JPH01263472A - Heat pump with air heating source - Google Patents

Heat pump with air heating source

Info

Publication number
JPH01263472A
JPH01263472A JP9082188A JP9082188A JPH01263472A JP H01263472 A JPH01263472 A JP H01263472A JP 9082188 A JP9082188 A JP 9082188A JP 9082188 A JP9082188 A JP 9082188A JP H01263472 A JPH01263472 A JP H01263472A
Authority
JP
Japan
Prior art keywords
air
heat
heat exchanger
expansion valve
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9082188A
Other languages
Japanese (ja)
Inventor
Hidemasa Ogose
英雅 生越
Koremune Kameda
亀田 是統
Satoru Miyakado
宮門 悟
Haruhito Okamoto
晴仁 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9082188A priority Critical patent/JPH01263472A/en
Publication of JPH01263472A publication Critical patent/JPH01263472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To enable a heating operation to be carried out even during a defrosting operation by a method wherein a hot coolant liquid after a coolant tank is flowed in an air heat exchanger to perform a defrosting operation, a pressure is reduced by an expansion valve, an accumulated heat of a thermal accumulation tank is absorbed to evaporate and gasify the coolant. CONSTITUTION:Gas becomes gas of high temperature and high pressure through a coolant compressor 1, enters a water heat exchanger 2 and heats water. The heated water passes through a pipe 7, enters an air conditioner 6 to heat air. The heated air is used for heating a room. The gas of high temperature and high pressure is condensed, and liquefied by the water heat exchanger 2 and enters a coolant tank 4. High-temperature coolant liquid after the tank 4 passes through a pipe 11 and enters air heat exchanger 3 so as to melt adhered frost. With this arrangement, the coolant liquid which is slightly over-cooled is reduced by an expansion valve 5 for its pressure, the liquid is evaporated, gasified with an accumulated heat being applied as a heating source. The gasified gas is sucked into a coolant compressor 1. In case that a defrosting operation is carried out, the coolant liquid is evaporated and gasified with an accumulated heat being applied as a heating source, so that a heating operation can be continued without reducing capacity even during defrosting operation.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、除霜時にも効率よい暖房運転が可能な空気
熱源ヒーI〜ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an air heat source heat pump that is capable of efficient heating operation even during defrosting.

[従来の技術] 空気熱源ヒートポンプによる暖房は、第3図に示すよう
に、冷媒圧縮機1て高温高圧になったガスは水側熱交換
器2で凝縮、液化し、−旦冷媒タンク4に貯められた後
、膨張弁5で減圧された冷媒は、空気側熱交換器3て蒸
発、気化され、冷媒圧縮機1に吸入されるサイクルか繰
り返される。
[Conventional technology] As shown in FIG. 3, in heating using an air source heat pump, gas that has become high temperature and high pressure in a refrigerant compressor 1 is condensed and liquefied in a water side heat exchanger 2, and then transferred to a refrigerant tank 4. After being stored, the refrigerant is depressurized by the expansion valve 5, is evaporated and vaporized by the air side heat exchanger 3, and is sucked into the refrigerant compressor 1, and the cycle is repeated.

このとき、水側熱交換器2で加熱された温水は、水配管
7を通って空調機6で空気と熱交換され部屋を暖房する
。暖房運転を行うとき空気側熱交換器が冷媒蒸発器とな
るため、外気温度が低い(約5℃以下)ときは、蒸発温
度か0°C以下となり、空気側熱交換器の伝熱面上に空
気中の水分が、凝縮し霜が付着する。伝熱面上に霜が付
着すると、空気との熱交換が阻害され暖房能力に著しい
低下をもたらずことになる。そのため、定期的に付着し
た霜を取り除くことが必要で、以下のような方法が行わ
れてきた。(S、60.6.30  日本冷凍協会発行
「冷凍用自動制御機器」203〜206ページ参照) (1)ホラl−カス方式 これは、圧縮機から吐き出された高温高圧カスを蒸発器
の伝熱管に流入させ、この冷媒ガスの凝縮熱を利用して
蒸発器の伝熱管内部から伝熱管表面に付いた霜を融かず
方法である。暖房運転中に除霜するときは、−旦、冷房
運転モードに冷媒配管を切り替えて除霜する。
At this time, the hot water heated by the water-side heat exchanger 2 passes through the water pipe 7 and exchanges heat with air in the air conditioner 6 to heat the room. During heating operation, the air side heat exchanger becomes a refrigerant evaporator, so when the outside air temperature is low (approximately 5°C or less), the evaporation temperature becomes 0°C or less, and the heat transfer surface of the air side heat exchanger Moisture in the air condenses and forms frost. If frost adheres to the heat transfer surface, heat exchange with the air will be inhibited, and heating capacity will not be significantly reduced. Therefore, it is necessary to periodically remove the accumulated frost, and the following methods have been used. (Refer to pages 203-206 of "Automatic Control Equipment for Refrigeration" published by the Japan Refrigeration Association, S, 60.6.30) (1) Hola L-Cass Method This is a system that transfers high-temperature, high-pressure scum discharged from the compressor to the evaporator. This method uses the heat of condensation of the refrigerant gas to flow into the heat tube and melt the frost that forms on the surface of the heat transfer tube from inside the heat transfer tube of the evaporator. When defrosting during heating operation, the refrigerant piping is switched to cooling operation mode and defrosted.

く2)散水方式 これは、霜の付いた蒸発器にスプレーノスル等により水
を直接散布して霜を融かず方法である。
2) Water sprinkling method This method does not melt the frost by directly spraying water onto the frosted evaporator using a spray nostle or the like.

く3)電気ヒータ一方式 これは、パイプ式シースヒーターを蒸発器に挿入し電熱
て除霜する方法である。
3) One-way electric heater method This method involves inserting a pipe-type sheathed heater into the evaporator and defrosting it by electric heating.

[発明が解決しようとする課題] ホットガス方式は、除霜のため、−旦暖房運転を中断し
て冷房運転を行わなけれはならないから、除霜中は暖房
ができない。特に、外気温か低くて霜か付き易い日は、
除霜を頻繁に繰り返すことになり暖房か思うようにてき
なくなる。散水方式は、除霜に時間かかかる。水温か高
いとモヤか発生し、これか送風機に凝縮して冷却時結氷
(ファンロック)してモーター焼損等の1−ラフルの原
因となる。また、散水装置やそれを動かずための動力か
必要である。電気ヒータ一方式は、多大な電力を必要と
する。という問題がある。
[Problems to be Solved by the Invention] In the hot gas method, heating operation must be interrupted and cooling operation performed in order to defrost, so heating cannot be performed during defrosting. Especially on days when the outside temperature is low and frost is likely to form.
If you have to defrost frequently, the heating won't work as expected. The watering method takes time to defrost. If the water temperature is too high, a mist will form, which will condense on the blower and cause ice formation (fan lock) during cooling, causing motor burnout and other problems. You will also need a sprinkler system and power to keep it running. A single electric heater requires a large amount of power. There is a problem.

[課題を解決するだめの手段] 本発明は、以上の問題点を解決しようとするものて、水
側熱交換器後の高温の冷媒液を空気側熱交換器に導入し
、排出された冷媒液を膨張弁前の配管に戻す管路と、前
記膨張弁のバイパス管と、前記膨張弁後の管路に接続し
た蓄熱槽伝熱管と、該伝熱管を収容した蓄熱槽と、前記
蓄熱槽伝熱管と空気側熱交換器の間の管路に設けた第2
膨張弁と、該第2膨張弁のバイパス管とを備えたことを
特徴とする空気熱源ヒートポンプである。
[Means for Solving the Problems] The present invention aims to solve the above problems by introducing the high temperature refrigerant liquid after the water side heat exchanger into the air side heat exchanger, and removing the discharged refrigerant from the water side heat exchanger. A pipeline that returns the liquid to the piping in front of the expansion valve, a bypass pipe of the expansion valve, a heat storage tank heat transfer tube connected to the pipeline after the expansion valve, a heat storage tank that accommodates the heat transfer tube, and the heat storage tank. A second pipe installed in the pipeline between the heat exchanger tube and the air side heat exchanger
The present invention is an air source heat pump characterized by comprising an expansion valve and a bypass pipe for the second expansion valve.

[作用] 除霜をしなくともよいとき、冷媒タンク後の高温の冷媒
液を膨張弁のバイパス管を通して蓄熱槽伝熱管に送入し
、蓄熱槽液を加熱した後第2膨張弁で減圧し、空気側熱
交換器で蒸発、気化する回路を使用することにより、蓄
熱槽に蓄熱するとともに暖房をすることができる。また
、除霜のときは、冷媒タンク後の高温の冷媒液を空気側
熱交換器に通し、除霜し、膨張弁で減圧して蓄熱槽の蓄
熱を吸収して蒸発、気化させる回路を使用することによ
り、暖房能力を低下ぜることなく暖房することができる
[Operation] When defrosting is not required, the high temperature refrigerant liquid after the refrigerant tank is sent to the heat storage tank heat transfer tube through the bypass pipe of the expansion valve, and after heating the heat storage tank liquid, the pressure is reduced by the second expansion valve. By using a circuit that evaporates and vaporizes in the air side heat exchanger, heat can be stored in the heat storage tank and heating can be performed. In addition, when defrosting, a circuit is used that passes the high temperature refrigerant liquid after the refrigerant tank through the air side heat exchanger, defrosts it, reduces the pressure with an expansion valve, absorbs the heat stored in the heat storage tank, and evaporates and vaporizes it. By doing so, heating can be performed without reducing the heating capacity.

[実施例] 本発明の実施例を図面に基すいて以下に説明する。第1
図〜第2図は本発明の実施例に係る空気熱源ヒートポン
プの回路図である。本発明の空気熱源ヒー1へポンプは
、従来の空気熱源ヒートポンプの回路に、冷媒タンク4
後の高温の冷媒液を空気側熱交換器3に送入し、排出す
る管路11を冷媒タンク4と膨張弁50間の管路10と
、膨張弁5のバイパス管路12と、膨張弁5後の管路に
接続した蓄熱槽伝熱管8と、蓄熱槽伝熱管8を収容した
蓄熱槽9と、蓄熱槽伝熱管8と空気側熱交換器30間の
管路13に設けた第2膨張弁14と、第2膨張弁14の
バイパス管15を設けている。
[Example] An example of the present invention will be described below based on the drawings. 1st
2 to 2 are circuit diagrams of an air source heat pump according to an embodiment of the present invention. The air heat source heat pump of the present invention has a refrigerant tank 4 in the circuit of a conventional air heat source heat pump.
A pipe line 11 for feeding and discharging the high-temperature refrigerant liquid into the air-side heat exchanger 3 is connected to a pipe line 10 between the refrigerant tank 4 and the expansion valve 50, a bypass pipe line 12 of the expansion valve 5, and the expansion valve. The heat storage tank heat transfer tube 8 connected to the pipe line after 5, the heat storage tank 9 that accommodated the heat storage tank heat transfer tube 8, and the second An expansion valve 14 and a bypass pipe 15 for the second expansion valve 14 are provided.

−5= 次に、本発明の空気熱源ヒートポンプの使用方法につい
て説明する。除霜しない場合のフローを第2図に太線で
示しである。カスは、冷媒圧縮器1て高温高圧のカスと
なって水側熱交換器2に入り、水を加熱する。加熱され
た水は管″#I7を通って空調機6に入り空気を暖め、
暖められた空気は部屋の暖房に使用される。高温高圧の
ガスは水側熱交換器2て凝縮、液化されて冷媒タンク4
に入る。高温の冷媒液は、バイパス管路]2を通って蓄
熱槽伝熱管8に入り、蓄熱槽9内の水等を加熱して管路
13に出る。これにより蓄熱槽に蓄熱される。管路13
に出た高温の冷媒液は第2膨張弁で減圧され、空気側熱
交換器3に入り、蒸発、気化してガスとなって冷媒圧縮
器1に吸入される。
-5= Next, a method of using the air source heat pump of the present invention will be explained. The flow when defrosting is not performed is shown in bold lines in FIG. The scum enters the water side heat exchanger 2 as high temperature and high pressure scum from the refrigerant compressor 1, and heats water. The heated water enters the air conditioner 6 through the pipe "#I7" and warms the air.
The warmed air is used to heat the room. The high temperature and high pressure gas is condensed and liquefied in the water side heat exchanger 2 and then sent to the refrigerant tank 4.
to go into. The high-temperature refrigerant liquid enters the heat storage tank heat transfer tube 8 through the bypass pipe 2, heats water, etc. in the heat storage tank 9, and exits the pipe 13. Thereby, heat is stored in the heat storage tank. Conduit 13
The high-temperature refrigerant liquid that comes out is depressurized by the second expansion valve, enters the air-side heat exchanger 3, evaporates and vaporizes, becomes a gas, and is sucked into the refrigerant compressor 1.

このように除霜しないときは、暖房を行うと同時に蓄熱
槽9に蓄熱する。
When defrosting is not performed in this manner, heat is stored in the heat storage tank 9 at the same time as heating is performed.

第1図には除霜するときのフローが、太線て示しである
。カスは、冷媒圧縮器1て高温高圧のカスとなって水側
熱交換器2に入り、水を加熱する。加熱された水は管路
7を通って空調機6に入り空気を暖め、暖められた空気
は部屋の暖房に使用される。高温高圧のカスは水側熱交
換器2て凝縮、液化されて冷媒タンク11に入る。冷媒
タンク4後の高温の冷媒液は管路1]を通って空気側熱
交換器3に入り付着した霜を融かず。これによって少し
過冷却された冷媒液は、膨張弁5で減圧され蓄熱槽伝熱
管8て蓄熱を熱源として蒸発、気化し、気化したカスは
冷媒圧縮器1に吸入される。
In FIG. 1, the flow when defrosting is shown by a thick line. The scum enters the water side heat exchanger 2 as high temperature and high pressure scum from the refrigerant compressor 1, and heats water. The heated water passes through the pipe 7 and enters the air conditioner 6 to warm the air, and the warmed air is used to heat the room. The high temperature and high pressure waste is condensed and liquefied in the water side heat exchanger 2 and enters the refrigerant tank 11. The high-temperature refrigerant liquid after the refrigerant tank 4 enters the air-side heat exchanger 3 through the pipe line 1 and does not melt the frost that has adhered thereto. The refrigerant liquid, which has been slightly supercooled by this, is depressurized by the expansion valve 5 and is evaporated and vaporized using the heat stored in the heat storage tank heat transfer tube 8 as a heat source, and the vaporized residue is sucked into the refrigerant compressor 1.

このように除霜するときは、除霜していないときに蓄熱
した熱を熱源として、冷媒液を蒸発、気化させるから、
除霜中でも能力を低下させることなく暖房を継続するこ
とができる。
When defrosting in this way, the refrigerant liquid is evaporated and vaporized using the heat stored when defrosting is not being performed as a heat source.
Heating can be continued without reducing capacity even during defrosting.

「発明の効果] 本発明は、以上のように構成されているのて、除霜中て
も暖房運転を行うことができる。除霜運転中は、蓄熱槽
の蓄熱を熱源として冷媒液を蒸発、気化させるから暖房
能力か低下することかない。また、散水方式のように除
霜に時間かかがるというような問題かなく、電気ヒータ
方式のように多大な電力を必要としない。という効果か
ある。
[Effects of the Invention] With the above configuration, the present invention can perform heating operation even during defrosting. During defrosting operation, the refrigerant liquid is evaporated using the heat stored in the heat storage tank as a heat source. Since it is vaporized, there is no reduction in heating capacity.Also, there is no problem of time-consuming defrosting as with the water spray method, and there is no need for a large amount of electricity as with the electric heater method. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の空気熱源ヒートポンプの蓄
熱フローを示す回路図、第2図は本発明の一実施例の空
気熱源ヒートポンプの除霜フローを示す回路図、第3図
は従来の空気熱源ヒートポンプを示す回路図である。 ]・・冷媒圧縮器、2・・・水側熱交換器、3 ・空気
側熱交換器、5・・膨張弁、8・・・蓄熱槽伝熱管、9
・蓄熱槽、12・・バイパス管路、14・・・第2膨張
弁、15 ・バイパス管路。
Fig. 1 is a circuit diagram showing the heat storage flow of an air source heat pump according to an embodiment of the present invention, Fig. 2 is a circuit diagram showing a defrosting flow of an air heat source heat pump according to an embodiment of the present invention, and Fig. 3 is a conventional circuit diagram. FIG. 2 is a circuit diagram showing an air source heat pump. ]... Refrigerant compressor, 2... Water side heat exchanger, 3 - Air side heat exchanger, 5... Expansion valve, 8... Heat storage tank heat exchanger tube, 9
- Heat storage tank, 12... Bypass pipe line, 14... Second expansion valve, 15 - Bypass pipe line.

Claims (1)

【特許請求の範囲】[Claims] 水側熱交換器後の高温の冷媒液を空気側熱交換器に導入
し、排出された冷媒液を膨張弁前の配管に戻す管路と、
前記膨張弁のバイパス管と、前記膨張弁後の管路に接続
した蓄熱槽伝熱管と、該伝熱管を収容した蓄熱槽と、前
記蓄熱槽伝熱管と空気側熱交換器の間の管路に設けた第
2膨張弁と、該第2膨張弁のバイパス管とを備えたこと
を特徴とする空気熱源ヒートポンプ。
A pipe line that introduces the high temperature refrigerant liquid after the water side heat exchanger to the air side heat exchanger and returns the discharged refrigerant liquid to the piping in front of the expansion valve;
A bypass pipe of the expansion valve, a heat storage tank heat transfer tube connected to a pipe line after the expansion valve, a heat storage tank housing the heat transfer tube, and a pipe line between the heat storage tank heat transfer tube and the air side heat exchanger. An air source heat pump characterized by comprising: a second expansion valve provided in the second expansion valve; and a bypass pipe for the second expansion valve.
JP9082188A 1988-04-13 1988-04-13 Heat pump with air heating source Pending JPH01263472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9082188A JPH01263472A (en) 1988-04-13 1988-04-13 Heat pump with air heating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9082188A JPH01263472A (en) 1988-04-13 1988-04-13 Heat pump with air heating source

Publications (1)

Publication Number Publication Date
JPH01263472A true JPH01263472A (en) 1989-10-19

Family

ID=14009255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9082188A Pending JPH01263472A (en) 1988-04-13 1988-04-13 Heat pump with air heating source

Country Status (1)

Country Link
JP (1) JPH01263472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092342A (en) * 2011-10-27 2013-05-16 Daikin Industries Ltd Refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092342A (en) * 2011-10-27 2013-05-16 Daikin Industries Ltd Refrigerating device

Similar Documents

Publication Publication Date Title
US4646539A (en) Transport refrigeration system with thermal storage sink
US4215555A (en) Hot gas defrost system
CN104713266A (en) Heat pump type cold and heat source unit capable of achieving frost-free and evaporative cooling
US4194368A (en) Combination split system air conditioner and compression cycle domestic hot water heating apparatus
CN103363599A (en) Air conditioner system with cooling tower
US4286435A (en) Hot gas defrost system
US4279129A (en) Hot gas defrost system
CN111594962A (en) Fluorine pump energy-saving indirect evaporative cooling air conditioning unit and control method
JPH01263472A (en) Heat pump with air heating source
CN213514206U (en) Energy-saving indirect evaporative cooling air conditioning unit with fluorine pump
JP2000121107A (en) Ice storage system
JPH0452469A (en) Air conditioner
JP2008122064A (en) Frost preventing refrigerating machine and defrosting device for refrigerating machine
CN111707028A (en) Outdoor air-cooled defroster of heat pump air conditioner
EP3175184B1 (en) Refrigeration appliance having freezer evaporator defrost circuit
JPH0370945A (en) Heat pump system
JPH068460Y2 (en) Cooling water control circuit
JPH02176373A (en) Heat pump type cooling and heating device
KR20020013337A (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JPS61272548A (en) Cooling and heating apparatus
KR200343255Y1 (en) Heat recoprat ventilation system for hot house
JPS5924945Y2 (en) Defrost water control device
JPH10111042A (en) Snow melting device
KR910002288Y1 (en) Heat pump
JPS5852148B2 (en) Two-stage compression refrigeration equipment