JPH01263460A - Freezing device - Google Patents

Freezing device

Info

Publication number
JPH01263460A
JPH01263460A JP8898488A JP8898488A JPH01263460A JP H01263460 A JPH01263460 A JP H01263460A JP 8898488 A JP8898488 A JP 8898488A JP 8898488 A JP8898488 A JP 8898488A JP H01263460 A JPH01263460 A JP H01263460A
Authority
JP
Japan
Prior art keywords
evaporator
cold water
pressure
temperature
controlling valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8898488A
Other languages
Japanese (ja)
Inventor
Yuichi Kemi
裕一 計見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8898488A priority Critical patent/JPH01263460A/en
Publication of JPH01263460A publication Critical patent/JPH01263460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To enable a smooth energization of a freezing device even under a hot or cold water condition while preventing an over-loaded state of a compressor motor by a method wherein a degree of opening of a controlling valve is controlled according to a pressure within an evaporator when the cold water in the cold water feeding pipe at an evaporator shows a hot temperature. CONSTITUTION:In case that a cold water temperature is high, for example, at about 40 deg.C, a pressure within an evaporator 1 is increased, a closing signal is produced from a pressure controller 7 to a controlling valve 5 and the controlling valve 5 is fully closed before energization. When a freezer is energized under this condition, the pressure within the evaporator 1 is decreased gradually. If the inner pressure of the evaporator is decreased to a set value of a pressure controller 7, an opening signal is produced to the controlling valve 5 and the coolant liquid is sent slightly to the evaporator 1. This coolant liquid is heated by cold water having a high temperature, so that a temperature of cold water is decreased and the pressure controlling unit 1 may detect the inner pressure and output a controlling signal so as to close the valve a little to the controlling valve 5. If the cold water shows a decreased temperature to the inlet port temperature of 30 deg.C, the controlling valve 5 is fully opened and then an amount of circulation of the coolant is controlled by an orifice 6 and a normal operation is carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍装置に係り、特に、例えばターボ冷凍機
における、蒸発器の冷水管群を流通する冷水が高温であ
るときの起動を円滑にするのに好適な冷凍装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a refrigeration system, and in particular, to smooth startup of a turbo chiller, for example, when cold water flowing through a group of cold water pipes of an evaporator is at a high temperature. The present invention relates to a refrigeration system suitable for

[従来の技術] 従来のターボ冷凍機においては、起動時には圧縮機入口
側の制御弁を全閉にしている。これにより、蒸発器にお
ける冷水管群を流通する冷水が高温であるときの密度の
高い冷媒ガスの吸込量を絞ることになり、圧縮機モータ
のオーバーロードを防止することができていた。しかし
、それも冷水温度が35°C程度までが限度であり、た
とえば中近東などで外気温が50℃近くまで上る地域で
は、40’C以上の冷水温度になることがあり得る。そ
のような場合には、冷水配管途中のバルブを絞ることに
より、冷水出口温度を下げ、蒸発器内部圧力を下げて、
圧縮機に吸込まれる冷媒ガスの密度を下げ、圧縮機モー
タのオーバーロー1・を防ぐ方法がとられていた。
[Prior Art] In a conventional centrifugal chiller, the control valve on the compressor inlet side is fully closed at startup. This reduces the suction amount of high-density refrigerant gas when the cold water flowing through the cold water pipe group in the evaporator is at a high temperature, thereby preventing overload of the compressor motor. However, the temperature of the cold water is limited to about 35°C, and in regions such as the Middle East where the outside temperature rises to nearly 50°C, the temperature of the cold water can reach 40°C or higher. In such a case, by tightening the valve in the middle of the chilled water pipe, the chilled water outlet temperature is lowered, and the internal pressure of the evaporator is lowered.
A method has been used to reduce the density of refrigerant gas sucked into the compressor to prevent overflow of the compressor motor.

このような従来技術については、例えば特公昭55−4
4864号公報、あるいは特開昭51−150147号
公報に記載されている。
Regarding such conventional technology, for example, Japanese Patent Publication No. 55-4
It is described in Japanese Patent Laid-open No. 4864 or Japanese Patent Application Laid-open No. 150147/1983.

ここで、特公昭55−4.4864号公報記載の技術は
、夏季、冬期のみでなく中間期をも含め、温水、冷水負
荷の変動に良好な追従性を発揮するだめのもので、温水
コンデンサと冷却水コンデンサとを直列に配備され、温
水コンデンサから冷却水コンデンサにいたる冷媒経路の
冷媒流量を温水出口温度または温水コンデンサ圧力の変
動によって調節する技術が開示されていた。
Here, the technology described in Japanese Patent Publication No. 55-4.4864 is a technology that exhibits good followability to fluctuations in hot water and cold water loads, not only in summer and winter, but also in the intermediate period. A technology has been disclosed in which a refrigerant and a cooling water condenser are arranged in series, and the refrigerant flow rate in a refrigerant path from the hot water condenser to the cooling water condenser is adjusted by fluctuations in the hot water outlet temperature or the hot water condenser pressure.

また、特開昭51−150147号公報記載の技術は、
一系統の冷凍回路中に並列接続された対水型蒸発器の冷
水出口温度を夫々検出して、そのうちの最も高い温度を
選択し、この温度を制御指令として圧縮機の容量を調整
する技術が開示されており、これも負荷に応した経済運
転をはかるためのものであった。
In addition, the technology described in Japanese Patent Application Laid-Open No. 51-150147 is
This technology detects the cold water outlet temperatures of the water-to-water evaporators connected in parallel in a single refrigeration circuit, selects the highest temperature among them, and uses this temperature as a control command to adjust the capacity of the compressor. This was also intended to ensure economical operation according to the load.

[発明が解決しようとする課題] 上記従来のやり方では、冷水温度が高くなるに従い、冷
水配管のバルブを全開近くにする必要があるため、蒸発
器チューブ(冷水管群)内の冷水がほとんど流れない状
態ができることになり、操作ミス等によって蒸発器チュ
ーブ内で冷凍事故を起こすおそれがあった。
[Problems to be Solved by the Invention] In the conventional method described above, as the temperature of the chilled water increases, the valve of the chilled water piping must be fully opened, so that almost all of the chilled water in the evaporator tube (cold water pipe group) flows. As a result, there was a risk of a freezing accident occurring within the evaporator tube due to an operational error.

また、冷水配管のバルフ操作を自動にしようとすれば、
配管サイズが大きいため、コスI〜が大幅に上るという
問題があった。
Also, if you try to automate the valve operation of chilled water piping,
Since the piping size is large, there is a problem in that the cost I~ increases significantly.

一方、上記の特公昭55−44864号公報あるいは特
開昭51−15014.7号公報記載の従来技術には、
外気温度が50°C近くまで上る中近東などの高温地域
で使用するターボ冷凍機等の高冷水温時の起動について
は配慮されていなかった。
On the other hand, the prior art described in Japanese Patent Publication No. 55-44864 or Japanese Patent Application Laid-Open No. 51-15014.7 has
No consideration was given to starting turbo chillers, etc. used in high-temperature regions such as the Middle East, where outside air temperatures can reach nearly 50°C, when cold water temperatures are high.

本発明は、上記従来技術における課題を解決するために
なされたもので、コス1へをかけずに、しかも冷水凍結
の危険をおかすことなく、圧縮機モータのオーバーロー
ドを防ぎながら、高冷水温時でも起動をスムーズに行い
うる冷凍装置を提供することを、その目的とするもので
ある。
The present invention has been made in order to solve the above-mentioned problems in the conventional technology. The purpose of the invention is to provide a refrigeration system that can be started smoothly even at low temperatures.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る冷凍装置の構
成は、圧縮機、凝縮器、冷水管群を有する蒸発器、およ
びこれら各機器間を接続する冷媒配管からなる冷凍装置
において、前記凝縮器から前記蒸発器へ至る冷媒配管に
制御弁を設け、前記蒸発器の器内圧力を検知する手段を
設けて、前記蒸発器における冷水管群中の冷水の高温時
に、前記蒸発器の器内圧力に応じて前記制御弁の開度を
制御するように制御回路を構成したものである。
[Means for Solving the Problems] In order to achieve the above object, the configuration of the refrigeration system according to the present invention includes a compressor, a condenser, an evaporator having a group of cold water pipes, and a refrigerant connecting each of these devices. In a refrigeration system consisting of piping, a control valve is provided in the refrigerant piping leading from the condenser to the evaporator, and a means for detecting the internal pressure of the evaporator is provided to control the cold water in the cold water pipe group in the evaporator. A control circuit is configured to control the opening degree of the control valve according to the internal pressure of the evaporator when the temperature is high.

なお付記すると、上記目的は、蒸発器へ流入する冷媒配
管途中に制御弁を設け、蒸発器内部の圧力が高いときは
そのバルブを閉め、低いときには開くように制御するこ
とにより達成される。
In addition, the above object is achieved by providing a control valve in the middle of the refrigerant pipe flowing into the evaporator, and controlling the valve to close when the pressure inside the evaporator is high and open when the pressure inside the evaporator is low.

[作用コ 上記技術的手段による働きを次に述べる。[Action Co. The operation of the above technical means will be described below.

高冷水温度のときは、蒸発器内は、冷水温度に相当する
冷媒の飽和圧力となっている。冷凍装置を起動すれば、
圧縮機により蒸発器から冷媒ガスを吸込むため、蒸発器
内の圧力は低下する。しかし、蒸発器に冷媒液が供給さ
れ続けられている限りはある圧力以下には下らない。こ
こで冷媒液の供給を停止すれば、圧縮機により冷媒ガス
が吸入され続けるので蒸発器圧力はどんどん低下してい
く。それにより吸込まれる冷媒ガスの密度も低くなり、
冷凍装置における圧縮機モータのオーバーロードを防ぐ
ことができる。つまり、蒸発器に供給される冷媒液量を
調整することより、蒸発器内の圧力を、モータがオーバ
ーロードしない圧力以下に保つことができる。
When the temperature of the chilled water is high, the saturated pressure of the refrigerant in the evaporator corresponds to the temperature of the chilled water. If you start the refrigeration equipment,
Since the compressor sucks refrigerant gas from the evaporator, the pressure inside the evaporator decreases. However, as long as the refrigerant liquid continues to be supplied to the evaporator, the pressure will not drop below a certain level. If the supply of refrigerant liquid is stopped at this point, the compressor continues to suck refrigerant gas, so the evaporator pressure gradually decreases. As a result, the density of the refrigerant gas sucked becomes lower,
Overload of the compressor motor in the refrigeration system can be prevented. In other words, by adjusting the amount of refrigerant liquid supplied to the evaporator, the pressure inside the evaporator can be kept below the pressure at which the motor is not overloaded.

[実施例コ 以下、本発明の一実施例を図面を参照して説明する。[Example code] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図面は、本発明の一実施例に係るターボ冷凍機の構成図
である。
The drawing is a configuration diagram of a centrifugal chiller according to an embodiment of the present invention.

図面において、1は、器内に冷凍管群1aを有する蒸発
器、2は、ターボ圧縮機(以下東に圧縮機という)、2
aは、圧縮機モータ、3は、器内に冷却水管群3aを有
する凝縮器、4は、凝縮器3と蒸発器1とを結ぶ冷媒配
管、5は、冷媒配管4に設けられた制御弁、6は、冷媒
配管4が蒸発器1に接続する近傍に設けたオリフィス、
7は、蒸発器1の器内圧力を検知して制御弁5に制御信
号を出力する圧力制御器、8は、圧縮機入口制御弁であ
る。
In the drawing, 1 is an evaporator having a group of freezing tubes 1a in the container, 2 is a turbo compressor (hereinafter referred to as a compressor on the east), 2
a is a compressor motor; 3 is a condenser having a cooling water pipe group 3a inside; 4 is a refrigerant pipe connecting the condenser 3 and the evaporator 1; and 5 is a control valve provided in the refrigerant pipe 4. , 6 is an orifice provided near where the refrigerant pipe 4 connects to the evaporator 1;
7 is a pressure controller that detects the internal pressure of the evaporator 1 and outputs a control signal to the control valve 5; 8 is a compressor inlet control valve.

図面中、白抜きの太い矢印は冷媒の流れ、実線矢印は冷
水または冷却水の流れを示している。
In the drawings, thick white arrows indicate the flow of refrigerant, and solid arrows indicate the flow of cold water or cooling water.

図面では、蒸発器]に接続する冷却配管における冷水温
度を検知して、冷水が高温のときに圧縮機入口制御弁8
を制御して吸込量を絞る制御系を略示している。また、
タービン圧縮機のサクションベーンの駆動制御系等につ
いても略示している。
In the drawing, the temperature of the cold water in the cooling pipe connected to the evaporator is detected, and when the cold water is high temperature, the compressor inlet control valve 8 is activated.
This diagram schematically shows a control system that controls the amount of suction to reduce the amount of suction. Also,
The drive control system of the suction vane of the turbine compressor, etc. is also schematically shown.

しかし、これらの制御系は、特に従来技術と変るところ
がないので、その構成2作用を符号を付して説明するこ
とを省略する。
However, since these control systems are not particularly different from those of the prior art, explanations of the configuration 2 functions thereof will be omitted with reference numerals.

次に、本実施例のターボ冷凍機の作用を説明する。Next, the operation of the centrifugal chiller of this embodiment will be explained.

圧縮機2て圧縮された高温高圧の冷媒ガスは、凝縮器3
の冷却水管群3a内を流通する冷却水を熱交換(放熱)
して凝縮液化する。その液冷媒は、冷媒配管4、制御弁
5、オリフィス6を通って蒸発器]に入る。ここで、冷
媒は冷水管群1aを流通する冷水と熱交換(吸熱)して
蒸発し、低温低圧の冷媒ガスとなって圧縮機入口制御弁
8を経て圧縮機2に吸入され、以下間し冷凍サイクルを
繰り返す。
The high temperature and high pressure refrigerant gas compressed by the compressor 2 is transferred to the condenser 3.
Heat exchange (heat radiation) of the cooling water flowing through the cooling water pipe group 3a
to condense and liquefy. The liquid refrigerant enters the evaporator through a refrigerant pipe 4, a control valve 5, and an orifice 6. Here, the refrigerant exchanges heat (endotherm) with the cold water flowing through the cold water pipe group 1a and evaporates, becoming a low-temperature, low-pressure refrigerant gas that is sucked into the compressor 2 via the compressor inlet control valve 8, and is Repeat the freezing cycle.

いま、冷水温度が、例えば40°C程度に高い場合には
、蒸発器1の器内圧力が高くなり、圧力制御器7から制
御弁5に閉信号が出ており、起動前には制御弁5は全開
となっている。
Now, when the chilled water temperature is high, for example about 40°C, the internal pressure of the evaporator 1 becomes high, and the pressure controller 7 sends a close signal to the control valve 5, and the control valve closes before starting. 5 is fully open.

その状態で冷凍機を起動すると、冷媒液が供給されない
ので、蒸発器1の器内圧力(以下内圧という)はどんど
ん下っていく。内圧が圧力制御器7の設定値まで下がれ
ば、制御弁5に対し開信号が出て冷媒液がわずかに蒸発
器1へ送り込まれる。
When the refrigerator is started in this state, the internal pressure of the evaporator 1 (hereinafter referred to as internal pressure) gradually decreases because refrigerant liquid is not supplied. When the internal pressure falls to the set value of the pressure controller 7, an open signal is issued to the control valve 5, and a small amount of refrigerant liquid is sent into the evaporator 1.

この冷媒液は、温度の高い冷水により加熱されるので蒸
発し、冷水温度は下がる。したがって蒸発器1の内圧は
その分上昇することになり、圧力制御器1は、その内圧
を検知して制御弁5に弁を少し閉めるように制御信号を
出力する。
This refrigerant liquid is heated by the high-temperature cold water, so it evaporates, and the temperature of the cold water decreases. Therefore, the internal pressure of the evaporator 1 increases by that amount, and the pressure controller 1 detects the internal pressure and outputs a control signal to the control valve 5 to slightly close the valve.

一方、蒸発した冷媒ガスは圧縮機2に吸入されるので再
び蒸発器1の内圧は下っていく。このくり返しにより、
冷水温度は次第に下がり、制御弁5は次第に全開へと向
っていく。冷水入口温度が30℃程度まで下がれば、制
御弁5は全開となり、オリフィス6により冷媒循環量が
制御される通常の運転状態となる。
On the other hand, since the evaporated refrigerant gas is sucked into the compressor 2, the internal pressure of the evaporator 1 decreases again. Through this repetition,
The cold water temperature gradually decreases, and the control valve 5 gradually becomes fully open. When the cold water inlet temperature drops to about 30° C., the control valve 5 is fully opened, and the orifice 6 enters a normal operating state in which the amount of refrigerant circulation is controlled.

本実施例によれば、凝縮器3から蒸発器1への冷媒配管
4の途中に設けた制御弁5と蒸発器1の内圧を検知する
圧力制御器7を設けることにより、高冷水温時でも、圧
縮機モータ2aがオーバーロー1・することなく、冷水
流量を絞ることなしで、スムーズな起動を行うことがで
きる。
According to this embodiment, by providing a control valve 5 provided in the middle of the refrigerant pipe 4 from the condenser 3 to the evaporator 1 and a pressure controller 7 that detects the internal pressure of the evaporator 1, even when the water temperature is high, , the compressor motor 2a can be started smoothly without overlowing the compressor motor 2a and without throttling the flow rate of cold water.

なお、上記の実施例では、ターボ圧縮機を用いたターボ
冷凍機の例を説明したが、本発明は図面に示した如きタ
ーボ冷凍機に限るものではなく、同様の効果が期待され
る範囲で他の形式の冷凍装置への適用が防げるものでは
ない。
In the above embodiment, an example of a centrifugal chiller using a turbo compressor was explained, but the present invention is not limited to the centrifugal chiller as shown in the drawings, and can be applied to other turbo chillers as long as similar effects are expected. This does not prevent application to other types of refrigeration equipment.

[発明の効果] 以」二連へたように、本発明によれば、コストをかけず
に、しかも冷水凍結の危険をおかすことなく、圧縮機モ
ータのオーバーロードを防ぎながら、高冷水温時でも起
動をスムーズに行いうる冷凍装置を提供することができ
る。
[Effects of the Invention] As described above, according to the present invention, it is possible to prevent overloading of the compressor motor at high cold water temperatures without incurring any cost, without risking cold water freezing, and without incurring the risk of cold water freezing. However, it is possible to provide a refrigeration system that can be started up smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施例に係るターボ冷凍機の構成図
である。 1・・・蒸発器、1a・・冷水管群、2・・・圧縮機、
3・・・凝縮器、4・・・冷媒配管、5・・制御弁、7
・・圧力制御器。
The drawing is a configuration diagram of a centrifugal chiller according to an embodiment of the present invention. 1... Evaporator, 1a... Cold water pipe group, 2... Compressor,
3... Condenser, 4... Refrigerant piping, 5... Control valve, 7
...Pressure controller.

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機、凝縮器、冷水管群を有する蒸発器、および
これら各機器間を接続する冷媒配管からなる冷凍装置に
おいて、前記凝縮器から前記蒸発器へ至る冷媒配管に制
御弁を設け、前記蒸発器の器内圧力を検知する手段を設
けて、前記蒸発器における冷水管群中の冷水の高温時に
、前記蒸発器の器内圧力に応じて前記制御弁の開度を制
御するように制御回路を構成したことを特徴とする冷凍
装置。
1. In a refrigeration system consisting of a compressor, a condenser, an evaporator having a group of cold water pipes, and refrigerant pipes connecting these devices, a control valve is provided in the refrigerant pipe leading from the condenser to the evaporator, A means for detecting the internal pressure of the evaporator is provided, and when the cold water in the cold water pipe group in the evaporator is at a high temperature, the opening degree of the control valve is controlled according to the internal pressure of the evaporator. A refrigeration device characterized by comprising a circuit.
JP8898488A 1988-04-13 1988-04-13 Freezing device Pending JPH01263460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8898488A JPH01263460A (en) 1988-04-13 1988-04-13 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8898488A JPH01263460A (en) 1988-04-13 1988-04-13 Freezing device

Publications (1)

Publication Number Publication Date
JPH01263460A true JPH01263460A (en) 1989-10-19

Family

ID=13958064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8898488A Pending JPH01263460A (en) 1988-04-13 1988-04-13 Freezing device

Country Status (1)

Country Link
JP (1) JPH01263460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118702A (en) * 1991-10-31 1993-05-14 Hokkaido Electric Power Co Inc:The Underground heat collecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118702A (en) * 1991-10-31 1993-05-14 Hokkaido Electric Power Co Inc:The Underground heat collecting apparatus

Similar Documents

Publication Publication Date Title
EP2232230B1 (en) Refrigeration system comprising a test chamber with temperature and humidity control
EP3348932B1 (en) Refrigeration cycle apparatus
US20200263916A1 (en) Refrigeration machine
CN112400088A (en) Refrigeration device and associated operating method
US20040103676A1 (en) Method for controlling cooling/heating of heat pump system
JPH1073328A (en) Cooler
JP2008138979A (en) Refrigeration system
JP2003106615A (en) Air conditioner
US20050150246A1 (en) Refrigerating equipment
JPH10185342A (en) Heat pump type air conditioner
CN112628895B (en) Direct expansion type air conditioning unit and control method thereof
JPH0552441A (en) Method and device for controlling absorption type heater cooler
JPH01263460A (en) Freezing device
JP2002022337A (en) Liquid temperature controller of cooler
JPH07305903A (en) Controller for freezer
JPH04217754A (en) Air conditioner
JP3080802B2 (en) Subcooled ice thermal storage device
CN220892440U (en) Air conditioning system with adjustable air supply temperature and accurate humidity control
CN110986404B (en) High-precision oil cooler and control method
JP2927230B2 (en) Binary refrigeration equipment
JP2008170045A (en) Air-conditioning system and its operation method
JPS6222396B2 (en)
JPH0526437Y2 (en)
CN113932466A (en) Air conditioning unit and control method thereof
CN117588807A (en) Air conditioning system with adjustable air supply temperature and accurate humidity control