図である。
2 to 7 are diagrams showing an embodiment of a variable damping force type hydraulic shock absorber according to the present invention.

まず、構成を説明する。第2図はショックアブソーバの
全体構成図、第3図はその要部断面図、第4図はシステ
ムの全体構成図、第5図はその一系統の制御回路を示す
図である。
First, the configuration will be explained. FIG. 2 is an overall configuration diagram of the shock absorber, FIG. 3 is a sectional view of its essential parts, FIG. 4 is an overall configuration diagram of the system, and FIG. 5 is a diagram showing one system of the control circuit.

第2図において、1は減衰力可変型のショックアブソー
バである。ショックアブソーバ1は密封された外筒2と
、外筒2に内蔵されたシリンダ3と、シリンダ3の内壁
を軸方向に摺動するピストン4と、シリンダ3の下端に
設けられたボトムバルブ5と、ピストン4を支持するピ
ストンロッド6と、外筒2の内壁およびシリンダ3によ
って形成されるリザーバ室7と、ピストンロッド6を支
持するロントガイド8と、ロッドガイド8の上部に設け
られたピストンシール9と、外筒2の上部を閉止するス
トッパプレート10と、を含んで構成されている。
In FIG. 2, reference numeral 1 denotes a variable damping force type shock absorber. The shock absorber 1 includes a sealed outer cylinder 2, a cylinder 3 built into the outer cylinder 2, a piston 4 that slides on the inner wall of the cylinder 3 in the axial direction, and a bottom valve 5 provided at the lower end of the cylinder 3. , a piston rod 6 that supports the piston 4, a reservoir chamber 7 formed by the inner wall of the outer cylinder 2 and the cylinder 3, a front guide 8 that supports the piston rod 6, and a piston seal provided on the upper part of the rod guide 8. 9 and a stopper plate 10 that closes the upper part of the outer cylinder 2.

シリンダ3は下端に連通孔11を有するボトムボディ1
2を備え、上記開口部がロントガイド8で閉塞されてい
る。シリンダ3の内部はピストン4によって上側液室1
4および下側液室15の2室に区画され、該2室内の作
動液はピストン4に設けられた後述の連通孔46〜48
を介して相互に流動する。
The cylinder 3 has a bottom body 1 having a communication hole 11 at the lower end.
2, and the opening is closed by a front guide 8. The inside of the cylinder 3 is connected to the upper liquid chamber 1 by the piston 4.
The hydraulic fluid in these two chambers is divided into two chambers, a lower liquid chamber 15 and a lower liquid chamber 15.
mutually flowing through.

ピストン4には伸行程で減衰力を発生する伸側バルブ1
6および伸側バルブ16を上方に付勢するスプリング1
7が設けられている。スプリング17の下端はアジャス
トナツト18およびロックナツト19によってピストン
4に固定され、ピストン4の下端にはアジャストナツト
20が螺合されている。
The piston 4 has an extension valve 1 that generates damping force during the extension stroke.
6 and the spring 1 that urges the expansion side valve 16 upward.
7 is provided. The lower end of the spring 17 is fixed to the piston 4 by an adjustment nut 18 and a lock nut 19, and an adjustment nut 20 is screwed into the lower end of the piston 4.

ボトムバルブ5は伸行程で開くチエツクバルブ21と、
チエツクバルブ21が開(とき作動液を流入させるボー
ト22と、圧行程で開く圧側バルブ23と、圧側バルブ
23が開くとき減衰力を発生させるオリフィス24と、
チエツクバルブ21の開度を規制するストッパプレート
25と、ボトムボディ12にチエツクバルブ21等を固
定するカシメピン26と、を含んで構成される。伸行程
において、リザーバ室7内の作動液は下側液室15内の
負圧力によりチエツクバルブ21を開き、下側液室15
に流入する。このとき、チエツクバルブ21はストッパ
プレート25によっである一定以上開かないよう規制さ
れる。また、圧行程では、下側液室15内の作動液は圧
側バルブ23を開き、オリフィス24で下側液室15内
の正圧力に対応した減衰力を発生し、連通孔11を通っ
てリザーバ室7に流入する。上側液室14および下側液
室15内の圧力はショック外部からの路面振動の大きさ
に応じて発生し、その圧力を検出すれば路面振動の入力
状況、すなわち走行状態を検出できる。
The bottom valve 5 includes a check valve 21 that opens during the extension stroke.
When the check valve 21 opens (when the check valve 21 opens, a boat 22 into which hydraulic fluid flows in, a pressure side valve 23 that opens during the pressure stroke, an orifice 24 that generates a damping force when the pressure side valve 23 opens,
It is configured to include a stopper plate 25 that regulates the opening degree of the check valve 21, and a caulking pin 26 that fixes the check valve 21 and the like to the bottom body 12. In the extension stroke, the hydraulic fluid in the reservoir chamber 7 opens the check valve 21 due to negative pressure in the lower fluid chamber 15, and the hydraulic fluid in the lower fluid chamber 15 opens the check valve 21.
flows into. At this time, the check valve 21 is regulated by a stopper plate 25 so that it does not open beyond a certain level. In addition, in the pressure stroke, the hydraulic fluid in the lower liquid chamber 15 opens the pressure side valve 23, generates a damping force corresponding to the positive pressure in the lower liquid chamber 15 at the orifice 24, and passes through the communication hole 11 to the reservoir. It flows into chamber 7. The pressure in the upper liquid chamber 14 and the lower liquid chamber 15 is generated according to the magnitude of road vibration from outside the shock, and by detecting this pressure, it is possible to detect the input condition of the road vibration, that is, the driving condition.

また、ピストンロッド6にはリテーナ27が固定され、
リテーナ27の上部には弾性体で形成されたリバウンド
ストッパ28が設けられ、ピストン4とロックガイド8
との衝突を緩和させる。
Further, a retainer 27 is fixed to the piston rod 6,
A rebound stopper 28 made of an elastic body is provided on the upper part of the retainer 27, and the rebound stopper 28 is arranged between the piston 4 and the lock guide 8.
Alleviate conflicts with.

ストッパプレート10はシリンダ3の上端に下部が嵌合
し、中央の貫通孔10a内の図示しないブツシュでピス
トンロッド6を摺動自在にガイドする。
The stopper plate 10 has a lower portion fitted into the upper end of the cylinder 3, and slidably guides the piston rod 6 with a bush (not shown) in a central through hole 10a.

外筒2は内部にシリンダ3、ロックガイド8およびピス
トンシール9を収容し、上端を加締めて形成されている
。ピストンシール9の内周部には、ピストンロッド6に
弾接し、内部の液密を維持するメインリフブ29と、外
部からの泥水等を阻止するダストリフブ30とが形成さ
れている。また、外筒2の下端部には、車両の車軸等に
取り付けるためのアイブツシュ31およびアイ32が固
着されている。
The outer cylinder 2 accommodates a cylinder 3, a lock guide 8, and a piston seal 9 therein, and is formed by crimping the upper end. A main rift 29 that comes into elastic contact with the piston rod 6 and maintains internal liquid tightness, and a dust rift 30 that prevents muddy water and the like from entering the piston seal 9 from the outside are formed on the inner circumference of the piston seal 9. Furthermore, an eye bush 31 and an eye 32 are fixed to the lower end of the outer cylinder 2 for attachment to a vehicle axle or the like.

また、ピストンロッド6の上端から引き出された配線3
5はコントロールユニット100と接続されている。
Also, the wiring 3 pulled out from the upper end of the piston rod 6
5 is connected to a control unit 100.

第3図はピストン4周辺の断面を示しており、図中上方
が車体側であり、図中下方が車輪側である。同図におい
て、ピストンロッド6の中央には配線35を収容する配
線通路41が設けられ、配線通路41は徐々に拡大して
下部のネジ部41aでピストン4と螺合する。ピストン
4はピストンロッド6と螺合する本体42と、本体42
の下端部と上端部で螺合するスリーブ43と、を有し、
スリーブ43の下端部にはアジャストナツト20が螺合
固定されている。本体42の外周部にはテフロン等の低
摩擦材料で形成されるシール部材44が設けられ、シー
ル部材44はシリンダ3の内壁に接して摺動する。本体
42には空間45と、連通孔46.47とが形成されて
おり、上側液室14および下側液圧室15内の作動液が
連通孔46.47を通って流動する。スリーブ43には
連通孔48が形成されており、空間45内の作動液は連
通孔48を通り、伸側バルブ16で減衰力を発生させな
がら流動する。伸側バルブ16は連通孔48を通過する
作動液の液圧が高まるとスプリング17の付勢力に打ち
勝って下方に移動し、液圧に減衰力を発生させる。また
、ピストン4の内部には円形断面の収容孔49.50が
形成されており、収容孔49.50は空間45と連通し
ている。
FIG. 3 shows a cross section around the piston 4, with the upper side of the figure being the vehicle body side and the lower side of the figure being the wheel side. In the figure, a wiring passage 41 for accommodating the wiring 35 is provided at the center of the piston rod 6, and the wiring passage 41 gradually expands and is screwed into the piston 4 at a lower threaded portion 41a. The piston 4 includes a main body 42 that is threadedly engaged with the piston rod 6, and a main body 42.
a sleeve 43 screwed together at the lower end and upper end of the
An adjustment nut 20 is screwed and fixed to the lower end of the sleeve 43. A sealing member 44 made of a low-friction material such as Teflon is provided on the outer periphery of the main body 42, and the sealing member 44 slides in contact with the inner wall of the cylinder 3. A space 45 and communication holes 46.47 are formed in the main body 42, and the hydraulic fluid in the upper liquid chamber 14 and the lower hydraulic pressure chamber 15 flows through the communication holes 46.47. A communication hole 48 is formed in the sleeve 43, and the hydraulic fluid in the space 45 flows through the communication hole 48 while generating a damping force at the extension valve 16. When the hydraulic pressure of the hydraulic fluid passing through the communication hole 48 increases, the expansion valve 16 overcomes the biasing force of the spring 17 and moves downward, generating a damping force on the hydraulic pressure. Furthermore, a housing hole 49.50 having a circular cross section is formed inside the piston 4, and the housing hole 49.50 communicates with the space 45.

収容孔49.50および空間45の内部には、調整機構
51と第1の圧電素子60と、第1の圧電素子60の下
端と当接する減衰手段70と、減衰手段70の下端と当
接する第2の圧電素子90と、第2の圧電素子90を支
持するキャップ94と、が収容されている。
Inside the accommodation hole 49 , 50 and the space 45 , an adjustment mechanism 51 , a first piezoelectric element 60 , a damping means 70 abutting the lower end of the first piezoelectric element 60 , and a first piezoelectric element 70 abutting the lower end of the damping means 70 . Two piezoelectric elements 90 and a cap 94 that supports the second piezoelectric elements 90 are housed.

調整機構51は本体42の上端に形成されたアジャスト
スクリュ52と、アジャストスクリュ52に螺合するア
ジャストナツト53とで、構成され、アジャストナツト
53は回動されると軸方向に移動し、第1の圧電素子6
0の軸方向の位置を変化させる。アジャストナツト53
はプレート54およびキャップ55を介してプレート5
6と当接し、プレート56は第1の圧電素子60の上端
に固定されている。第1の圧電素子60はキャップ55
および減衰手段7oによって支持されており、収容孔4
9内を上下に移動する。
The adjustment mechanism 51 is composed of an adjustment screw 52 formed at the upper end of the main body 42 and an adjustment nut 53 that is screwed into the adjustment screw 52. When the adjustment nut 53 is rotated, it moves in the axial direction and the first piezoelectric element 6
Change the axial position of 0. Adjust nut 53
is connected to plate 5 via plate 54 and cap 55.
6, and the plate 56 is fixed to the upper end of the first piezoelectric element 60. The first piezoelectric element 60 is connected to the cap 55
and damping means 7o, and is supported by the housing hole 4
Move up and down within 9.

第1の圧電素子60のコード61.62は第2の圧電素
子90のコード91と、92と一緒に配線35を形成し
、配線35はコントロールユニット100に接続すれて
いる。また、第1の圧電素子60はプレート59を介し
て減衰手段70の一部を構成するスライダ71と当接し
、伸側制御信号SAに応じた伸びを減衰手段70に伝達
する。
The cords 61 , 62 of the first piezoelectric element 60 together with the cords 91 and 92 of the second piezoelectric element 90 form a wiring 35 , which is connected to the control unit 100 . Further, the first piezoelectric element 60 comes into contact with a slider 71 that constitutes a part of the damping means 70 via the plate 59, and transmits the expansion according to the extension side control signal SA to the damping means 70.

減衰手段70はスライダ71と、スライダ71の中心部
71aに先端部が嵌合するバルブコア72と、バルブコ
ア72に取り付けられたバルブボディ73と、バルブボ
ディ73とスライダ71に挟持された圧側バルブ74と
、バルブコア72とバルブボディ73に挟持された伸側
バルブ75と、を含んで構成される。バルブボディ73
にはオリフィス76.77が形成されており、オリフィ
ス76の上側は弾性を有する圧側バルブ74により閉止
され、オリフィス77の下側は弾性を有する伸側バルブ
75によって閉止されている。
The damping means 70 includes a slider 71, a valve core 72 whose tip fits into the center 71a of the slider 71, a valve body 73 attached to the valve core 72, and a pressure side valve 74 held between the valve body 73 and the slider 71. , an expansion-side valve 75 held between a valve core 72 and a valve body 73. Valve body 73
Orifices 76 and 77 are formed in the upper side of the orifice 76, and the upper side of the orifice 76 is closed by an elastic pressure side valve 74, and the lower side of the orifice 77 is closed by an elastic expansion side valve 75.

オリフィス76は空間45の内壁とバルブボディ73の
上面によって画成される空間(以下、第1の液圧という
)79と連通孔47を連通し、圧行程において圧側バル
ブ74が曲がって開くと所定の減衰力を発生する。オリ
フィス76は伸行程には閉じて作動液は通過しない。オ
リフィス77は空間45の内壁とバルブボディ73の下
面によって画成される空間(以下、第2の液室という)
80と第1の液室79を連通し、伸行程において、伸側
バルブ75が曲がって開(と所定の減衰力を発生する。
The orifice 76 communicates the communication hole 47 with a space 79 (hereinafter referred to as first hydraulic pressure) defined by the inner wall of the space 45 and the upper surface of the valve body 73, and when the pressure side valve 74 bends and opens during the pressure stroke, a predetermined pressure is applied. generates a damping force of The orifice 76 is closed during the extension stroke and no hydraulic fluid passes therethrough. The orifice 77 is a space defined by the inner wall of the space 45 and the lower surface of the valve body 73 (hereinafter referred to as a second liquid chamber).
80 and the first liquid chamber 79, and during the extension stroke, the extension valve 75 bends and opens (and generates a predetermined damping force).

オリフィス77は圧行程には閉じて作動液は通過しない
The orifice 77 is closed during the pressure stroke and no hydraulic fluid passes therethrough.

圧側バルブ74および伸側バルブ75は複数枚の薄板で
形成され、所定の弾性を有している。減衰手段70は伸
行程にあるとき第1の圧電素子6oの伸びによって圧迫
を受け、伸側バルブ75の開度を変えてオリフィス77
の開口面積を減らし、所定の減衰力(以下、ソフトとい
う)を増加して高減衰力(以下、ハードという)に切り
換える。
The compression side valve 74 and the expansion side valve 75 are formed of a plurality of thin plates and have a predetermined elasticity. During the extension stroke, the damping means 70 is compressed by the extension of the first piezoelectric element 6o, and changes the opening degree of the extension valve 75 to open the orifice 77.
The opening area of the damping force is reduced, a predetermined damping force (hereinafter referred to as "soft") is increased, and the damping force is switched to a high damping force (hereinafter referred to as "hard").

一方、減衰手段70は圧行程にあるとき第2の圧電素子
90の伸びによって圧迫を受け、圧側バルブ74の開度
を変えてオリフィス76の開口面積を減らし、減衰力を
ソフトからハードに切り換える。
On the other hand, the damping means 70 is compressed by the expansion of the second piezoelectric element 90 during the compression stroke, changes the opening degree of the compression side valve 74 to reduce the opening area of the orifice 76, and switches the damping force from soft to hard.

また、減衰手段70はプレート88を介して、第2の圧
電素子90と当接し、伸行程では第1の液室79内の液
圧を第2の圧電素子90に伝達する。第2の圧電素子は
下端がキャップ94と当接し、圧行程においてキャップ
94から伝達される上方への変位(下側液室15内の液
圧に相当)を減衰手段70および第1の圧電素子に伝達
する。キャップ94は圧行程においてアジャストナツト
20の孔95から流入する作動液の液圧を下面に受けて
上方向に変位し、変位を第2の圧電素子90に伝達する
Further, the damping means 70 comes into contact with the second piezoelectric element 90 via the plate 88, and transmits the hydraulic pressure in the first liquid chamber 79 to the second piezoelectric element 90 during the extension stroke. The lower end of the second piezoelectric element is in contact with the cap 94, and the upward displacement (corresponding to the liquid pressure in the lower liquid chamber 15) transmitted from the cap 94 during the pressure stroke is applied to the damping means 70 and the first piezoelectric element. to communicate. During the pressure stroke, the cap 94 receives on its lower surface the hydraulic pressure of the hydraulic fluid flowing in from the hole 95 of the adjustment nut 20 and is displaced upward, and transmits the displacement to the second piezoelectric element 90 .

第1の圧電素子60および第2の圧電素子90は所定の
セラミックス(以下、圧電材料という)の圧電効果およ
び逆圧電効果(電歪効果ともいう)を利用しており、一
対の電極を有する薄い圧電材料を多数枚(例えば、10
0枚程度)積層して形成される。圧電効果とは、圧電材
料の電極に電圧を印加すると、印加電圧の変化に応じて
圧電材料が図中上下方向に伸縮する(以下、機械的歪と
いう)現象をいい、圧電材料に特有の現象である。
The first piezoelectric element 60 and the second piezoelectric element 90 utilize the piezoelectric effect and inverse piezoelectric effect (also called electrostrictive effect) of a predetermined ceramic (hereinafter referred to as piezoelectric material). A large number of piezoelectric materials (for example, 10
(approximately 0 sheets) is formed by laminating them. The piezoelectric effect is a phenomenon in which when a voltage is applied to the electrodes of a piezoelectric material, the piezoelectric material expands and contracts in the vertical direction in the figure in response to changes in the applied voltage (hereinafter referred to as mechanical strain), and is a phenomenon unique to piezoelectric materials. It is.

一方、圧電材料の上下方向に圧力若しくは変位が加えら
れると圧電材料に機械的歪が生じ、圧電材料は機械的歪
の変化に応じて起電力を発生する。
On the other hand, when pressure or displacement is applied to the piezoelectric material in the vertical direction, mechanical strain is generated in the piezoelectric material, and the piezoelectric material generates an electromotive force in response to changes in the mechanical strain.

この現象を逆圧電現象といい、この起電力の大きさから
逆に圧電材料に加わっている圧力若しくは変位の大きさ
を検出することが可能である。
This phenomenon is called an inverse piezoelectric phenomenon, and it is possible to detect the pressure or displacement applied to the piezoelectric material from the magnitude of this electromotive force.

第1の圧電素子60は伸行程において、伸側制御信号S
Aがコントロールユニット100から出力されると伸縮
し、減衰手段70に変位を与えて減衰力を増減する。第
2の圧電素子90は圧行程において、圧側制御信号SI
Iがコントロールユニッ) 100から出力されると伸
縮し、減衰手段70の変位を与えて減衰力を増減する。
During the extension stroke, the first piezoelectric element 60 receives the extension side control signal S.
When A is output from the control unit 100, it expands and contracts, giving displacement to the damping means 70 and increasing or decreasing the damping force. In the compression stroke, the second piezoelectric element 90 receives the compression side control signal SI.
When I is an output from the control unit (100), it expands and contracts, displacing the damping means 70 and increasing or decreasing the damping force.

第1の圧電素子60は圧行程において、減衰手段70か
ら伝達される下側液室15内の液圧を検出し、圧側信号
Spを出力する。
During the pressure stroke, the first piezoelectric element 60 detects the hydraulic pressure in the lower liquid chamber 15 transmitted from the damping means 70 and outputs a pressure side signal Sp.

第2の圧電素子90は伸行程で減衰手段70から伝達さ
れる第1の液室79内の液圧を検出し、伸側信号Ssを
出力する。
The second piezoelectric element 90 detects the hydraulic pressure in the first liquid chamber 79 transmitted from the damping means 70 during the extension stroke, and outputs an extension side signal Ss.

前記第1の圧電素子60は第1の検出手段としての機能
を有し、減衰手段70と共に第2の操作手段を構成する
。また、第2の圧電素子90は第2の検出手段としての
機能を有し、減衰手段70と共に第1の操作手段を構成
する。
The first piezoelectric element 60 has a function as a first detection means, and together with the damping means 70 constitutes a second operating means. Further, the second piezoelectric element 90 has a function as a second detection means, and together with the damping means 70 constitutes a first operation means.

第1および第2の圧電素子60.90からの信号はコン
トロールユニット100に入力されており、コントロー
ルユニット100は制御手段としての機能を有する。ま
た、コントロールユニット100は圧側および伸側信号
Sp、Ssが入力されると、信号の変化率を演算し、変
化率の大きさに対応して制御信号S、、S、を出力する
Signals from the first and second piezoelectric elements 60.90 are input to the control unit 100, and the control unit 100 has a function as a control means. Further, when the control unit 100 receives the compression side and expansion side signals Sp and Ss, it calculates the rate of change of the signals and outputs control signals S, , S, corresponding to the magnitude of the rate of change.

コントロールユニット100の内部を説明するため第4
図に移る。同図において、コントロールユニット100
はI10ボート101と、入力回路110と、演算回路
120と、駆動回路130と、駆動用電源回路140と
、を備えている。I10ボート101にはショックアブ
ソーバ1が配線35を介して接続されており、各々コン
トロールユニット100と信号の授受を行っている。
The fourth section describes the inside of the control unit 100.
Moving on to the figure. In the figure, a control unit 100
includes an I10 board 101, an input circuit 110, an arithmetic circuit 120, a drive circuit 130, and a drive power supply circuit 140. The shock absorber 1 is connected to the I10 boat 101 via wiring 35, and signals are exchanged with the control unit 100, respectively.

この詳細を説明するため第5図に移る。同図において、
ショックアブソーバ1は内部に一対の圧電素子60.9
0を有し、圧電素子60.90の一方のコード61.9
1は接地され、他方のコード62.92はI10ボート
101と接続されている。第1の圧電素子60は液圧を
検出して圧側信号Spを出力し、I10ボート101の
コンデンサCは圧側信号Spの直流成分を遮断し、交流
成分を通過させる。入力回路110のバッファ112は
圧信号Spの交流成分を増幅し演算回路120に出力す
る。演算回路120は例えばマイクロコンピュータ等で
構成され、内部メモリに書き込まれたプログラムに従っ
て外部データを取り込み、これら取り込まれたデータお
よび内部メモリに書き込まれているデータなどに基づい
て、減衰力の可変制御に必要な処理値を演算する。
In order to explain this in detail, we turn to FIG. In the same figure,
The shock absorber 1 has a pair of piezoelectric elements 60.9 inside.
0 and one code 61.9 of the piezoelectric element 60.90
1 is grounded, and the other cord 62.92 is connected to the I10 boat 101. The first piezoelectric element 60 detects the hydraulic pressure and outputs the pressure side signal Sp, and the capacitor C of the I10 boat 101 blocks the DC component of the pressure side signal Sp and allows the AC component to pass. The buffer 112 of the input circuit 110 amplifies the AC component of the pressure signal Sp and outputs it to the arithmetic circuit 120. The arithmetic circuit 120 is composed of, for example, a microcomputer, and takes in external data according to a program written in an internal memory, and performs variable control of the damping force based on the taken data and the data written in the internal memory. Calculate the necessary processing values.

すなわち、演算回路120は入力信号に基づいて入力信
号の変化率を演算し、変化率が極値であるとき、変化率
の大きさに相当する伸側制御信号SAを駆動回路130
に出力する。駆動回路130はバッファ131に伸側制
御信号SAが入力されるとトランジスタTr、をONと
し、駆動用電源回路140の駆動電圧をI10ボート1
01のダイオードD1を介して第1の圧電素子60に印
加し、減衰力をソフトからハードに切り換える。また、
駆動回路130はバッファ132に伸側制御信号SAが
入力されるとトランジスタTr、をONとし、第1の圧
電素子60の電荷をI10ボート101のダイオードD
2を介して放電し、減衰力をハードからソフトに戻す。
That is, the arithmetic circuit 120 calculates the rate of change of the input signal based on the input signal, and when the rate of change is an extreme value, the arithmetic circuit 120 sends the expansion side control signal SA corresponding to the magnitude of the rate of change to the drive circuit 130.
Output to. When the expansion side control signal SA is input to the buffer 131, the drive circuit 130 turns on the transistor Tr, and changes the drive voltage of the drive power supply circuit 140 to I10 port 1.
The damping force is applied to the first piezoelectric element 60 through the diode D1 of No. 01, and the damping force is switched from soft to hard. Also,
When the expansion side control signal SA is input to the buffer 132, the drive circuit 130 turns on the transistor Tr, and transfers the charge of the first piezoelectric element 60 to the diode D of the I10 boat 101.
2 to return the damping force from hard to soft.

駆動用電源回路140は例えばDC−DCコンバータで
形成され、第1および第2の圧電素子60.90を伸長
可能な直流の高電圧(以下、駆動電圧という)を出力す
る。なお、第2の圧電素子90と接続する回路には上記
と同一番号を付し、その説明を省略する。また、圧電素
子の位置調整は次のように行われる。すなわち、圧電素
子に所定の電圧を印加後、放電させ、アジャストナツト
53を回動し減衰手段70を圧迫することによって生ず
る圧電素子からの電圧がある一定値となるまで調整する
The driving power supply circuit 140 is formed of, for example, a DC-DC converter, and outputs a high DC voltage (hereinafter referred to as driving voltage) that can extend the first and second piezoelectric elements 60, 90. Note that the circuits connected to the second piezoelectric element 90 are given the same numbers as above, and the description thereof will be omitted. Moreover, the position adjustment of the piezoelectric element is performed as follows. That is, after applying a predetermined voltage to the piezoelectric element, it is discharged, and the adjustment nut 53 is rotated to compress the damping means 70, thereby adjusting the voltage from the piezoelectric element until it reaches a certain constant value.

なお、伸側・圧側共に同じ手順により調整する。The same procedure is used to adjust both the extension and compression sides.

次に、作用を説明する。Next, the effect will be explained.

第6図は減衰力可変制御のプログラムを示すフローチャ
ートであり、本プログラムは所定時間毎に一度実行され
る。なお、ここでは−例として圧行程の場合について説
明するが、伸行程でも同様のプロセスで行われる。
FIG. 6 is a flowchart showing a program for variable damping force control, and this program is executed once every predetermined time. Note that, although the compression stroke will be described as an example here, the same process is performed in the extension stroke.

まず、PIで圧側信号Spを読み込む、圧側信号Spは
外部からの振動入力に対応し、シリンダ3内の液圧から
リアルタイムで検出される。
First, the pressure side signal Sp is read by the PI. The pressure side signal Sp corresponds to vibration input from the outside and is detected from the hydraulic pressure inside the cylinder 3 in real time.

次いで、P8で圧側信号Spの変化率を演算する。圧側
信号Spの変化率(以下、変化率という)は圧側信号S
pの時間微分して得られ、振動の速度に対応する。振動
の速度は振幅の小さい振動の初期段階(中心付近)で最
大となり、振幅が最大となる振動の頂点でOとなる。ま
た、振動の速度は振幅が大きい程大きく、振動の周期が
短い程大きくなる。そこで、変化率(振動の速度)を振
動情報として利用すれば、振動の初期段階でその振幅が
大きいか否かの判断を下すことができ、変化率の大きさ
に基づいて減衰力を適切に制御できる。
Next, in P8, the rate of change of the pressure side signal Sp is calculated. The rate of change of the pressure side signal Sp (hereinafter referred to as the rate of change) is the pressure side signal S.
It is obtained by time differentiating p and corresponds to the speed of vibration. The speed of vibration is maximum at the initial stage of vibration (near the center) where the amplitude is small, and reaches O at the peak of vibration where the amplitude is maximum. Furthermore, the speed of vibration increases as the amplitude increases, and the speed of vibration increases as the period of vibration decreases. Therefore, if the rate of change (velocity of vibration) is used as vibration information, it is possible to judge whether the amplitude is large or not at the initial stage of vibration, and the damping force can be adjusted appropriately based on the magnitude of the rate of change. Can be controlled.

次いで、Psで変化率が極値であるか否かを判定する。Next, it is determined whether the rate of change is an extreme value using Ps.

極値の判定を行う理由は、短時間(短周期)で進行する
振幅の大きな振動を判別するためである。ここで、振幅
の大きな振動とは、例えばロール、スフオート(尻下が
り現象)およびダイブ(前のめり現象)等車体が急に傾
いて走行安定正が損なわれるような振動を意味する。走
行安定正は車体が水平状態のとき最良で操縦性が良く、
車体の傾斜が大きいときや、車体が急激に傾くとき最悪
となって操縦性が悪化する。
The reason for determining the extreme value is to determine vibrations with large amplitudes that progress in a short period of time (short period). Here, vibrations with large amplitudes mean vibrations that cause the vehicle body to suddenly lean, such as roll, swivel, and dive, which impair running stability. Driving stability is best when the vehicle body is horizontal, and maneuverability is good.
The worst situation occurs when the vehicle body is tilted significantly or when the vehicle body tilts rapidly, resulting in poor maneuverability.

P、で極値であるときはP4で極値に応じて決定した圧
側制御信号Ssを出力し、第2の圧電素子90に駆動電
圧を印加して減衰力をソフトからハードに切り換える。
When P is an extreme value, a compression side control signal Ss determined according to the extreme value is outputted at P4, and a drive voltage is applied to the second piezoelectric element 90 to switch the damping force from soft to hard.

ここで、高減衰力(ハード)の値は極値に対応し、路面
からの振動入力の振幅(極値)に応じて無段階に変化す
る。すなわち、本実施例では高減衰力の値は振幅の大き
さに追従して変化し、振動入力に対して常に適切なもの
となり、制振性が向上する0次いで、P、で駆動電圧レ
ベルに達したか否かを判定する。ここで、駆動電圧レベ
ルとは減衰力がハードに切り換わったときの圧側信号S
pの電圧値を意味する。!!!動電圧電圧レベルしてい
なければ、P4に戻り、P4で再び駆動電圧を印加し、
駆動電圧レベルに達すると今回のルーチンを終了する。
Here, the value of the high damping force (hard) corresponds to an extreme value, and changes steplessly according to the amplitude (extreme value) of vibration input from the road surface. In other words, in this embodiment, the value of the high damping force changes in accordance with the magnitude of the amplitude, and is always appropriate for the vibration input. Determine whether it has been reached. Here, the drive voltage level is the compression side signal S when the damping force is switched to hard.
It means the voltage value of p. ! ! ! If the dynamic voltage is not at the voltage level, return to P4, apply the driving voltage again at P4,
When the drive voltage level is reached, the current routine ends.

ステップP、〜P、の実行によって、振動の初期段階に
振幅の大きな振動を判別することができ、振動の初期段
階に減衰力をハードに切り換えることができる。さらに
、高減衰力の値を極値に応じて決定しているので、減衰
力を振動入力に対して適切に追従制御することができ、
制振性が向上して走行安定性と乗心地が両立できる。す
なわち、本実施例は液圧の大きさに対応して制御する従
来例より振動に対する初期応答性が向上しており、従来
例で生ずる車体の傾斜はほとんど発生しない。
By executing steps P and ~P, it is possible to determine vibrations with large amplitudes in the initial stage of vibration, and it is possible to hard switch the damping force in the initial stage of vibration. Furthermore, since the value of the high damping force is determined according to the extreme value, the damping force can be appropriately controlled to follow vibration input.
Vibration damping performance is improved, achieving both driving stability and ride comfort. That is, the present embodiment has improved initial response to vibrations compared to the conventional example in which control is performed in accordance with the magnitude of hydraulic pressure, and the tilting of the vehicle body that occurs in the conventional example hardly occurs.

一方、P、で変化率が極値でないときはP6に移り、P
、で変化率がOであるか否かを判定する。
On the other hand, if the rate of change is not an extreme value at P, move to P6, and P
, it is determined whether the rate of change is O or not.

振動の振幅が頂点(圧行程と伸行程の境界地点)に達す
ると振動の速度、すなわち変化率が0となる。そこで、
変化率が0であるか否かを判定すれば、圧行程が終了し
たか否かを判定することができ、振動サイクルの圧行程
と伸行程においてそれぞれ独立した制御を行うことがで
きる。すなわち、伸行程では減衰力をソフトに戻して圧
縮状態からの回復を早めることができる。P、で変化率
がOでなければ圧行程が終了していないと判断して今回
のルーチンを終了する。圧行程が終了していないときは
前回のルーチンで設定された減衰力によって振動の減衰
を行い、減衰力の切り換えは行わない。
When the amplitude of the vibration reaches the peak (the boundary point between the compression stroke and the extension stroke), the speed of the vibration, that is, the rate of change, becomes zero. Therefore,
By determining whether the rate of change is 0, it is possible to determine whether or not the compression stroke has ended, and it is possible to perform independent control in the compression stroke and extension stroke of the vibration cycle. That is, during the extension stroke, the damping force can be returned to a soft state to speed up recovery from the compressed state. If the rate of change is not O at P, it is determined that the pressure stroke has not ended, and the current routine is ended. If the pressure stroke has not been completed, the vibration is damped using the damping force set in the previous routine, and the damping force is not switched.

一方、P、で変化率がOであれば圧行程が終了したと判
断、してP9.に移り、P7で圧側制御信号S、を出力
し、第2の圧電素子90の電荷を放電する。次いで、P
、で圧側信号Spを所定値と比較し、所定値以下でなけ
ればP7に戻り、P7で再び電荷を放電し、放電が十分
行われると今回のルーチンを終了する。ここで、所定値
とは圧電素子の長さが本来の長さに復帰し、減衰力がハ
ードからソフトに戻るような電圧値をいい、電荷が所定
値以下で第2の圧電素子90は検出手段としての機能を
回復する。また、減衰力が最初からソフトのときは減衰
力は変化しない。
On the other hand, if the rate of change is O at P, it is determined that the pressure stroke has ended, and P9. Then, at P7, the compression side control signal S is outputted, and the charge of the second piezoelectric element 90 is discharged. Then, P
, the pressure side signal Sp is compared with a predetermined value, and if it is not less than the predetermined value, the process returns to P7, and the charge is discharged again at P7, and when the discharge is sufficiently performed, the current routine ends. Here, the predetermined value refers to a voltage value at which the length of the piezoelectric element returns to its original length and the damping force returns from hard to soft, and when the charge is below the predetermined value, the second piezoelectric element 90 detects Recovering its function as a means. Furthermore, if the damping force is soft from the beginning, the damping force will not change.

ステップP、〜P8の実行によって、圧行程が終了した
かあるいは伸側の振動が入力されたことが判別され、路
面振動の圧行程と伸行程においてそれぞれ独立して減衰
力を制御できる。すなわち、圧行程でハード、伸行程で
ソフトという切り換えが行われ、初期応答性の向上と相
俟って従来例よりも車体の傾斜が軽微となり、走行安定
性が向上する。
By executing steps P and -P8, it is determined that the compression stroke has ended or that vibration on the expansion side has been input, and the damping force can be independently controlled in the compression stroke and extension stroke of road surface vibration. In other words, the switching is made to be hard in the compression stroke and soft in the extension stroke, and together with the improvement in initial response, the tilt of the vehicle body is smaller than in the conventional example, and running stability is improved.

このように、本実施例では変化率の大きさに基づいて減
衰力をきめ細かく変化させているので、振動サイクルの
圧行程、伸行程に対して独立した制御を行うことができ
、連続的な路面振動に対しても適切に対応できる。また
、本実施例では高減衰力の値を極値に応じて決定してい
るので、振幅が大きければ大きな値、振幅が小さければ
小さな値というように振動入力に対して常に適切な値に
することができ、制振性が向上して乗心地と走行安定性
を両立できる。これを具体的なタイミングチャートにす
ると第7図のようになる。同図において、横軸は振動の
中心、縦軸は振動の振幅に対応する。同図(C)に示す
ようA地点で振幅の大きな振動が入力され、変化率が極
値になると直ちに減衰力がソフトからハードに切り換え
られる(H区間)。このため、シリンダ3内の液圧(検
出電圧)は−点鎖線のように減衰力の増加分(駆動電圧
)分だけ上昇し、点線で示すソフトと同様に変化する(
同図(b)参照)、このとき、ピストン4は高減衰力、
すなわち高い流動抵抗によって動きが規制され、B地点
までソフトを維持する従来例よりその振幅が減少する。
In this way, in this example, the damping force is finely changed based on the magnitude of the rate of change, so it is possible to independently control the compression stroke and extension stroke of the vibration cycle, and it is possible to control the damping force on a continuous road surface. It can also respond appropriately to vibrations. In addition, in this example, the value of the high damping force is determined according to the extreme value, so the value is always appropriate for the vibration input, such as a large value when the amplitude is large, and a small value when the amplitude is small. This improves vibration damping performance, making it possible to achieve both ride comfort and driving stability. A concrete timing chart of this is shown in FIG. 7. In the figure, the horizontal axis corresponds to the center of vibration, and the vertical axis corresponds to the amplitude of vibration. As shown in FIG. 5C, a vibration with a large amplitude is input at point A, and as soon as the rate of change reaches an extreme value, the damping force is switched from soft to hard (section H). Therefore, the hydraulic pressure (detected voltage) in the cylinder 3 rises by the amount of increase in damping force (drive voltage) as shown by the dashed line, and changes in the same way as the soft (driving voltage) shown by the dotted line.
(see figure (b)), at this time, the piston 4 has a high damping force,
That is, the movement is restricted by high flow resistance, and its amplitude is reduced compared to the conventional example in which the soft state is maintained up to point B.

また、F地点では変化率が0となり、圧行程での減衰力
がソフトに切り換えられて、低い流動抵抗によってピス
トンが振動の中心まで速やかに戻る(区間FC)。した
がって、本実施例では路面振動によるショックアブソー
バ1の伸長は従来例より少なく、かつ速やかに回復する
ことになり、車体の傾斜が未然に抑えられて走行安定性
が向上する(区間AG)。
Further, at point F, the rate of change becomes 0, the damping force in the pressure stroke is switched to soft, and the piston quickly returns to the center of vibration due to low flow resistance (section FC). Therefore, in this embodiment, the expansion of the shock absorber 1 due to road vibration is smaller than in the conventional example, and the shock absorber 1 recovers quickly, thereby preventing the vehicle from tilting and improving running stability (section AG).

また、本実施例は圧側および伸側の液圧を別個にリアル
タイムで検出しているので、初期応答性の向上と相俟っ
て新たな振動入力に対しても減衰力を適切に制御するこ
とができる。すなわち、本実施例は走行安定性を確保す
るためハードを維持゛している期間中(区間AG)であ
っても、B地点以降ハードを所定期間維持する従来例と
異なり、短周期の連続的な振動入力に対して圧側減衰力
をソフトにすることができ、振振性を向上して乗心地を
向上できる(区間BCおよびDE)。これは、流動抵抗
が減少してスプリングで十分に振動を吸収できるためで
あり、一般に圧側減衰力は伸側減衰力よりも低く設定さ
れる。
In addition, since this embodiment detects the compression side and expansion side hydraulic pressures separately in real time, it is possible to improve the initial response and to appropriately control the damping force even in response to new vibration input. I can do it. In other words, in this embodiment, even during the period (section AG) in which the hardware is maintained to ensure running stability, unlike the conventional example in which the hardware is maintained for a predetermined period after point B, the hardware is maintained continuously in short cycles. The compression side damping force can be made soft in response to a vibration input, and vibration properties can be improved to improve riding comfort (sections BC and DE). This is because the flow resistance is reduced and vibrations can be sufficiently absorbed by the spring, and the compression damping force is generally set lower than the rebound damping force.

このように、本実施例では極値の大きさに基づいて減衰
力を制御するとともに高減衰力の値を極値に応じて決定
しているので、圧側および伸側での独立した減衰力の制
御をきめ細かく行うことができ、高減衰力の値が振動入
力に対して常に適切な値となって連続的な振動入力に対
しても乗心地と走行安定性を両立できる。
In this way, in this example, the damping force is controlled based on the size of the extreme value, and the value of the high damping force is determined according to the extreme value, so the damping force can be controlled independently on the compression side and the rebound side. Fine control is possible, and the value of the high damping force is always appropriate for vibration input, making it possible to achieve both ride comfort and running stability even in the face of continuous vibration input.

また、本実施例では第1の圧電素子60および第2の圧
電素子90を第1および第2の検出手段と第1および第
2の操作手段に切り換えているがこれに限らず、第1お
よび第2の検出手段と第1および第2の操作手段の構成
方法および取付位置は上記実施例に限定されるものでは
なく、例えば全て別個に設けても良いのは勿論である。
Further, in this embodiment, the first piezoelectric element 60 and the second piezoelectric element 90 are switched to the first and second detection means and the first and second operation means, but the present invention is not limited to this. The configuration method and mounting position of the second detection means and the first and second operation means are not limited to those in the above embodiment, and of course, for example, they may all be provided separately.

なお、特許請求の範囲にいう所定値とはOを含む概念で
あり、本実施例ではこの所定値を0としているが、これ
に限るものではなく、例えば不惑帯のように所定範囲を
有する概念であっても良い。
Note that the predetermined value referred to in the claims is a concept that includes O, and in this embodiment, this predetermined value is 0, but is not limited to this, and may include, for example, a concept that has a predetermined range, such as Fuwatai. It may be.

(効果) 本発明によれば、圧側および伸側の液圧を別個に検出し
て液圧の変化率を求め、該変化率が極値となったときハ
ードの減衰力を選択すると共にハード時の減衰力の値を
極値に応じて決定し、変化率が所定値まで低下すると減
衰力をソフトに切り換えているので、初期応答性が向上
して路面振動のサイクル毎に減衰力の増減を圧側および
伸側それぞれ独立にリアルタイムできめ細かく行うこと
ができ、ハード時の減衰力の値が常に振動入力に対して
適切な値となって連続的な振動入力に対しても乗心地と
走行安定性を両立できる。
(Effects) According to the present invention, the hydraulic pressure on the compression side and the rebound side are detected separately to determine the rate of change in the hydraulic pressure, and when the rate of change reaches an extreme value, the hard damping force is selected and the hard damping force is selected. The value of the damping force is determined according to the extreme value, and when the rate of change decreases to a predetermined value, the damping force is switched to soft, improving initial response and making it possible to increase or decrease the damping force with each cycle of road vibration. This can be done in detail independently in real time for the compression side and the rebound side, and the damping force value at hard times is always an appropriate value for the vibration input, ensuring ride comfort and running stability even in the face of continuous vibration input. can be achieved at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜7図は本発明に係
る減衰力可変型液圧緩衝装置の一実施例を示す図であり
、第2図はそのショックアブソーバの全体構成を示す断
面図、第3図はその要部断面構成図、第4図はそのシス
テムの全体構成図、第5図はその一部分の回路図、第6
図はその減衰力可変−制御のプログラムを示すフローチ
ャート、第7図はその作用を説明するための図である。 1・・・・・・ショックアブソーバ、 3・・・・・・シリンダ、 4・・・・・・ピストン、 60・・・・・・第1の圧電素子(第1の検出手段、第
2の操作手段)、 70・・・・・・減衰手段(第1の操作手段、第2の操
作手段)、 90・・・・・・第2の圧電素子(第2の検出手段、第
Iの操作手段)、 94・・・・・・キャンプ、 100・・・・・・コントロールユニッl−(制JI手
段)。
Fig. 1 is a basic conceptual diagram of the present invention, Figs. 2 to 7 are diagrams showing an embodiment of a variable damping force type hydraulic shock absorber according to the present invention, and Fig. 2 shows the overall structure of the shock absorber. 3 is a cross-sectional diagram of the main parts, FIG. 4 is an overall configuration diagram of the system, FIG. 5 is a partial circuit diagram, and FIG.
The figure is a flowchart showing the damping force variable control program, and FIG. 7 is a diagram for explaining its operation. DESCRIPTION OF SYMBOLS 1... Shock absorber, 3... Cylinder, 4... Piston, 60... First piezoelectric element (first detection means, second operation means), 70...attenuation means (first operation means, second operation means), 90...second piezoelectric element (second detection means, I-th operation means), 90...second piezoelectric element (second detection means, I-th operation means), means), 94...camp, 100...control unit l-(control JI means).

Claims (1)

【特許請求の範囲】 a)減衰力可変型ショックアブソーバの圧側の液圧を検
出する第1の検出手段と、 b)減衰力可変型ショックアブソーバの伸側の液圧を検
出する第2の検出手段と、 c)第1の検出手段および第2の検出手段の出力から液
圧の変化率を求め、該変化率が極値となったときショッ
クアブソーバを所定の高減衰力とするとともに、該高減
衰力の値を極値に応じて決定し、変化率が所定値まで低
下すると、所定の低減衰力とするような制御値を演算す
る制御手段と、 d)制御手段の出力に基づいて圧側の減衰力を変える第
1の操作手段と、 e)制御手段の出力に基づいて伸側の減衰力を変える第
2の操作手段と、 を備えたことを特徴とする減衰力可変型液圧緩衝装置。
[Scope of Claims] a) A first detection means for detecting hydraulic pressure on the compression side of the variable damping force type shock absorber, and b) A second detection means for detecting hydraulic pressure on the rebound side of the variable damping force type shock absorber. c) determining the rate of change in hydraulic pressure from the outputs of the first detection means and the second detection means, and when the rate of change reaches an extreme value, sets the shock absorber to a predetermined high damping force; d) a control means that determines the value of the high damping force according to the extreme value and calculates a control value such that the damping force becomes a predetermined low damping force when the rate of change decreases to a predetermined value; and d) based on the output of the control means. A variable damping force hydraulic system comprising: a first operating means for changing the damping force on the compression side; and e) a second operating means for changing the damping force on the rebound side based on the output of the control means. Buffer device.
JP9309988A 1988-04-14 1988-04-15 Variable damping force type hydraulic shock absorber Expired - Lifetime JP2741030B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9309988A JP2741030B2 (en) 1988-04-15 1988-04-15 Variable damping force type hydraulic shock absorber
US07/337,349 US4984819A (en) 1988-04-14 1989-04-13 Automotive suspension system and shock absorber therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9309988A JP2741030B2 (en) 1988-04-15 1988-04-15 Variable damping force type hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JPH01266013A true JPH01266013A (en) 1989-10-24
JP2741030B2 JP2741030B2 (en) 1998-04-15

Family

ID=14073074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9309988A Expired - Lifetime JP2741030B2 (en) 1988-04-14 1988-04-15 Variable damping force type hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2741030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948008B1 (en) * 2017-01-24 2019-02-14 가리사니 주식회사 shock absorbor
WO2020004689A1 (en) * 2018-06-28 2020-01-02 가리사니 주식회사 Shock absorber

Also Published As

Publication number Publication date
JP2741030B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
JP2752668B2 (en) Suspension system
US4790522A (en) Electroviscous fluid control device
US4949989A (en) Automotive suspension system with variable suspension characteristics and variable damping force shock absorber therefor
EP1659007B1 (en) Air suspension and electronically controlled suspension system
JPH0858337A (en) Suspension conrol device
JPH02142942A (en) Hydraulic shock absorber
JPS61135810A (en) Shock absorber controller
JPH01266013A (en) Variable damping force type hydraulic shock absorber
JPH0714009Y2 (en) Variable damping force hydraulic shock absorber
JPH01266014A (en) Variable damping force type hydraulic shock absorber
JPH0714008Y2 (en) Variable damping force hydraulic shock absorber
JP4318071B2 (en) Hydraulic shock absorber
JPH0714007Y2 (en) Variable damping force hydraulic shock absorber
JPH0241913A (en) Damping force variable type liquid pressure shock absorber
JP2752664B2 (en) Suspension system
JPH0742820Y2 (en) Suspension system
JP3085048B2 (en) Air suspension
EP0338814B1 (en) Automotive suspension system with variable suspension characteristics and variable damping force shock absorber therefor
JPH0632132A (en) Damping force variable shock absorber and control device thereof
JPH0717523Y2 (en) Variable damping force hydraulic shock absorber
JP2505228Y2 (en) Variable damping force hydraulic shock absorber
JP2576222Y2 (en) Suspension system
JPH0524832Y2 (en)
JPH0699717A (en) Damping force-changeable shock absorber control device
JP2505232Y2 (en) Variable damping force hydraulic shock absorber