JPH01262536A - Resist material and its production - Google Patents

Resist material and its production

Info

Publication number
JPH01262536A
JPH01262536A JP9205088A JP9205088A JPH01262536A JP H01262536 A JPH01262536 A JP H01262536A JP 9205088 A JP9205088 A JP 9205088A JP 9205088 A JP9205088 A JP 9205088A JP H01262536 A JPH01262536 A JP H01262536A
Authority
JP
Japan
Prior art keywords
resist
resist material
film
lmr
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9205088A
Other languages
Japanese (ja)
Other versions
JP2651192B2 (en
Inventor
Takaharu Kawazu
河津 隆治
Hideyuki Jinbo
神保 秀之
Yoichi To
洋一 塘
Yoshio Yamashita
山下 吉雄
Takateru Asano
浅野 孝輝
Kenji Kobayashi
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Yakuhin Kogyo KK
Oki Electric Industry Co Ltd
Original Assignee
Fuji Yakuhin Kogyo KK
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Yakuhin Kogyo KK, Oki Electric Industry Co Ltd filed Critical Fuji Yakuhin Kogyo KK
Priority to JP63092050A priority Critical patent/JP2651192B2/en
Publication of JPH01262536A publication Critical patent/JPH01262536A/en
Application granted granted Critical
Publication of JP2651192B2 publication Critical patent/JP2651192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To make it possible to form the resist film with a prescribed film thickness and pattern dimension, without generating the striation in the resist film by incorporating the naphthoquinone diazide sulfonate (LMR) of a novolak resin, and gamma-butylolactone in an amount of 12-50wt.% per the LMR, in an org. solvent respectively. CONSTITUTION:The naphthoquinone diazide sulfonate (LMR) of the novolak resin is dissolved in a mixed solution obtd. by mixing the gamma-butylolactone in the org. solvent so as to be 15-50wt.% of the gamma-butylolactone based on the LMR. In this case, the org. solvent is preferably composed of a methyl cellosolve acetate. Thus, the resist film obtd. by applying the org. solution of the methyl cellosolve acetate on an undercoat layer by dropping said solution on a rotating undercoat, does not cause the striation and the changes of the film thickness of the resist film, and the variation in pattern dimension do not occur at the time of forming a pattern.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体装百、その他の電子デバイス、光デ
バイス、積上8!械素子等の製造に用いられる微細パタ
ーン形成用のレジスト材料及びその製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) This invention is applicable to semiconductor devices, other electronic devices, optical devices, stacking devices, etc. The present invention relates to a resist material for forming fine patterns used in manufacturing mechanical devices, etc., and a method for manufacturing the same.

(従来の技術) 最近、電子、光、精!$1!械等の各デバイス分野でこ
れらの高2度化や小型化を図るため微細加工技術が益々
重要視されてきている。特に、半導体デバイスの高集積
化に間する条件は厳しくなってきでいる。かかる条件充
足の要請に対して、特に微細加工を行なうためには、例
えば微細加工されるべき基板等の下地を回転させながら
当該下地の表面上レジスト材料を滴下して塗布しで設け
たレジスト皮膜に対して、電子線、X線又は遠紫外線で
の露光工程を経た後レジストパターンを形成し、然る後
、イオン、プラズマit用いたドライエツチング技術に
よって、これらパターンを精度良く下地に転写する方法
が必要とされでいる。
(Conventional technology) Recently, electronics, light, and energy! $1! Microfabrication technology is becoming more and more important in the field of devices such as machines in order to achieve higher degrees of accuracy and miniaturization. In particular, the conditions for increasing the degree of integration of semiconductor devices are becoming stricter. In order to meet the demand for satisfying such conditions, especially in order to carry out microfabrication, it is necessary to apply a resist film by dropping and coating a resist material onto the surface of the substrate, for example, while rotating the substrate to be microfabricated. On the other hand, there is a method in which a resist pattern is formed after an exposure process with electron beams, X-rays, or deep ultraviolet rays, and then these patterns are accurately transferred to the base using dry etching technology using ions and plasma. is needed.

ところで、このような微細加工に用いられレジスト材料
であって滴下して回転1布するタイプのレジスト材料と
しては、当然解像度が高いこと及びドライエツチング耐
性が高いことが要求されてきでいる。
Incidentally, a resist material used in such microfabrication, which is a type of resist material that is dropped and rotated, is naturally required to have high resolution and high dry etching resistance.

そこで、この出願の発明者等は、先の特開昭62−29
7842号に於いで、ノボラック樹脂のナフトキノンジ
アジドスルホン酸エステル(以下、単にLMRと称する
。)のレジストを適当な有機溶媒に溶解させてレジスト
材料として用いて高解像度でかつドライエツチング耐性
の優れた微細レジストパターン形成方法ヲ擾案した。尚
、ここで、レジスト材料とは有機溶媒に溶解させる前の
レジスト自体又は有機溶媒に溶解させた状態のレジスト
塗布溶液のことをいう場合がある。
Therefore, the inventors of this application
In No. 7842, a resist of naphthoquinonediazide sulfonic acid ester (hereinafter simply referred to as LMR) of novolak resin is dissolved in an appropriate organic solvent and used as a resist material to produce fine resists with high resolution and excellent dry etching resistance. A resist pattern forming method was devised. Note that here, the resist material may refer to the resist itself before being dissolved in an organic solvent or a resist coating solution dissolved in an organic solvent.

(発明が解決しようとする課題) しかしながら、シリコンウェハ、化合物半導体基板、ガ
ラス基板、又はその他の任意好適な基板(以下、ウェハ
と称する場合もある。)上にLMR皮膜を形成しようと
する時、レジスト塗布溶液を回転する基板上に滴下して
塗布した後ベーキングを行うと、塗布溶媒の気化に起因
してストリエーションといわれるスジ上の凹凸が、基板
の回転中心から放射状に走るように、形成されてしまう
、このストリエーションは、膜厚に変動を起したり、バ
ターニング時にパターン寸法に変動を起したつする原因
となっていたため、設計通りにパターンを下地に転写す
ることが出来無いという問題点があった。
(Problems to be Solved by the Invention) However, when attempting to form an LMR film on a silicon wafer, a compound semiconductor substrate, a glass substrate, or any other suitable substrate (hereinafter sometimes referred to as a wafer), When a resist coating solution is applied dropwise onto a rotating substrate and then baked, unevenness called striations are formed as they run radially from the center of rotation of the substrate due to the vaporization of the coating solvent. These striations caused variations in film thickness and pattern dimensions during buttering, making it impossible to transfer the pattern to the substrate as designed. There was a problem.

従って、発明者はこのストリエーションが発生しないよ
うなレジスト材料の研究を行ったところ、LMR(こγ
−ブチロラクトシを一、悉加したレジスト塗布溶液すな
わちレジスト材料を用いれば、レジスト皮膜にストリエ
ーションが起らないことを発見した。
Therefore, the inventor conducted research on resist materials that do not cause this striation, and found that the LMR (this γ
- It has been discovered that striations do not occur in the resist film when a resist coating solution, ie, a resist material, to which one butyrolactone is added is used.

従って、この発明の目的は、レジスト皮膜にストリエー
ションが起らないレジスト材料及びその製造方法を擾供
することにある。
Therefore, an object of the present invention is to provide a resist material that does not cause striations in the resist film and a method for manufacturing the same.

(課題を解決するための手段) この目的の達成を図るため、この発明のレジスト材料に
よれば、 有機溶媒中に、ノボラック樹脂のナフトキノンジアジド
スルホン酸エステルと、このノボラック樹脂のナフトキ
ノンジアジドスルホン酸エステルに対し12〜50重量
%の範囲内でγ−ブチロラクトンとを含有させたことを
特徴とする。
(Means for Solving the Problem) In order to achieve this object, according to the resist material of the present invention, a naphthoquinonediazide sulfonic acid ester of a novolac resin and a naphthoquinonediazide sulfonic acid ester of this novolak resin are contained in an organic solvent. It is characterized in that it contains γ-butyrolactone in an amount of 12 to 50% by weight based on the weight of the powder.

また、この発明のレジスト材料の製造に当り、有機溶媒
にγ−ブチロラクトンを混合した混合液を形成し、この
混合液にノボラック樹脂のナフトキノンジアジドスルホ
ン酸エステルを、該ノボ、ラック樹脂のナフトキノンジ
アジドスルホン酸エステルに対してγ−ブチロラクトン
の含有量が12〜50重量%の範囲内となるtだけ、溶
解させたことを特徴とする。
In addition, in producing the resist material of the present invention, a mixed solution is formed by mixing γ-butyrolactone with an organic solvent, and naphthoquinonediazide sulfonic acid ester of novolak resin is added to the mixed solution, and naphthoquinonediazide sulfonate of the novolac resin is added to the mixed solution. It is characterized by dissolving γ-butyrolactone in an amount t such that the content of γ-butyrolactone is within the range of 12 to 50% by weight based on the acid ester.

このしシスト材料及びその製造方法において、好ましく
は有機溶媒をメチルセルソルブアセテートとするのが好
適である。しかしながら、有機溶媒としてエチルセルソ
ルブアセテート、或いはクロロベンゼン等ヲ用いてもメ
チルセルソルブアセテートと同様に有効的である。
In this cyst material and its manufacturing method, it is preferable to use methylcellosolve acetate as the organic solvent. However, it is also effective to use ethyl cellosolve acetate or chlorobenzene as the organic solvent, as well as methyl cellosolve acetate.

また、このγ−ブチロラクトンは容易に入手出来る化学
物質である。
Moreover, this γ-butyrolactone is a chemical substance that is easily available.

(作用) 上述したこの発明では、レジスト材料のノボラック樹脂
のナフトキノンジアジドスルホン酸エステル(以下、L
MRと略称する。)に対し′C12〜50重I%の範囲
内のある量だけγ−ブチ0ラクトンが含有量されている
ことにより、レジスト材料を下地上に塗布した後にベー
キングを行っても、得られたレジスト皮膜にストリエー
ションが起らず、従ってレジスト皮膜を設計通りの膜厚
及びバターニング寸法で形成することが出来る。
(Function) In the present invention described above, naphthoquinone diazide sulfonic acid ester (hereinafter referred to as L
It is abbreviated as MR. ) contains γ-butylactone in a certain amount within the range of 12% to 50% by weight. No striations occur in the film, and therefore a resist film can be formed with the designed film thickness and patterning dimensions.

尚、このγ−ブチOラクトンのLMRに対する含有量が
12重量%より少ないとレジスト皮膜に膜減りが起らな
いがストリエーションが起り好ましくない。
If the content of γ-buty-O-lactone is less than 12% by weight based on LMR, the resist film will not be thinned, but striations will occur, which is not preferable.

また、このγ−ブチロラクトンのLMRに対する含有量
が50重量%より多いとレジスト皮膜にストリエーショ
ンは起らないが膜減りが起り好ましくない。
If the content of γ-butyrolactone is more than 50% by weight based on LMR, striations will not occur in the resist film, but film thinning will occur, which is not preferable.

(実施例) 以下、この発明の実施例につき説明する。(Example) Examples of the present invention will be described below.

尚、以下の実施例の説明はこの発明の範囲内の好ましい
特定の、材料、数値的又はその他の条件で行っているが
、これらは単なる例示にすぎず、従って、この発明はこ
れらの例示的条件にのみ限定されるものではないことを
理解されたい。
It should be noted that although the following examples are described using specific preferred materials, numerical values, or other conditions within the scope of this invention, these are merely illustrative, and therefore, this invention does not cover these illustrative conditions. It should be understood that the terms and conditions are not exclusive.

罠廉■ユ 先ず、59のγ−ブチロラクトンと、有機溶媒として9
59のメチルセルソルブアセテートとを混合して全体と
じ1009の混合溶液Iを作成した0次に、この混合溶
液工に409の1M日を溶解させてレジスト塗布溶液す
なわちレジスト材料を作成した。従って、この実施例の
レジスト材料ではLMRに対し添加されているγ−ブチ
ロラクトンが占有する割合は12.5重量%である。
First, 59 γ-butyrolactone and 9 as an organic solvent.
59 and methyl cell solve acetate to prepare a total binding solution I of 1009.Next, 1M of 409 was dissolved in this mixed solution to prepare a resist coating solution, that is, a resist material. Therefore, in the resist material of this example, the proportion of γ-butyrolactone added to the LMR is 12.5% by weight.

次に、この塗布溶液を0.2umの濾過フィルタで濾過
した。然る後、下地のシリコン(Sl)ウェハを回転速
度1500rpm(回転7分)で回転させながら、上述
のレジスト材料を30秒間滴下してスピンコーティング
を行って膜厚1.9umのレジスト皮膜を形成した。そ
の後、ホットプレート上にで70″Cの温度で60秒間
、へ−キングを行った。その後、常温にで、干渉顕微鏡
でレジスト皮膜の表面を肉眼で観察したところ、ウェハ
の回転中心付近はもとより、ウェハ周辺部においでもス
トリエーションは全く観測されなかった(レジスト皮膜
表面に何等ストリエーションが生じていないので、図示
を省略しである。)。
This coating solution was then filtered through a 0.2 um filter. After that, while rotating the base silicon (Sl) wafer at a rotation speed of 1500 rpm (rotation for 7 minutes), the above-mentioned resist material was dropped for 30 seconds and spin coating was performed to form a resist film with a thickness of 1.9 um. did. After that, it was hawked on a hot plate at a temperature of 70"C for 60 seconds. Then, when it was brought to room temperature, the surface of the resist film was observed with the naked eye using an interference microscope. , No striations were observed at all in the periphery of the wafer (illustration is omitted since no striations were generated on the surface of the resist film).

又、このレジスト皮膜に対し波長436nm(9線)の
露光装置lf!用いて250mJ/cm2のエネルギー
で露光を行った後、専用現像液で現像した。現像済みの
レジスト皮膜の膜厚をクリステツブ(膜厚測定器)で測
定したところ、現像後の膜厚もほぼ1.9umであり、
実質的に膜減りが生じていないことが確認された。
Also, for this resist film, an exposure device lf! with a wavelength of 436 nm (9 lines) was used. After exposure was carried out with an energy of 250 mJ/cm2, development was carried out using a special developer. When the film thickness of the developed resist film was measured using a Cristetub (film thickness measuring device), the film thickness after development was also approximately 1.9 um.
It was confirmed that substantially no film loss occurred.

尚、上述の実施例では有機溶媒としてメチルセルソルブ
アセテートを用いたが、その代わりにエチルセルソルブ
アセテート又はクロロベゼンを用いても同様な効果を達
成することが出来る。
Although methyl cellosolve acetate was used as the organic solvent in the above embodiments, the same effect can be achieved by using ethyl cellosolve acetate or chlorobezene instead.

夫癒■1 この実施例では、109のγ−ブチロラクトンと909
のメチルセルソルブアセテートとを混合して全体とじ1
009の混合溶液at作成した。
Husband healing ■1 In this example, 109 γ-butyrolactone and 909
Mix it with methylcellosolve acetate and bind it all 1
A mixed solution of 009 was prepared.

次に、この混合溶液■に409のLMRを溶解させてレ
ジスト塗布溶液すなわちレジスト材料を作成した。従っ
て、この実施例のレジスト材料ではLMRに対しγ−ブ
チロラクトンが占有する割合は25重I%である。
Next, LMR 409 was dissolved in this mixed solution (1) to prepare a resist coating solution, that is, a resist material. Therefore, in the resist material of this example, the ratio of γ-butyrolactone to LMR is 25% by weight.

このようなレジスト材料につき、実施例Iと同様の処理
でシリコンウェハ上にレジスト皮Wsを形成してストリ
エーションの発生、レジスト皮膜の膜厚の膜減り等を調
べたところ、実施例■と同様にストリエーションは起ら
ず、また膜減りも実質的に起っていないことが確認され
た。
With respect to such a resist material, a resist film Ws was formed on a silicon wafer using the same process as in Example I, and the occurrence of striations, reduction in the thickness of the resist film, etc. were investigated. It was confirmed that no striation occurred, and that there was virtually no thinning of the film.

夫癒貫I この実施例では、209のγ−ブチロラクトンと809
のメチルセルソルブアセテートとを混合して全体とじ1
009の混合溶液■を作成した。
Huyuukan I In this example, 209 γ-butyrolactone and 809
Mix it with methylcellosolve acetate and bind it all 1
A mixed solution (2) of 009 was prepared.

次に、この混合溶液mに409の1M日を溶解させてレ
ジスト塗布溶液すなわちレジスト材料を作成した。従っ
て、この実施例のレジスト材料では1M日に対しγ−ブ
チロラクトンが占有する割合は50重量%である。
Next, 1M of 409 was dissolved in this mixed solution m to prepare a resist coating solution, that is, a resist material. Therefore, in the resist material of this example, the ratio of γ-butyrolactone to 1M day is 50% by weight.

このようなレジスト材料につき、実施例■と同様の処理
でシリコンウェハ上にレジスト皮m’i=形成してスト
リエーションの発生、レジスト皮膜の膜厚の膜減り等の
観察を行ったところ、実施例■と同様にストリエーショ
ンは起らず、またs′gりも実質的に起つていないこと
が確認された。
For such a resist material, a resist film m'i= was formed on a silicon wafer using the same process as in Example ①, and observations such as the occurrence of striae and a decrease in the thickness of the resist film were conducted. As in Example 2, it was confirmed that no striae occurred, and that s'g did not occur substantially.

ル敷刊−U 先ず、有機溶媒として1009のメチルセルソルブアセ
テートの単体溶液を用意し、この溶液に40qのLMR
を溶解させてレジスト塗布溶液すなわちレジスト材料を
作成した。従って、この実施例のレジスト材料ではγ−
ブチロラクトンが全く添加されでいないので、しM日に
対しγ−ブチロラクトンが占有する割合は0重量%であ
る。
First, prepare a simple solution of 1009 methylcellosolve acetate as an organic solvent, and add 40q of LMR to this solution.
A resist coating solution, that is, a resist material was prepared by dissolving the resist. Therefore, in the resist material of this example, γ-
Since no butyrolactone is added, the proportion occupied by γ-butyrolactone is 0% by weight.

次に、実施例Iと同様な処理を行った。すなわち、この
塗布溶液を0.2umの濾過フィルタで濾過した。然る
後、下地のシリコン(Si)ウェハを回転速度1500
rpm(回転7分)で回転させながら、上述のレジスト
材料を30秒間滴下してスピンコーティングを行って膜
厚1.9umのレジスト皮膜を形成した。その後、ホッ
トプレート上にて70°Cの温度で60秒間、へ〜キン
グを行った。
Next, the same treatment as in Example I was performed. That is, this coating solution was filtered through a 0.2 um filter. After that, the underlying silicon (Si) wafer was rotated at a rotation speed of 1500.
While rotating at rpm (rotation for 7 minutes), the above resist material was dropped for 30 seconds and spin coating was performed to form a resist film with a thickness of 1.9 um. Thereafter, heating was performed on a hot plate at a temperature of 70°C for 60 seconds.

その後、常温にで、干渉顕微鏡でレジスト皮膜の表面に
ストリエーションが起ているか観察したところ、第1図
(A)及び(8)に示す顕微鏡模写図に示すように、ウ
ェハの回転中心付近はもとより、ウェハ周辺部において
もストリエーションか観測された。
After that, at room temperature, we observed whether striations had occurred on the surface of the resist film using an interference microscope. As shown in the microscopic images shown in Figures 1 (A) and (8), the area near the center of rotation of the wafer was In addition, striations were also observed at the periphery of the wafer.

その後、このレジスト皮膜に対し波長436nm (g
線)の露光製画を用イ”C250m J /cm’のエ
ネルギーで露光を行った後、専用現像液で現像した。現
像済みのレジスト皮膜の膜厚をタリステップ(膜厚測定
器)で測定したところ、現像後の膜厚もほぼ1.9um
であり、実質的に膜減りか生じていないことが確認され
た。
Thereafter, a wavelength of 436 nm (g
After exposing the image (line) to an energy of 250 mJ/cm', it was developed with a special developer.The thickness of the developed resist film was measured with a Talystep (film thickness measuring device). As a result, the film thickness after development was approximately 1.9um.
It was confirmed that there was no substantial film loss.

之較舅1 次に、有機溶媒として1009のメチルセルソルブアセ
テートの溶液に49のγ−ブチロラクトンを混合し、こ
の混合溶液に409のLMRを溶解させてレジスト塗布
溶液すなわちレジスト材料を作成した。従って、この実
施例のレジスト材料では、1M日に対し添加されている
γ−ブチロラクトンが占有する割合は10重量%である
Comparison 1 Next, γ-butyrolactone of 49 was mixed with a solution of methylcellosolve acetate of 1009 as an organic solvent, and LMR of 409 was dissolved in this mixed solution to prepare a resist coating solution, that is, a resist material. Therefore, in the resist material of this example, the proportion of γ-butyrolactone added per 1M day is 10% by weight.

このようなレジスト材料につき、比較例Iと同様の処理
でシリコンウェハ上にレジスト皮膜を形成してストリエ
ーションの発生、レジスト皮膜の膜厚の膜減r)等の観
察を行ったところ、第1図(A)及び(B)に示す顕微
鏡模写図に示すと同様なストリエーションが、ウェハの
回転中心付近はもとより、ウェハ周辺部においても観測
された。
With respect to such a resist material, a resist film was formed on a silicon wafer using the same process as in Comparative Example I, and observations such as the occurrence of striae and a decrease in the thickness of the resist film (r) were conducted. Streations similar to those shown in the microscopic reproductions shown in Figures (A) and (B) were observed not only near the center of rotation of the wafer but also at the periphery of the wafer.

その債、比較例■と同様に、現像済みのレジスト皮膜の
膜厚をタリステップ(膜厚測定器)で測定したところ、
現像後の膜厚もほぼ1.9umであり、実質的に膜減り
が生じでいないことが確認された。
Similar to Comparative Example ■, the thickness of the developed resist film was measured using Talystep (film thickness measuring device).
The film thickness after development was also approximately 1.9 um, and it was confirmed that there was no substantial film reduction.

L帆璽」 次に、有機溶媒として]009のメチルセルソルブアセ
テートの溶液に49のγ−ブチロラクトンを混合し、こ
の混合溶液に409のLMRt溶解させてレジスト塗布
溶液すなわちレジスト材料を作成した。従って、この実
施例のレジスト材料では、LMRに対し添加されでいる
γ−ブチロラクトンが占有する割合は10重量%である
Next, γ-butyrolactone (49) was mixed with a solution of 009 (methylcellosolve acetate as an organic solvent), and LMRt (409) was dissolved in this mixed solution to prepare a resist coating solution, that is, a resist material. Therefore, in the resist material of this example, the proportion of γ-butyrolactone that has not been added to the LMR is 10% by weight.

このようなレジスト材料につき、比較例Iと同様の処理
でシリコンウェハ上にレジスト皮膜を形成してストリエ
ーションの発生、レジスト皮膜の膜厚の膜減り等の観察
を行ったところ、第1図(A)及び(B)に示す干渉S
VW鏡写真の模写図に示すと同様なストリエーションが
、ウェハの回転中心付近はもとより、ウェハ周辺部にお
いでも観測された。
With respect to such a resist material, a resist film was formed on a silicon wafer using the same process as in Comparative Example I, and observations such as the occurrence of striae and a decrease in the thickness of the resist film were made, as shown in Figure 1 ( Interference S shown in A) and (B)
Streations similar to those shown in the replica of the VW mirror photo were observed not only near the center of rotation of the wafer but also around the periphery of the wafer.

その徒、比較例Iと同様に、現像済みのレジスト皮膜の
膜厚をタリステップ(膜厚測定器)で測定したところ、
現像後の膜厚もほぼ1.9pmであり、実質的に膜減り
が生じていないことが確認された。
Therefore, as in Comparative Example I, the thickness of the developed resist film was measured using a Talystep (film thickness measuring device).
The film thickness after development was also approximately 1.9 pm, and it was confirmed that there was no substantial film reduction.

匿殻刊遭 次に、有機溶媒として759のメチルセルソルブアセテ
ートの溶液に259のγ−ブチロラクトンを混合し、こ
の混合溶液に409のLMRを2解させてレジスト塗布
溶液すなわちレジスト材料を作成し1こ、従って、この
実施例のレジスト材料では、LMRに対し添加されてい
るγ−ブチロラクトンか占有する割合は62.5重量%
である。
Next, γ-butyrolactone of 259 was mixed with a solution of methylcellosolve acetate of 759 as an organic solvent, and the LMR of 409 was dissolved in this mixed solution to create a resist coating solution, that is, a resist material. Therefore, in the resist material of this example, the proportion of γ-butyrolactone added to the LMR is 62.5% by weight.
It is.

このようなレジスト材料につき、比較例■と同様の処理
でシリコンウェハ上にレジスト皮膜を形成してストリエ
ーションの発生、レジスト皮膜の膜厚の膜減り等の観察
を行ったところ、ストリエーションか、ウェハの回転中
心付近はもとより、ウェハ周辺部においでも観測されな
かった。
For such a resist material, when a resist film was formed on a silicon wafer using the same process as in Comparative Example ① and observations were made for the occurrence of striations and a decrease in the thickness of the resist film, it was found that whether it was striations or It was not observed not only near the rotation center of the wafer but also at the periphery of the wafer.

その後、比較例Iと同様に、現像済みのレジスト皮膜の
膜厚をタゾステップ(膜厚測定器)で測定したところ、
現像後の膜厚は1.4urnであり、現像前の初期膜厚
である1、9u、mよりも0.5umだけ膜減りが生し
ていたことが確認された。
Thereafter, in the same manner as Comparative Example I, the thickness of the developed resist film was measured using a Tazo step (film thickness measuring device).
The film thickness after development was 1.4 urn, and it was confirmed that the film thickness was reduced by 0.5 um from the initial film thicknesses of 1, 9 u, and m before development.

(発明の効果) 上述した説明からも明らかなように、この発明のレジス
ト材料の製造方法によれば、有機溶媒にγ−ブチロラク
トンを混合して得られた混合液中に、LMRを溶解させ
、LMRに対するγ−ブチロラクトンの含有jll12
重量%〜50重量%とじたものである。
(Effects of the Invention) As is clear from the above description, according to the method for producing a resist material of the present invention, LMR is dissolved in a mixture obtained by mixing γ-butyrolactone with an organic solvent, Inclusion of γ-butyrolactone for LMR jll12
% to 50% by weight.

そして、このようにして製造されたこの発明のレジスト
材料によれば、以下説明する効果が得られるメカニズム
は明らかではないが、これを回転する下地上に滴下して
塗布しで得られたレジスト皮膜にはストリエーションが
起らないので、レジスト皮膜の膜厚に変動が生じないと
共に、パターン形成時におけるパターン寸法に変動を来
ざないという効果がある。
According to the resist material of the present invention manufactured in this way, the mechanism by which the effects described below are obtained is not clear, but a resist film obtained by dropping the resist material on a rotating substrate and coating it is not clear. Since striations do not occur in the method, there is an effect that the thickness of the resist film does not vary, and the pattern dimensions during pattern formation do not vary.

従って、この発明のレジスト材料及びその製造方法は半
導体装置、その他の命綱パターンを必要とする種々のデ
バイス等の製造に使用して好適である。
Therefore, the resist material and the method for manufacturing the same of the present invention are suitable for use in manufacturing semiconductor devices and other various devices requiring lifeline patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(8)は従来のレジスト皮膜に起った
ストリエーションの説明に供する干渉顕微鏡写真の模写
図である。 ストリエーションの干渉顕微鏡写真の模写口笛1図(A
) 0.5mm ウェハ外周部 ストリエーションの干渉顕微鏡写真の模写図手続補正書 1事件の表示  昭和63年特許願第92050号2発
明の名称 レジスト材料及びその製造方法 3補正をする者 事件との関係  特許出願人 住所(〒−105) 東京都港区麻布台1丁目9番17号 住所 東京都豊島区東池袋1丁目20番地5明細嘗の「
発明の詳細な説明の欄」 7補正の内容  別紙の通り (1)、明細書、第8頁第4行から第8頁第5行の[然
る復、下地のシリコン(Si)ウェハを回転速度」をr
然る後、このレジスト液をシリコン(Si)ウェハ上に
滴下し、回転速度」と訂正する。 (2)、同、第8頁第6行から第8頁第7行の[で回転
させながら、上述のレジスト材料を30秒間滴下してス
ピンコーティングを行って膜厚」をrで回転させ膜厚J
と訂正する。 (3)、同、第11頁第11行から第11頁第12行の
「然る後、下地のシリコン(Si)ウェハを回転速度」
をr然る後、このレジスト液をシリコン(Si)ウェハ
上に滴下し、回転速度Jと訂正する。 (4)、同、第11頁第13行から第11頁第14行の
[させながら、上述のレジスト材料t30秒問滴下して
スピンコーティングを行って膜厚1.9umJを「させ
膜厚1.9umJlと訂正する。
FIGS. 1A and 18 are reproductions of interference micrographs for explaining striations that occur in conventional resist films. Figure 1 of the imitation whistle of an interference micrograph of striations (A
) 0.5mm Interference micrograph of striae on the outer periphery of a wafer Reproduction procedure amendment document 1 Indication of the case 1988 Patent Application No. 92050 2 Name of the invention Resist material and its manufacturing method 3 Relationship with the person making the amendment case Patent applicant address (〒-105) 1-9-17 Azabudai, Minato-ku, Tokyo Address 1-20-5 Higashiikebukuro, Toshima-ku, Tokyo
"Detailed Description of the Invention Column" 7 Contents of Amendment As attached (1), Specification, page 8, line 4 to page 8, line 5 [Then, the underlying silicon (Si) wafer is rotated. "speed" is r
After that, this resist solution is dropped onto a silicon (Si) wafer, and the rotation speed is corrected. (2), same, from page 8, line 6 to page 8, line 7, the above-mentioned resist material was dropped for 30 seconds while rotating with the film thickness. Thick J
I am corrected. (3), "Then, the rotation speed of the underlying silicon (Si) wafer" from page 11, line 11 to page 11, line 12.
After that, this resist solution is dropped onto a silicon (Si) wafer, and the rotational speed is corrected to J. (4), page 11, line 13 to page 11, line 14, [while applying the above-mentioned resist material t for 30 seconds and spin coating to form a film thickness of 1.9 umJ. .Corrected to 9umJl.

Claims (2)

【特許請求の範囲】[Claims] (1)有機溶媒中に、ノボラック樹脂のナフトキノンジ
アジドスルホン酸エステルと、該ノボラック樹脂のナフ
トキノンジアジドスルホン酸エステルに対し12〜50
重量%の範囲内でのγ−ブチロラクトンとを含有させて
なることを特徴とするレジスト材料。
(1) In an organic solvent, a naphthoquinonediazide sulfonic acid ester of a novolac resin and a 12 to 50%
1. A resist material containing γ-butyrolactone within a range of % by weight.
(2)有機溶媒にγ−ブチロラクトンを混合した混合液
を形成し、該混合液にノボラック樹脂のナフトキノンジ
アジドスルホン酸エステルを、該ノボラック樹脂のナフ
トキノンジアジドスルホン酸エステルに対してγ−ブチ
ロラクトンの含有量が12〜50重量%の範囲内となる
量だけ、溶解させたことを特徴とするレジスト材料の製
造方法。
(2) A mixed solution is formed by mixing γ-butyrolactone in an organic solvent, and the naphthoquinonediazide sulfonic acid ester of the novolac resin is added to the mixed solution, and the content of γ-butyrolactone is added to the naphthoquinonediazide sulfonic acid ester of the novolac resin. A method for producing a resist material, characterized in that the resist material is dissolved in an amount in a range of 12 to 50% by weight.
JP63092050A 1988-04-14 1988-04-14 Resist material and method of manufacturing the same Expired - Lifetime JP2651192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092050A JP2651192B2 (en) 1988-04-14 1988-04-14 Resist material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092050A JP2651192B2 (en) 1988-04-14 1988-04-14 Resist material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01262536A true JPH01262536A (en) 1989-10-19
JP2651192B2 JP2651192B2 (en) 1997-09-10

Family

ID=14043685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092050A Expired - Lifetime JP2651192B2 (en) 1988-04-14 1988-04-14 Resist material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2651192B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260239A (en) * 1985-05-15 1986-11-18 Mitsubishi Chem Ind Ltd Positive type photoresist composition
JPS62194249A (en) * 1986-02-20 1987-08-26 Fuji Photo Film Co Ltd Positive type photosensitive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260239A (en) * 1985-05-15 1986-11-18 Mitsubishi Chem Ind Ltd Positive type photoresist composition
JPS62194249A (en) * 1986-02-20 1987-08-26 Fuji Photo Film Co Ltd Positive type photosensitive composition

Also Published As

Publication number Publication date
JP2651192B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JPS5817112A (en) Positive novolak photoresist composition and blend
JPS63146038A (en) Photosensitive composition
JPH0792684A (en) Antireflection film and manufacture of semiconductor device using antireflection film
JPS62234148A (en) Light fading layer for enhancing contrast
JPH05150459A (en) Formation of resist pattern
US20100279228A1 (en) Organo-metallic hybrid materials for micro- and nanofabrication
GB2354005A (en) Organic polymer for organic anti-reflective layer and preparation thereof
JPS6313035A (en) Pattern forming method
JPH0148526B2 (en)
JPH01262536A (en) Resist material and its production
JPH0740543B2 (en) Method for manufacturing semiconductor device
JPS62102243A (en) Making of photoresist
JP2848625B2 (en) Pattern formation method
JPS6169130A (en) Pattern forming process
TW457400B (en) Modified positive electron-beam resists
JPH03283418A (en) Resist pattern forming method
JPS62226148A (en) Process for forming pattern
JPS63116151A (en) Formation of pattern
JPS6184022A (en) Formation of fine pattern
JPS6364771B2 (en)
KR20050038125A (en) Forming method of fine contact hole
JPS60102735A (en) Method of treating electron beam resist
JPS60191245A (en) Resist film material and formation of resist pattern
JPS62226147A (en) Positive resist material
CN109270790A (en) A kind of semiconductor lithography anti-etching resin combination and its application of the novel depth-width ratio greater than three

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term