JPH01265577A - Josephson field effect transistor - Google Patents

Josephson field effect transistor

Info

Publication number
JPH01265577A
JPH01265577A JP63094132A JP9413288A JPH01265577A JP H01265577 A JPH01265577 A JP H01265577A JP 63094132 A JP63094132 A JP 63094132A JP 9413288 A JP9413288 A JP 9413288A JP H01265577 A JPH01265577 A JP H01265577A
Authority
JP
Japan
Prior art keywords
barrier layer
semiconductor
well layer
layer
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63094132A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63094132A priority Critical patent/JPH01265577A/en
Publication of JPH01265577A publication Critical patent/JPH01265577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make a superconductive critical current small so as to render an ON-OFF ratio small by a method wherein at least one or more semiconductor hetero-structures are provided to a Josephson field effect transistor. CONSTITUTION:A superconductor electrode 102 and a gate electrode 103 are formed on a barrier layer 104. The barrier layer 104 is formed of a semiconductor whose band gap is larger than that of a well layer 105. A hetero-junction is formed at the interface between the barrier layer 104 and the well layer 105. Impurity, which is to serve as a donor or a acceptor, is doped to the barrier layer 104 more than the well layer 105 in concentration. Carriers generated from donors or acceptors inside the ionized barrier layer 104 are made to move to the well layer 105 side and change into a two-dimensional electron gas. The two-dimensional electron gas is high in mobility independently of a Coulomb scattering. By these processes, a superconductive critical current grows small and an ON-OFF ratio becomes small.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はジョセフソン電界効果トランジスタ(以下JO
FETと示す)の構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Josephson field effect transistor (hereinafter referred to as JO
(denoted as FET).

[従来の技術] JOFETは、1970年代の初めにその概念が提唱さ
れて以来、高速性及び回路構成の簡単さが注目され、研
究が進められてきた。その概念図を第2図に示す。同図
(a)はOFF状態、同図(b)はON状態の概念図で
ある。201は半導体、102は超伝導体電極、202
は超伝導体電極102からクーパ一対と呼ばれる電子対
がしみ出している領域であり、この領域端から102ま
での距離をコヒーレンス長さ(ξ)と呼ぶ。半導体20
1中のキャリア濃度が小さい場合はξが小さく、同図(
a)に示される如くクーパ一対は半導体201中で重な
らないが、キャリア濃度が大きい場合はξが大きくなり
、同図(b)に示される如くクーパ一対は201中で重
なり、左右の超伝導体電極102間を超伝導電流が流れ
る。この半導体中のキャリア濃度をゲートに印加する電
位で制御するのがJOFETである。
[Prior Art] Since the concept of the JOFET was proposed in the early 1970s, research has been progressing on the JOFET, attracting attention for its high speed and simple circuit configuration. The conceptual diagram is shown in Fig. 2. FIG. 4(a) is a conceptual diagram of the OFF state, and FIG. 6(b) is a conceptual diagram of the ON state. 201 is a semiconductor, 102 is a superconductor electrode, 202
is a region where electron pairs called Cooper pairs seep out from the superconductor electrode 102, and the distance from the edge of this region to 102 is called the coherence length (ξ). semiconductor 20
When the carrier concentration in 1 is small, ξ is small, and the same figure (
As shown in (a), the pair of Coopers do not overlap in the semiconductor 201, but when the carrier concentration is large, ξ increases, and as shown in (b) of the same figure, the pair of Coopers overlaps in the semiconductor 201, and the left and right superconductors A superconducting current flows between the electrodes 102. A JOFET controls the carrier concentration in this semiconductor by the potential applied to the gate.

従来のJOFETは、川辺ら(固体物理 V。The conventional JOFET was developed by Kawabe et al. (Solid State Physics V.

1.22 1987.p、117)等に示される如く、
超伝導体電極を結合、する半導体は一層であった。
1.22 1987. As shown in p. 117), etc.
There was only one layer of semiconductor that connected the superconductor electrodes.

[発明が解決しようとする課題1 しかし、従来のJOFETには超伝導臨界電流Icが小
さく、JoFEi自身のoNZOFF比が小さいという
課題があった。
[Problem 1 to be solved by the invention However, the conventional JOFET has a problem that the superconducting critical current Ic is small and the oNZOFF ratio of JoFEi itself is small.

本発明は、以上の課題を解決するもので、その目的とす
るところは、IC及び0N10FF比が大きいJOFE
Tを実現することにある。
The present invention is intended to solve the above problems, and its purpose is to provide a JOFE with a large IC and 0N10FF ratio.
The goal is to realize T.

[課題を解決するための手段] 以上の課題を解決するため、本発明のJOFETは、少
なくとも一つ以上の半導体ヘテロ構造を有することを特
徴とする。
[Means for Solving the Problems] In order to solve the above problems, the JOFET of the present invention is characterized by having at least one semiconductor heterostructure.

[実施例] 第1図に本発明の実施例における、ペテロ構造JOFE
Tの断面図を示す。同図において、101は任意の基板
、102は超伝導体電極、103はゲート電極、104
は半導体薄膜(障壁層)、105は半導体薄1!(井戸
層)である。障壁層104には井戸層105に比ベバン
ドギャップの大きな半導体が用゛いられ、104と10
5の界面にはヘテロ接合が形成される。また、障壁層1
04には井戸層105より大きな濃度でドナーもしくは
アクセプターとなる不純物が添加(変調ドーピング)さ
れている。高移動度トランジスタ(HEMT)の原理と
同様に、イオン化された障壁層104中のドナーもしく
はアクセプターより発生したキャリアは井戸層105側
に移り、二次元電子ガスとなる。この二次元電子ガスは
、障壁NlO4中のイオン化されたドナーもしくはアク
セプターによるクーロン散乱を受けないため高移動度で
ある。また、障壁層104に添加する不純物濃度を大き
くすれば、二次元電子ガスのキャリア濃度を大きくする
ことができる。高柳ら(固体物理Vo1.20 198
5.p、939)によれば、二次元電子ガスのξはブラ
ンク定数をh、キャリア移動度をμ、表面キャリア濃度
をNs、ボルツマン定数をk、温度をT、電荷素置をe
、キャリアの有効質量をmoとすれば、次式で表される
[Example] Figure 1 shows a Peter structure JOFE in an example of the present invention.
A cross-sectional view of T is shown. In the figure, 101 is an arbitrary substrate, 102 is a superconductor electrode, 103 is a gate electrode, and 104 is a superconductor electrode.
is a semiconductor thin film (barrier layer), and 105 is a semiconductor thin film 1! (well layer). A semiconductor having a larger band gap than the well layer 105 is used for the barrier layer 104, and 104 and 10
A heterojunction is formed at the interface of 5. In addition, barrier layer 1
Impurities serving as donors or acceptors are added to the well layer 105 at a higher concentration than the well layer 105 (modulation doping). Similar to the principle of a high mobility transistor (HEMT), carriers generated from ionized donors or acceptors in the barrier layer 104 move to the well layer 105 side and become a two-dimensional electron gas. This two-dimensional electron gas has high mobility because it is not subjected to Coulomb scattering by ionized donors or acceptors in the barrier NlO4. Further, by increasing the impurity concentration added to the barrier layer 104, the carrier concentration of the two-dimensional electron gas can be increased. Takayanagi et al. (Solid State Physics Vol. 1.20 198
5. p, 939), ξ of a two-dimensional electron gas is blank constant h, carrier mobility μ, surface carrier concentration Ns, Boltzmann constant k, temperature T, and charge arrangement e.
, where mo is the effective mass of the carrier, it is expressed by the following equation.

ξ= (b”μNs/2kTem”) 1′2また、平
木ら(1987年秋期第48回応用物理学会学術講演会
予稿集19a−H−3)によれば、ICはチャネル長(
超伝導体層[102の間隔)をし、超伝導臨界温度をT
cとし、スケ−ソング係数を01、C2=L/2ξ、t
 = T / T cとすれば次式で表される。
ξ= (b"μNs/2kTem") 1'2 Also, according to Hiraki et al. (Proceedings of the 48th Japan Society of Applied Physics Academic Conference, Fall 1987, Proceedings 19a-H-3), the IC has a channel length (
superconductor layer [102 spacing], superconducting critical temperature T
c, the scale song coefficient is 01, C2=L/2ξ, t
If = T / T c, it is expressed by the following formula.

以上の二つの式より、μとNsが大きくとれる本発明の
ヘテロ構造JOFETは、従来のJOFETよりICが
大きくなることがわかる。
From the above two equations, it can be seen that the heterostructure JOFET of the present invention, which allows large μ and Ns, has a larger IC than the conventional JOFET.

例えば、基板101に半絶縁性(S、  1.  )G
aAs、超伝導体電極102に近年開発が活発になって
いるTclOOK級の材料を用い、この系のTcも10
0にとし、障壁N104にGaAlAs、井戸層105
にGaAsを用い、L=0゜2μmとした時、計算上で
はT=77にでIc=20μAを得る。これによ、り、
従来窒素温度(77K)では動作しなかったJOFET
が、本発明を用いることにより窒素温度において動作す
る可能性が示された。GaAs系よりさらにμが太きく
m”が小さいInAs系等のヘテロ構造を用いれば、さ
らに有利であると考えられる。
For example, the substrate 101 has a semi-insulating (S, 1.)G
aAs, the superconductor electrode 102 is made of TclOOK class material, which has been actively developed in recent years, and the Tc of this system is also 10.
0, the barrier N104 is GaAlAs, the well layer 105 is
When GaAs is used for , and L=0.degree. 2 .mu.m, Ic=20 .mu.A is calculated at T=77. As a result,
JOFET that did not operate at conventional nitrogen temperature (77K)
However, by using the present invention, the possibility of operation at nitrogen temperatures has been shown. It is considered that it would be even more advantageous to use a heterostructure such as InAs, which has a larger μ and a smaller m″ than GaAs.

第3図に本発明の実施例における、MISS (Met
al−■nsulator−3emic。
FIG. 3 shows MISS (Met
al-■nsulator-3emic.

nductor−3emiconductor)構造J
OFETの断面図を示す。同図において第1図と同一の
記号は第1図と同一のものを表す。
conductor-3emiconductor) structure J
A cross-sectional view of an OFET is shown. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1.

301は絶縁膜であり、SiO2やA 1203等が用
いられる。動作原理は第1図のヘテロ構造JOFETと
同様であり、井戸N105の障壁層104との界面に発
生する二次元電子ガスが高移動度かつ高キャリア濃度で
あることを利用するものである。本実施例の構造におい
ては第1図実施例に比べ、ゲートに順及び逆方向に大き
なバイア゛ス電圧をかけられるため、さらに0N10F
F比の向上が可能である。
301 is an insulating film made of SiO2, A1203, or the like. The operating principle is the same as that of the heterostructure JOFET shown in FIG. 1, and utilizes the fact that the two-dimensional electron gas generated at the interface with the barrier layer 104 of the well N105 has high mobility and high carrier concentration. In the structure of this embodiment, compared to the embodiment in FIG.
It is possible to improve the F ratio.

第4図に本発明の実施例における、ダブルヘテロ構造J
OFETの断面図を示す。同図において第1図と同一の
記号は第1図と同一のものを表す。
FIG. 4 shows a double heterostructure J in an embodiment of the present invention.
A cross-sectional view of an OFET is shown. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1.

本実施例においては、井戸Jli105の上下に障壁W
1104を設けている。この様な構造にすれば井戸J!
105の上下界面に二次元電子ガスが形成され、Icは
さらに大きくなる。
In this embodiment, barriers W are provided above and below the well Jli105.
1104 is provided. With this kind of structure, it will be well J!
Two-dimensional electron gas is formed at the upper and lower interfaces of 105, and Ic becomes even larger.

第5図に本発明の実施例における、超格子構造JOFE
Tの断面図を示す。同図において第1図及び第3図と同
一の記号は、第1図及び第3図と同一のものを表す。半
導体を超格子構造とすることにより、さらに実効的なキ
ャリア濃度を上げることができる。また、本実施例の構
造は半導体超格子層の壁面に超伝導体電極102が存在
するため、ゲート電極103に印加する電位に対するξ
の変化は、純粋に超伝導体電極間の方向のみ考えればよ
く、また超伝導体電極102は井戸層105とも直接接
触しているため、ICはより大きくなる。この様な構造
は半導体超格子層を形成しパターニングした後、超伝導
体薄膜を形成しりフトオフ法等で半導体超格子層上の超
伝導体薄膜をとり除き、その後ゲート絶縁膜301、ゲ
ート電極103を形成すればよい。また、半導体超格子
の周期を短くしてゆく場合は単結晶半導体を用いたとき
ICが向上することはもちろん、非単結晶半導体を用い
たJOFETが実現される可能性も考えられ、本実施例
はJOFETの将来に大きな意義を持つものである。
FIG. 5 shows a superlattice structure JOFE in an embodiment of the present invention.
A cross-sectional view of T is shown. In the figure, the same symbols as in FIGS. 1 and 3 represent the same things as in FIGS. 1 and 3. By forming the semiconductor into a superlattice structure, the effective carrier concentration can be further increased. In addition, in the structure of this example, since the superconductor electrode 102 exists on the wall surface of the semiconductor superlattice layer, ξ with respect to the potential applied to the gate electrode 103
It is only necessary to consider the change in the direction between the superconductor electrodes, and since the superconductor electrode 102 is also in direct contact with the well layer 105, the IC becomes larger. In such a structure, after forming and patterning a semiconductor superlattice layer, a superconductor thin film is formed and the superconductor thin film on the semiconductor superlattice layer is removed by a lift-off method or the like, and then the gate insulating film 301 and the gate electrode 103 are formed. All you have to do is form. Furthermore, if the period of the semiconductor superlattice is shortened, not only will IC be improved when a single crystal semiconductor is used, but it is also possible that a JOFET using a non-single crystal semiconductor will be realized. This has great significance for the future of JOFET.

第6図に本発明の実施例における、ゲート電極が基板側
にある超格子構造JOFETの断面図を示す。同図にお
いて第1図と同一の記号は第1図と同一のものを表す。
FIG. 6 shows a cross-sectional view of a superlattice structure JOFET in which the gate electrode is on the substrate side in an embodiment of the present invention. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1.

本実施例の利点はLを超伝導体薄膜のパターニング精度
によりのみ制御できることであり、サブミクロンのLを
持つ超格子構造JOFETを形成するのに有効である。
The advantage of this embodiment is that L can be controlled only by the patterning accuracy of the superconductor thin film, and it is effective for forming a superlattice structure JOFET with L of submicrons.

[発明の効果] 以上述べた如く本発明を用いることにより、ICが太き
(ON10FF比が大きイJ OF E Tが実現され
た。
[Effects of the Invention] As described above, by using the present invention, a JOFET with a thick IC (a large ON10FF ratio) was realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における、ヘテロ構造FF状態
1.同図(b)はON状態の概念図。 第3図は本発明の実施例における、MISS構造JOF
ETの断面図。 第4図は本発明の実施例における、ダブルヘテロ構造J
OFETの断面図。 第5図は本発明の実施例における、超格子構造JOFE
Tの断面図。 第6図は本発明の実施例における、ゲートxiが基板側
にある超格子構造JOFETの断面図。 101・・・任意の基板 102・・・超伝導体電極 103・・・ゲート電極 104・・・半導体薄膜(障壁層) 105・・・半導体薄膜(井戸層) 以上 出願人 セイコーエプソン株式会社 代理人弁理士 上柳雅誉(他1名) 101・・・任意の基板 102・・・超伝導体電極 103・・・ゲート電極 104・・・半導体薄膜(障壁層) 105・・・半導体薄膜(井戸層) 第1図 (a) 第2図 第3図 第4図
FIG. 1 shows a heterostructure FF state 1 in an embodiment of the present invention. Figure (b) is a conceptual diagram of the ON state. FIG. 3 shows the MISS structure JOF in the embodiment of the present invention.
A cross-sectional view of ET. FIG. 4 shows a double heterostructure J in an embodiment of the present invention.
Cross-sectional view of OFET. FIG. 5 shows a superlattice structure JOFE in an embodiment of the present invention.
A cross-sectional view of T. FIG. 6 is a cross-sectional view of a superlattice structure JOFET in which the gate xi is on the substrate side in an embodiment of the present invention. 101... Any substrate 102... Superconductor electrode 103... Gate electrode 104... Semiconductor thin film (barrier layer) 105... Semiconductor thin film (well layer) Applicant Agent for Seiko Epson Corporation Patent attorney Masayoshi Kamiyanagi (1 other person) 101... Arbitrary substrate 102... Superconductor electrode 103... Gate electrode 104... Semiconductor thin film (barrier layer) 105... Semiconductor thin film (well layer) Figure 1 (a) Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  少なくとも一つ以上の半導体ヘテロ構造を有するジョ
セフソン電界効果トランジスタ。
A Josephson field effect transistor having at least one semiconductor heterostructure.
JP63094132A 1988-04-15 1988-04-15 Josephson field effect transistor Pending JPH01265577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094132A JPH01265577A (en) 1988-04-15 1988-04-15 Josephson field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094132A JPH01265577A (en) 1988-04-15 1988-04-15 Josephson field effect transistor

Publications (1)

Publication Number Publication Date
JPH01265577A true JPH01265577A (en) 1989-10-23

Family

ID=14101875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094132A Pending JPH01265577A (en) 1988-04-15 1988-04-15 Josephson field effect transistor

Country Status (1)

Country Link
JP (1) JPH01265577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151988A (en) * 1992-10-30 1994-05-31 Hitachi Ltd Superconducting three-terminal element
US5528052A (en) * 1992-07-20 1996-06-18 International Business Machines Corporation Superconductive-channel electric field-effect drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528052A (en) * 1992-07-20 1996-06-18 International Business Machines Corporation Superconductive-channel electric field-effect drive
JPH06151988A (en) * 1992-10-30 1994-05-31 Hitachi Ltd Superconducting three-terminal element

Similar Documents

Publication Publication Date Title
EP0324044B1 (en) A field-effect device with a superconducting channel
JPH033366A (en) Field-effect transistor and forming method thereof
Nguyen et al. InAs‐AlSb quantum well as superconducting weak link with high critical current density
EP0165798A1 (en) Semiconductor device comprising N-channel and P-channel transistors and production method
US3500137A (en) Cryogenic semiconductor devices
Daniels et al. Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors with very high transconductance
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
US4600932A (en) Enhanced mobility buried channel transistor structure
JPS60231375A (en) Superconductive transistor
JPH01265577A (en) Josephson field effect transistor
US20230136676A1 (en) Superconductive qubit device and manufacturing method thereof
US4860067A (en) Semiconductor heterostructure adapted for low temperature operation
EP0250886B1 (en) Semiconductor heterostructure adapted for low temperature operation
Akazaki et al. Superconducting junctions using a 2DEG in a strained InAs quantum well inserted into an InAlAs/InGaAs MD structure
EP0144217B1 (en) Superconducting device
JPH01268075A (en) Josephson field-effect transistor
Kleinsasser et al. Semiconductor heterostructure weak links for Josephson and superconducting FET applications
Ivanov et al. A three terminal Josephson junction with a semiconducting two-dimensional electron gas layer
JPH01235283A (en) Josephson field-effect transistor
JP2658898B2 (en) field effect transistor
JPS62136077A (en) Semiconductor device
JPS6292368A (en) Semiconductor device
JPH05343756A (en) Semiconductor coupled superconductive element
JPH01235284A (en) Josephson field-effect transistor
JPS639983A (en) High-speed semiconductor device