JPH01265222A - Hologram disk rotating device - Google Patents

Hologram disk rotating device

Info

Publication number
JPH01265222A
JPH01265222A JP63094082A JP9408288A JPH01265222A JP H01265222 A JPH01265222 A JP H01265222A JP 63094082 A JP63094082 A JP 63094082A JP 9408288 A JP9408288 A JP 9408288A JP H01265222 A JPH01265222 A JP H01265222A
Authority
JP
Japan
Prior art keywords
disk
hologram
hologram disk
superconducting coil
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63094082A
Other languages
Japanese (ja)
Inventor
Narutake Iwata
岩田 成健
Fumio Yamagishi
文雄 山岸
Hiroyuki Ikeda
池田 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63094082A priority Critical patent/JPH01265222A/en
Publication of JPH01265222A publication Critical patent/JPH01265222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To increase the occupation area of a hologram or reduce the size of a disk by providing a superconducting coil to the outer periphery of the disk and floating and rotating the disk by a permanent magnet and electromagnets. CONSTITUTION:The superconducting coil 7 is fitted to the outer periphery of the hologram disk 6 provided in a cooling device 5, the entire periphery of the coil is surrounded with the U-shaped permanent magnet 8 without contacting, and electromagnets 9 are arranged at the entire periphery of one surface of the coil 7 at equal intervals without contacting. When this cooling device 5 is held at temperature close to 77K which is liquid nitrogen temperature, the coil 7 becomes superconductive and enters a floating state by Meissner effect generated with the magnet 8. At this time, the electromagnets 9 are excited in order and then the disk 6 rotates. Therefore, the hologram is formed up to the center of the disk 6, so the occupation area increases. Further, the size is reduced when the contents are the same.

Description

【発明の詳細な説明】 〔概 要〕 ホログラムディスクの回転装置に係り、特に軸受を用い
ず浮遊状態でホログラムディスクを回転させる装置に関
し、 ホログラムディスクに占めるホログラムの面積を大きく
し、またはホログラムディスクの小型化を可能とし、破
損2回転ブレの防止を可能とするホログラムディスク回
転装置の提供を目的とし、円板状のホログラムディスク
の外周に同心環状に設けられ、所要の永久電流を流す超
伝導コイルと、該超伝導コイルの外側全周囲を非接触に
囲う断面コの字の環状の永久磁石と、前記超伝導コイル
の片面側全周囲に非接触、かつ等間隔に対向配置された
複数の電磁石とからなり、前記超伝導コイルと前記永久
磁石との間に発生するマイスナー効果により前記ホログ
ラムディスクを浮遊状態に保持すると共に、前記超伝導
コイルと前記電磁石によって前記ホログラムディスクの
回転を行うように構成する。
[Detailed Description of the Invention] [Summary] This relates to a device for rotating a hologram disk, particularly a device for rotating a hologram disk in a floating state without using a bearing, by increasing the area of the hologram on the hologram disk or by increasing the area of the hologram on the hologram disk. In order to provide a hologram disk rotation device that can be miniaturized and prevent breakage and double-rotation vibration, a superconducting coil is provided in a concentric ring shape around the outer circumference of a disk-shaped hologram disk and flows the required persistent current. , an annular permanent magnet having a U-shaped cross section that surrounds the entire outer periphery of the superconducting coil in a non-contact manner, and a plurality of electromagnets that are arranged facing each other at regular intervals in a non-contact manner around the entire periphery of one side of the superconducting coil. The hologram disk is held in a floating state by the Meissner effect generated between the superconducting coil and the permanent magnet, and the hologram disk is rotated by the superconducting coil and the electromagnet. do.

[産業上の利用分野〕 本発明は、ホログラムディスクの回転装置に係り、特に
軸受を用いず浮遊状態でホログラムディスクを回転させ
る装置に関する。
[Industrial Field of Application] The present invention relates to a device for rotating a hologram disk, and particularly to a device for rotating a hologram disk in a floating state without using a bearing.

〔従来の技術〕[Conventional technology]

第4図は従来のホログラムディスクの回転装置の外観図
であって同図fa)は側面図、同図fblはホログラム
ディスクの板面を示す。両図において、■は円板状のホ
ログラムディスク、2は回転軸を有するフランジ、3は
モータ、4は支持台を示す。
FIG. 4 is an external view of a conventional hologram disk rotating device, where fa) is a side view and fbl is a side view of the hologram disk. In both figures, ■ indicates a disk-shaped hologram disk, 2 indicates a flange having a rotating shaft, 3 indicates a motor, and 4 indicates a support base.

ホログラムディスクは回折格子を利用して諸種の光学的
検出を行う装置であり、その機能については本発明と直
接の関係がないので説明を省略する。
A hologram disk is a device that performs various types of optical detection using a diffraction grating, and its functions are not directly related to the present invention, so a description thereof will be omitted.

従来のホログラムディスクは支持台4に固定されたモー
タ3の回転軸に連結されたフランジ2等を介して回転が
伝達されていた。
In the conventional hologram disk, rotation is transmitted through the flange 2 and the like connected to the rotating shaft of the motor 3 fixed to the support base 4.

〔発明が解決しようとする課題〕 ホログラムディスクは光を有効に利用するため、ホログ
ラムの面積はできるだけ大きくとる必要がある。しかし
ながら、従来の構造によれば第4図(b)に示すように
ホログラムディスク1の中心部を回転軸のフランジ2が
占めるため、ホログラムディスクに占めるホログラムの
面積が制限される欠点がある。
[Problems to be Solved by the Invention] Since a hologram disk uses light effectively, the area of the hologram needs to be as large as possible. However, according to the conventional structure, as shown in FIG. 4(b), since the flange 2 of the rotation shaft occupies the center of the hologram disk 1, there is a drawback that the area occupied by the hologram on the hologram disk is limited.

更に、その制限されたホログラムの面積を維持したまま
の状態でディスクの小径化を行うことは困難である。ま
た、ホログラムディスク1をフランジ2に固定する際に
、ビスを用いて固定する目的でホログラムディスク1に
ビス孔をあけると、高速回転時にディスクの破損が発生
する場合がある。接着剤による固定ではホログラムディ
スク1の面と回転軸の面角度を保持することが困難で回
転ブレの原因となる欠点がある。
Furthermore, it is difficult to reduce the diameter of the disk while maintaining the limited area of the hologram. Further, when fixing the hologram disk 1 to the flange 2, if screw holes are made in the hologram disk 1 for the purpose of fixing using screws, the disk may be damaged during high-speed rotation. Fixing with adhesive has the disadvantage that it is difficult to maintain the plane angle between the plane of the hologram disk 1 and the rotation axis, which causes rotational wobbling.

本発明は上記従来の欠点に鑑みてなされたもので、ホロ
グラムディスクに占めるホログラムの面積を大きくし、
またはホログラムディスクの小型化を可能とし、破損2
回転ブレの防止を可能とするホログラムディスク回転装
置の提供を目的とする。
The present invention has been made in view of the above-mentioned conventional drawbacks, and it increases the area occupied by the hologram on the hologram disk.
Or, the hologram disk can be made smaller, causing damage 2.
An object of the present invention is to provide a hologram disk rotating device that can prevent rotational shake.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は、本発明の構成を示す要部断面図である。円板
状のホログラムディスク6の外周に同心環状に設けられ
、所要の永久電流を流す超伝導コイル7と、該超伝導コ
イル7の外側全周囲を非接触に囲う断面コの字の環状の
永久磁石8と、前記超伝導コイル7の片面側全周囲に非
接触、かつ等間隔に対向配置された複数の電磁石9とか
らなり、前記超伝導コイル7と前記永久磁石8との間に
発生するマイスナー効果により前記ホログラムディスク
6を浮遊状態に保持すると共に、前記超伝導コイル7と
前記電磁石9によって前記ホログラムディスク6の回転
を行うように構成する。
FIG. 1 is a sectional view of essential parts showing the configuration of the present invention. A superconducting coil 7 is provided concentrically around the outer periphery of the disk-shaped hologram disk 6 and flows a required permanent current. It consists of a magnet 8 and a plurality of electromagnets 9 that are arranged facing each other in a non-contact manner and at equal intervals around the entire periphery of one side of the superconducting coil 7, and is generated between the superconducting coil 7 and the permanent magnet 8. The hologram disk 6 is held in a floating state by the Meissner effect, and the hologram disk 6 is rotated by the superconducting coil 7 and the electromagnet 9.

〔作 用〕[For production]

例えば冷却装置5にて液体窒素温度77に近辺に環境温
度を保持することにより超伝導コイル7は超伝導状態と
なり、マイスナー効果によって超伝導コイル7と一体的
に形成されたホログラムディスク6はコの字形の永久磁
石8の囲いの中で浮遊状態を保持する。更に、複数の電
磁石9を順次励磁駆動することにより永久電流を流す超
伝導コイル7に回転力を発生せしめ、一定方向に回転す
る。
For example, by maintaining the environmental temperature near the liquid nitrogen temperature 77 in the cooling device 5, the superconducting coil 7 enters a superconducting state, and the hologram disk 6, which is integrally formed with the superconducting coil 7 due to the Meissner effect, becomes It is maintained in a floating state within an enclosure of permanent magnets 8 in the shape of a letter. Further, by sequentially exciting and driving a plurality of electromagnets 9, a rotational force is generated in the superconducting coil 7 through which a persistent current flows, and the superconducting coil 7 rotates in a fixed direction.

これによりホログラムディスク6の中心部はすべてホロ
グラム形成に利用可能となり、ホログラムディスクの小
型化を可能とし、破損2回転ブレの防止を可能とするホ
ログラムディスク回転装置が実現する。
As a result, the entire center of the hologram disk 6 can be used for hologram formation, thereby realizing a hologram disk rotation device that can downsize the hologram disk and prevent damage and two-rotation shaking.

〔実施例〕〔Example〕

以下本発明の実施例を図面によって詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

なお、構成、動作の説明を理解し易くするために全図を
通じて同一部分には同一符号を付してその重複説明を省
略する。
Note that, in order to make the explanation of the configuration and operation easier to understand, the same parts are given the same reference numerals throughout all the figures, and repeated explanation thereof will be omitted.

第1図は本発明の構成を示す要部断面図である。FIG. 1 is a sectional view of a main part showing the configuration of the present invention.

図において、5は液体窒素温度77に付近の環境を保持
する冷却装置である。6は円板状のホログラムディスク
、7はホログラムディスク6の外周に同心環状に設けら
れ、所要の永久電流を流す超伝導コイルを示す。超伝導
コイル7はホログラムディスク6の外周片面に形成して
もよい。
In the figure, 5 is a cooling device that maintains the surrounding environment at a liquid nitrogen temperature 77. Reference numeral 6 indicates a disk-shaped hologram disk, and 7 indicates a superconducting coil provided in a concentric ring shape around the outer periphery of the hologram disk 6 and through which a required persistent current flows. The superconducting coil 7 may be formed on one side of the outer periphery of the hologram disk 6.

超伝導コイル7には例えば超伝導セラミックスY−Ba
−Cu−0系(インドリウム・バリウム・銅・酸素)を
利用する。1987年3月3日に科学技術庁金属材料研
究所、戸叶−正氏が既に発見されている液体窒素温度以
上の臨界温度を持つ超伝導セラミックスY−Ba−Cu
−0系において、Ba/Yの成分比が0゜610.4で
あることを明確に発表されて以来、急速にこの分野に於
ける開発が進展していることが知られている。具体的に
はYl・Bag  ・CLI3  ・07−0.!の物
質が確認されている。
The superconducting coil 7 is made of superconducting ceramic Y-Ba, for example.
-Cu-0 system (indolium, barium, copper, oxygen) is used. On March 3, 1987, Mr. Tadashi Toha of the National Institute for Materials Research, Science and Technology Agency discovered the superconducting ceramic Y-Ba-Cu, which has a critical temperature higher than the temperature of liquid nitrogen.
It is known that development in this field has progressed rapidly since it was clearly announced that the Ba/Y component ratio in the -0 series was 0°610.4. Specifically, Yl・Bag・CLI3・07-0. ! substances have been confirmed.

8は超伝導コイル7の外側全周囲を非接触に囲う断面コ
の字の環状の永久磁石であって、冷却装置5によって液
体窒素温度近辺の温度環境下におかれた超伝導コイル7
は超伝導状態となり、マイスナー効果によって超伝導コ
イル7と一体的に形成されたホログラムディスク6は、
コの字形の永久磁石8の囲いの中で反撥しあい浮遊状態
を保持する。
Reference numeral 8 denotes an annular permanent magnet having a U-shaped cross section that surrounds the entire outer circumference of the superconducting coil 7 in a non-contact manner, and the superconducting coil 7 is placed in a temperature environment near the liquid nitrogen temperature by the cooling device 5.
becomes a superconducting state, and the hologram disk 6, which is integrally formed with the superconducting coil 7 due to the Meissner effect,
They repel each other and maintain a floating state within the U-shaped permanent magnet 8 enclosure.

この状態において超伝導コイル7に所要の永久電流を付
与しておく。
In this state, a required persistent current is applied to the superconducting coil 7.

9は超伝導コイル7の片面側全周囲に非接触、かつ等間
隔に対向配置された複数の電磁石であって超伝導コイル
7を流れる永久電流によって発生する磁力線を利用し、
電磁石を回転方向に順次周期的に励磁駆動することによ
りホログラムディスク6に回転力を付与する機能を有す
る。
Reference numeral 9 denotes a plurality of electromagnets disposed oppositely and equidistantly around the entire periphery of one side of the superconducting coil 7, and utilizing lines of magnetic force generated by persistent current flowing through the superconducting coil 7.
It has a function of applying rotational force to the hologram disk 6 by sequentially and periodically exciting and driving the electromagnet in the rotational direction.

第2図は第1図における冷却装置を除く平面図を示し、
電磁石9は一部分のみを記載している。
FIG. 2 shows a plan view excluding the cooling device in FIG. 1,
Only a portion of the electromagnet 9 is shown.

前記回転はホログラムディスク6の浮遊状態のもとで行
われるため、従来のように回転力を伝達する軸、フラン
ジ等が不要となる結果、ホログラムディスク6の中心部
は図示するようにすべてホログラム形成に利用可能とな
り、ホログラムの有効な面積が増大する。また、従来方
法に較べ等しいホログラムの面積でもホログラムディス
クの小径化が可能である。また、回転軸ではなく円板を
浮遊状態で外周部をリニアモータ式に回動させるためホ
ログラムディスクの回転ぶれを抑制でき、ホログラムデ
ィスクに取り付は孔を設ける必要もないので破損の心配
がない。
Since the rotation is performed with the hologram disk 6 in a floating state, there is no need for a shaft, flange, etc. for transmitting rotational force as in the conventional case, and as a result, the center of the hologram disk 6 is entirely formed as a hologram as shown in the figure. This increases the effective area of the hologram. Further, compared to the conventional method, the diameter of the hologram disk can be made smaller even if the area of the hologram is the same. In addition, since the outer periphery of the disk is rotated by a linear motor in a floating state rather than a rotating shaft, rotational wobbling of the hologram disk can be suppressed, and there is no need to make holes for installation on the hologram disk, so there is no need to worry about damage. .

第3図は本発明の他の実施例の要部平面図を示す。この
図には冷却装置および電磁石の記載を省略している。ホ
ログラムディスクの中央部が全てホログラムに利用でき
るようになったため、従来のようにホログラムのパター
ンを複数に分割することなく図示するように1パターン
で回転させることも可能である。
FIG. 3 shows a plan view of essential parts of another embodiment of the present invention. A cooling device and an electromagnet are not shown in this figure. Since the entire center of the hologram disk can now be used for the hologram, it is also possible to rotate the hologram in one pattern as shown in the figure, without having to divide the hologram pattern into multiple parts as in the past.

近年、超伝導部材の開発は長足の進歩を遂げつつあり、
常温環境下においてマイスナー効果の再現性のある部材
が発見されつつあり、常温環境下にて利用できる時期は
近い将来に期待できる状況にある。以上述べたホログラ
ムディスクの回転装置においても冷却装置が不要になれ
ば、応用範囲は図り知れないほど拡がることであろう。
In recent years, the development of superconducting materials has been making great progress.
Components that can reproduce the Meissner effect in a normal temperature environment are being discovered, and it is expected that they will be usable in a normal temperature environment in the near future. If a cooling device were no longer necessary in the hologram disk rotating device described above, the range of applications would be expanded immeasurably.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、従来技
術に比較してホログラムディスクに占める− ホログラ
ムの面積を大きくすることができる。またはホログラム
ディスクの小径化が図れる。同時に光学系全体の大きさ
も小さくすることができる。
As is clear from the above description, according to the present invention, the area occupied by the hologram on the hologram disk can be increased compared to the prior art. Alternatively, the diameter of the hologram disk can be reduced. At the same time, the size of the entire optical system can be reduced.

また、ホログラムディスクの回転ぶれを押さえることが
でき、孔明は加工の必要がないため破損を生じない。小
型化により慣性モーメントが小さくなるため、回転の高
速化、もしくはモータの省力化、低コスト化が図れると
いう著しい工業的効果がある。
In addition, rotational wobbling of the hologram disk can be suppressed, and there is no need for machining of the holes, so no damage occurs. Since the moment of inertia is reduced due to miniaturization, there is a significant industrial effect in that the speed of rotation can be increased, the labor of the motor can be saved, and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す要部断面図、第2図は第1
図における冷却装置を除く平面図、第3図は本発明の他
の実施例の平面図、第4図は従来のホログラムディスク
装置の外観図を示す。 第1図において、6はホログラムディスク、7は超伝導
コイル、8は永久磁石、9は電磁石をそれぞれ示す。 /− 代理人 弁理士 井 桁 貞 −にブ む 第1図 71GO+zF、けs ;fETj<’is K< !
ヒMl漆発畔し忙、aぐ謎伊ト平面m 第3図
Fig. 1 is a sectional view of the main part showing the structure of the present invention, and Fig. 2 is a sectional view of the main part showing the configuration of the present invention.
FIG. 3 is a plan view of another embodiment of the present invention, and FIG. 4 is an external view of a conventional hologram disk device. In FIG. 1, 6 is a hologram disk, 7 is a superconducting coil, 8 is a permanent magnet, and 9 is an electromagnet. /- Agent Patent Attorney Sada Igata - Nibumu Figure 1 71 GO+zF, kes;fETj<'is K<!
Figure 3: The lacquer is in full bloom, and the mysterious surface of the plane is displayed.

Claims (1)

【特許請求の範囲】  円板状のホログラムディスク(6)の外周に同心環状
に設けられ、所要の永久電流を流す超伝導コイル(7)
と、 該超伝導コイル(7)の外側全周囲を非接触に囲う断面
コの字の環状の永久磁石(8)と、 前記超伝導コイル(7)の片面側全周囲に非接触、かつ
等間隔に対向配置された複数の電磁石(9)とからなり
、 前記超伝導コイル(7)と前記永久磁石(8)との間に
発生するマイスナー効果により前記ホログラムディスク
(6)を浮遊状態に保持すると共に、前記超伝導コイル
(7)と前記電磁石(9)によって前記ホログラムディ
スク(6)の回転を行うことを特徴とするホログラムデ
ィスク回転装置。
[Claims] A superconducting coil (7) that is provided in a concentric ring shape around the outer periphery of a disc-shaped hologram disk (6) and that flows a required persistent current.
and an annular permanent magnet (8) having a U-shaped cross section that surrounds the entire outer periphery of the superconducting coil (7) in a non-contact manner; It consists of a plurality of electromagnets (9) arranged oppositely at intervals, and holds the hologram disk (6) in a floating state by the Meissner effect generated between the superconducting coil (7) and the permanent magnet (8). A hologram disk rotation device characterized in that the hologram disk (6) is rotated by the superconducting coil (7) and the electromagnet (9).
JP63094082A 1988-04-15 1988-04-15 Hologram disk rotating device Pending JPH01265222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094082A JPH01265222A (en) 1988-04-15 1988-04-15 Hologram disk rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094082A JPH01265222A (en) 1988-04-15 1988-04-15 Hologram disk rotating device

Publications (1)

Publication Number Publication Date
JPH01265222A true JPH01265222A (en) 1989-10-23

Family

ID=14100556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094082A Pending JPH01265222A (en) 1988-04-15 1988-04-15 Hologram disk rotating device

Country Status (1)

Country Link
JP (1) JPH01265222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296529A (en) * 2001-03-30 2002-10-09 Brother Ind Ltd Optical scanner and image forming device equipped therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296529A (en) * 2001-03-30 2002-10-09 Brother Ind Ltd Optical scanner and image forming device equipped therewith

Similar Documents

Publication Publication Date Title
US4939120A (en) Superconducting rotating assembly
US4886778A (en) Superconducting rotating assembly
EP0887569A2 (en) Method for setting up a superconducting bearing device
JPH02184258A (en) Power generating device
JP3570204B2 (en) Inertia damper
JPH01265222A (en) Hologram disk rotating device
JPH07312885A (en) Superconducting actuator
JPH0681845A (en) Supercondctive bearing device
JP3177847B2 (en) Superconducting bearing device
JPH02163513A (en) Magnetic thrust bearing
JP3122772B2 (en) Superconducting bearing device
SU667716A1 (en) Magnetic-support bearing
JP3577559B2 (en) Flywheel equipment
JP3616856B2 (en) Bearing device
JPH04281377A (en) Slide device
CN1258765C (en) Device for playing information disc in disc playing device
JPH05180226A (en) Superconductive bearing device
JPH0681843A (en) Supercondctive bearing device
JP2559829Y2 (en) Magnetic coupling
JPH01247822A (en) Support construction for rotary shaft
JP2000245135A (en) Rotating apparatus
JP3270860B2 (en) Superconducting bearing device
JPH06313427A (en) Oxide superconducting bearing
JPH08296647A (en) Bearing device
JPH0544728A (en) Drive device