JPH01262092A - Solder and soldering commodity using said solder and soldering method - Google Patents
Solder and soldering commodity using said solder and soldering methodInfo
- Publication number
- JPH01262092A JPH01262092A JP9238688A JP9238688A JPH01262092A JP H01262092 A JPH01262092 A JP H01262092A JP 9238688 A JP9238688 A JP 9238688A JP 9238688 A JP9238688 A JP 9238688A JP H01262092 A JPH01262092 A JP H01262092A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- joined
- soldering
- soldered
- based alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 79
- 238000005476 soldering Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052709 silver Inorganic materials 0.000 claims abstract description 5
- 229910007610 Zn—Sn Inorganic materials 0.000 claims abstract description 4
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 4
- 229910052737 gold Inorganic materials 0.000 claims abstract description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 31
- 239000000956 alloy Substances 0.000 claims description 31
- 229910000905 alloy phase Inorganic materials 0.000 claims description 4
- 239000011247 coating layer Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 abstract description 17
- 229910018082 Cu3Sn Inorganic materials 0.000 abstract description 14
- 229910052725 zinc Inorganic materials 0.000 abstract description 12
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 229910000881 Cu alloy Inorganic materials 0.000 abstract description 3
- 229910001128 Sn alloy Inorganic materials 0.000 abstract 2
- 229910018034 Cu2Sn Inorganic materials 0.000 abstract 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 15
- 239000004020 conductor Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000005336 cracking Methods 0.000 description 9
- 229910052718 tin Inorganic materials 0.000 description 8
- 238000005452 bending Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 3
- -1 Cu3Sn increases Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- ZJPGOXWRFNKIQL-JYJNAYRXSA-N Phe-Pro-Pro Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(O)=O)C1=CC=CC=C1 ZJPGOXWRFNKIQL-JYJNAYRXSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、少なくとも一方がCu系合金からなる被接合
部材をはんだ付けした時、そのはんだ付部に熱疲労が生
じることを防止して、はんだ付部の耐久寿命を向上させ
ることができるはんだ及び該はんだを用いたはんだ付物
品並びにはんだ付方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention prevents thermal fatigue from occurring in the soldered part when soldering parts to be joined, at least one of which is made of a Cu-based alloy. The present invention relates to a solder that can improve the durability life of a soldered part, a soldered article using the solder, and a soldering method.
電気・電子部品には導電性およびはんだ付性等の面から
、被接合部材として主にCuまたはCu合金が用いられ
ている。そして、これらの被接合部材はSn系またはP
b−Sn系のはんだによって接合されるのが一般的であ
る。このような接合においては、被接合部材のCuとは
んだ中のSnとが反応し、被接合部材とはんだの界面に
Cu3SnおよびCuGSna(以下Cu3Sn等とい
う)の化合物が形成される。Cu or a Cu alloy is mainly used as a member to be joined in electric/electronic parts from the viewpoint of conductivity and solderability. These members to be joined are Sn-based or P
They are generally joined using b-Sn solder. In such joining, Cu of the members to be joined and Sn in the solder react, and a compound of Cu3Sn and CuGSna (hereinafter referred to as Cu3Sn etc.) is formed at the interface between the members to be joined and the solder.
これらの化合物の層は、はんだ付け(例えば230 ’
CX 10秒間保持)されたその時には非常に薄くて問
題とはならないが、はんだ付部に電流を流したり、ある
いははんだ付は部を高温雰囲気の下にさらしたりすると
、はんだ付部では被接合部材のCuとはんだのSnとの
反応が除々に進みCu3Sn等の化合物が形成されてい
く。この反応ははんだ中にSn元素が存在する限り進行
して、上記化合物の層は徐々に厚くなっていく。それに
伴ってはんだ付部の機械的強度が弱くなり、特にはんだ
付部に熱応力や外力等が加わった時に、この層から割れ
を生じるという不具合が発生する。また割れまで至らな
くともCu3Sn等の化合物の層が増大すれば、電気的
抵抗が大きくなり好ましいことではない。Layers of these compounds can be soldered (e.g. 230'
CX held for 10 seconds), it is very thin and does not pose a problem, but if a current is applied to the soldered part or the soldered part is exposed to a high temperature atmosphere, the soldered part will be damaged by the parts to be joined. The reaction between the Cu of the solder and the Sn of the solder gradually progresses to form compounds such as Cu3Sn. This reaction proceeds as long as the Sn element is present in the solder, and the layer of the compound gradually becomes thicker. As a result, the mechanical strength of the soldered portion is weakened, and this layer may crack, especially when thermal stress or external force is applied to the soldered portion. Furthermore, even if cracking does not occur, if the layer of compounds such as Cu3Sn increases, the electrical resistance increases, which is not desirable.
そこで、Cu3Sn等の化合物の生成を抑制することが
できるはんだとして、5n−8b系合金のはんだが提案
されている(特開昭61−86091号公報)。このは
んだはsbが重量で5〜10%。Therefore, a 5n-8b alloy solder has been proposed as a solder that can suppress the formation of compounds such as Cu3Sn (Japanese Patent Application Laid-open No. 86091/1983). This solder has 5 to 10% sb by weight.
Niが1%以下で、残りがSnからなっており、主にs
bの作用によってCu、Sn等の化合物の生成を抑制す
ることができるということである。Ni is less than 1%, and the rest is Sn, mainly s.
This means that the formation of compounds such as Cu and Sn can be suppressed by the action of b.
なお、プリント基板にスルホールを穿設し、このスルホ
ール内に電子部品等のリード線を挿入してはんだ付けす
る方法が従来より行われている。Incidentally, a conventional method has been used in which a through hole is formed in a printed circuit board, and a lead wire of an electronic component or the like is inserted into the through hole and soldered.
この方法によればリード線が拘束される為、仮りにCu
3Sn等の化合物が成長していても、はんだ付部に割れ
が発生し、リード線がぬけることはない。しかし、近年
、電子部品の搭載密度が高くなり、F P P (F
lat P 1astic Package)およびP
LCC(Plastic Leaded Chip
Carrier) □等の面付はんだ付が多く使用さ
れるようになってきたため、面付はんだ付におけるCu
3Sn等の化合物の生成を抑制する技術開発が要望され
ていた。According to this method, the lead wire is restrained, so if Cu
Even if a compound such as 3Sn grows, cracks will not occur in the soldered area and the lead wire will not come off. However, in recent years, the mounting density of electronic components has increased, and F P P (F
lat P 1astic Package) and P
LCC (Plastic Leaded Chip)
As surface-mounted soldering such as Carrier) □ is becoming more and more used, Cu in surface-mounted soldering is becoming more popular.
There has been a demand for technological development to suppress the generation of compounds such as 3Sn.
上記した5n−8b系合金はんだには、Snが約90%
含有されているが、Cu3Sn等の反応性が非常に高い
ため、Cu3Sn等の反応を抑制することは実質的には
困難であると考えられる。また、この5n−3b系合金
はんだにはNiやPも添加されているため、はんだとし
て必要なぬれ性、及びはんだの加工性においても問題が
ある。The above-mentioned 5n-8b alloy solder contains approximately 90% Sn.
However, since the reactivity of Cu3Sn and the like is extremely high, it is considered that it is substantially difficult to suppress the reaction of Cu3Sn and the like. Furthermore, since Ni and P are added to this 5n-3b alloy solder, there are also problems in the wettability required as a solder and in the workability of the solder.
本発明の目的は、Cu系合金からなる被接合部材をはん
だ付けした際に、そのはんだ付部にCu3Sn等の脆い
化合物が生成することを抑制することができるはんだを
提供することである。An object of the present invention is to provide a solder that can suppress the formation of brittle compounds such as Cu3Sn in the soldered portion when soldering members made of a Cu-based alloy to be joined.
また、他の目的は、面付はんだ付で接合された電子部品
のはんだ付部の割れに対する信頼性を向上させたはんだ
付物品を提供することである。Another object of the present invention is to provide a soldered article with improved reliability against cracking of the soldered portion of electronic components joined by surface soldering.
さらに他の目的は、従来のSn系合金はんだを用いた場
合でも、Cu、Sn等の化合物が生成することを抑制で
きるはんだ付方法を提供することである。Still another object is to provide a soldering method that can suppress the formation of compounds such as Cu and Sn even when using conventional Sn-based alloy solder.
上記目的を達成するために、本発明のはんだは、Sn系
合金はんだに0.3〜3wt%のZnを添加したもので
ある。In order to achieve the above object, the solder of the present invention is a Sn-based alloy solder to which 0.3 to 3 wt% of Zn is added.
また前記Sn系合金はんだに、前記Znの他にSb、I
n、Ag、 Au、Cuのうち1種類以上を添加する
ようにしてもよい。In addition to the Zn, the Sn-based alloy solder also contains Sb, I
One or more of n, Ag, Au, and Cu may be added.
また、本発明のはんだ付部品は、Cu系合金からなる被
接合部材がSn系合金はんだではんだ付けされ、かつ前
記Cu系合金とはんだとの界面にCu−Zn−Snの合
金相が形成されたものである。Further, in the soldering component of the present invention, a member to be joined made of a Cu-based alloy is soldered with an Sn-based alloy solder, and a Cu-Zn-Sn alloy phase is formed at the interface between the Cu-based alloy and the solder. It is something that
さらに、本発明のはんだ付方法は、Cu系合金からなる
被接合部材の表面に、Znからなる被覆層を形成してお
き、該被覆層が形成された被接合部材をSn系合金はん
だで接合するようにしたことである。Further, in the soldering method of the present invention, a coating layer made of Zn is formed on the surface of a member to be joined made of a Cu-based alloy, and the members to be joined on which the coating layer is formed are joined with a Sn-based alloy solder. This is what I decided to do.
また、Cu系合金からなる被接合部材の表面に、Zn入
りペーストはんだを塗布しておき、該ペーストはんだで
接合するようにしてもよい。Alternatively, a Zn-containing paste solder may be applied to the surface of a member to be joined made of a Cu-based alloy, and the members may be joined using the paste solder.
Cu系合金からなる被接合部材をSn系合金はんだでは
んだ付けすると、被接合部材のCuとはんだ中のSnと
は親和力が強いため、Snが選択的に拡散し、被接合部
材とはんだの界面にCu3Sn等の反応相を形成し、こ
の反応相は高温雰囲気の下で成長する。Cu系合金をS
n系合金はんだではんだ付けする限りはこの現象から逃
れることはできない。When parts to be joined made of a Cu-based alloy are soldered with Sn-based alloy solder, since Cu in the parts to be joined has a strong affinity with Sn in the solder, Sn selectively diffuses and the interface between the parts to be joined and the solder is A reactive phase such as Cu3Sn is formed on the substrate, and this reactive phase grows under a high temperature atmosphere. Cu-based alloy S
This phenomenon cannot be avoided as long as soldering is performed using n-based alloy solder.
そこで、Cuとの親和力がSnよりも強くかつ化合物を
形成し難い元素について種々と実験した結果、Znが最
適であるということが判明した。ZnはCuに対する合
金生成エンタルピがSnよりも小さい。つまり反応相を
形成し易いことになる。As a result of conducting various experiments on elements that have a stronger affinity with Cu than Sn and with which it is difficult to form compounds, it was found that Zn is the most suitable. Zn has a smaller enthalpy of alloy formation with respect to Cu than Sn. In other words, it is easy to form a reaction phase.
また、Znをどのはんだに含有させるかによってもその
効果は異なってくる。検討した結果、■Snはんだ、■
Sn3%以下で残りpbはんだ、■Sb3%以下で残り
Snはんだ、等が良好であり、■5n30〜60%で残
りPbはんだは不良であった。すなわち、良く使われて
いる上記■のはんだにはCu3Sn相を抑制する効果は
見られない。Znの含有量ははんだの種類によっても若
干具なるが、全体的には0.3〜3%の範囲で効果的で
ある。Furthermore, the effect varies depending on which solder contains Zn. As a result of consideration, ■Sn solder,■
The residual Pb solder with Sn of 3% or less, (2) the residual Sn solder with Sb of 3% or less, etc. were good, and the residual Pb solder (5) with 30 to 60% of Sn was poor. That is, the commonly used solder (2) above does not have the effect of suppressing the Cu3Sn phase. The Zn content varies slightly depending on the type of solder, but overall it is effective in the range of 0.3 to 3%.
更に好ましくは0.5〜1.5%の範囲が顕著である。More preferably, the range is from 0.5 to 1.5%.
また、0.3%未満ではCu3Sn相を抑制する能力が
やや不足し、3%を越えるとCu3Sn相を抑制する効
果はあるが、はんだ材としての流動性等が低下するので
好ましくない。Further, if it is less than 0.3%, the ability to suppress the Cu3Sn phase is somewhat insufficient, and if it exceeds 3%, although it has the effect of suppressing the Cu3Sn phase, the fluidity etc. of the solder material decreases, which is not preferable.
また、0.3〜3%のZnを含有したはんだの中に、S
b、I n、 Ag、 Au、 Cuのうち1種類以上
が添加されても、はんだ付性を損なわない程度であれば
良い。これらの元素はZnと被接合部材との反応を妨げ
るものでないことを必要とする。添加量としては約3%
以下が妥当である。In addition, in the solder containing 0.3 to 3% Zn, S
Even if one or more of B, In, Ag, Au, and Cu is added, it may be added to an extent that does not impair solderability. It is necessary that these elements do not interfere with the reaction between Zn and the members to be joined. Approximately 3% addition amount
The following are valid.
また、被接合部材の材質がCu系合金のときにCu3S
n相が形成され易く、他の材質(例えばFe系、Ni系
等)では長期間かけて化合物が形成される。すなわち、
Cu系合金以外のものでは反応速度が遅く問題とならな
い。In addition, when the material of the member to be joined is Cu-based alloy, Cu3S
An n-phase is easily formed, and with other materials (for example, Fe-based, Ni-based, etc.), compounds are formed over a long period of time. That is,
With materials other than Cu-based alloys, the reaction rate is slow and does not pose a problem.
以上のように、本発明のはんだを用いて、Cu系合金か
らなる被接合部材をはんだ付ければ、被接合部材とはん
だとの界面にCu−Zn−3nの合金相が形成され、C
u3Sn相の形成を抑制する作用がある。As described above, when the solder of the present invention is used to solder a member to be joined made of a Cu-based alloy, an alloy phase of Cu-Zn-3n is formed at the interface between the member to be joined and the solder, and C
It has the effect of suppressing the formation of u3Sn phase.
また、上記のようにCu−Zn−Snの合金相が形成さ
れたはんだ付物品は、脆いCu3Sn相が成長できない
ため、熱応力や外力等が作用しても、はんだ付部に割れ
が発生し難い。In addition, in soldered products in which a Cu-Zn-Sn alloy phase is formed as described above, the brittle Cu3Sn phase cannot grow, so even if thermal stress or external force is applied, cracks will not occur in the soldered part. hard.
以下に本発明の一実施例を図面に従って説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は基本的なはんだ付継手を示している。Figure 1 shows a basic solder joint.
電子部品1はリード線2を介してプリント基板3」二の
導体膜4に接続され、リード線2と導体膜4とはばんだ
5によって固定されている。はんだ付部をミクロ的に観
察すると、リード線2側には反応相6が、導体膜4側に
は反応相7がそれぞれ形成されている。前記両反応相6
,7がCumSn等の化合物からなる相である。なお、
図中8ははんだ相である。The electronic component 1 is connected to a conductor film 4 of a printed circuit board 3'' through a lead wire 2, and is fixed to the lead wire 2 and the conductor film 4 by a solder 5. When the soldered portion is microscopically observed, a reaction phase 6 is formed on the lead wire 2 side, and a reaction phase 7 is formed on the conductor film 4 side. Both reaction phases 6
, 7 is a phase consisting of a compound such as CumSn. In addition,
8 in the figure is a solder phase.
次に第1図のような構成ではんだの種類を種々と変えて
はんだ付けしたのち、熱サイクル試験を行った。Next, after soldering was carried out using various types of solder using the configuration shown in FIG. 1, a thermal cycle test was conducted.
(試料1)
リート線と導体膜4をともにCuで形成し、5n−1,
5%5b−0,5%Zn(Sbが1.5%、Znが0.
5%、残りがSnを意味する。以下向し。)のはんだを
使用して260 ’CX 10秒間保持ではんだ付けし
たもの。(Sample 1) Both the Riet wire and the conductor film 4 are made of Cu, and 5n-1,
5%5b-0.5%Zn (1.5% Sb, 0.5% Zn)
5% and the rest means Sn. Forward below. ) solder using 260'CX and holding for 10 seconds.
(試料2)
リード線と導体膜4をともにCuで形成し、5n−1%
Znのはんだを使用して260’CX10秒間保持では
んだ付けしたもの。(Sample 2) Both the lead wire and the conductor film 4 are made of Cu, and 5n-1%
Soldered using Zn solder at 260'CX and held for 10 seconds.
(試料3)
リード線と導体膜4をともにCuで形成し、B1−43
.5%P b −1,5%Ag−0.6%Znのはんだ
を使用して200℃XIO秒間保持ではんだ付けしたも
の。(Sample 3) Both the lead wire and the conductor film 4 are made of Cu, and B1-43
.. Soldered using 5%Pb-1,5%Ag-0.6%Zn solder at 200°C for XIO seconds.
(試料4)
リード線2をFe−42%Ni材で、導体膜4をCuで
形成し、Pb−1%5n−1,5%Ag−0,5%Zn
のはんだを使用して350℃×10秒間保持ではんだ付
けしたもの。(Sample 4) The lead wire 2 is made of Fe-42%Ni material, the conductor film 4 is made of Cu, and Pb-1%5n-1,5%Ag-0.5%Zn.
Soldered at 350℃ for 10 seconds using solder.
(試料5)
試料1と比較のために、リード線2と導体膜4をともに
Cuで形成し、Zn無添加のPb−50%Snのはんだ
を用いて230℃×10秒間保持ではんだ付けしたもの
。(Sample 5) For comparison with Sample 1, both the lead wire 2 and the conductor film 4 were made of Cu, and were soldered using Zn-free Pb-50% Sn solder at 230°C for 10 seconds. thing.
(試料6)
試料2と比較のために、リード線2と導体膜4をともに
Cuで形成し、Zn無添加の100%Snのはんだを用
いて260℃×10秒間保持ではんだ付けしたもの。(Sample 6) For comparison with Sample 2, both the lead wire 2 and the conductor film 4 were made of Cu, and were soldered using 100% Sn solder without Zn addition at 260° C. for 10 seconds.
(試料7)
試料1と比較のために、リード線2と導体膜4をともに
Cuで形成し、Zn無添加の5n−5%sbのはんだを
用いて280℃×10秒間保持ではんだ付けしたもの。(Sample 7) For comparison with Sample 1, both the lead wire 2 and the conductor film 4 were made of Cu, and were soldered using Zn-free 5N-5%SB solder at 280°C for 10 seconds. thing.
なお、上記試料のうち、試料1〜4が本発明に該当する
。Note that among the above samples, Samples 1 to 4 correspond to the present invention.
以上の試料1〜7ではんだ付けした面付はんだ付継手部
品を一55℃〜+150℃、1サイクルで1時間の熱サ
イクルを500時間及び1000時間に亘って試験した
。500時間、1000時間経過したものを取り出し、
切断して断面顕微鏡によりミクロ割れを調査した。その
結果をまとめて表1に示す。The surface-mounted soldered joint parts soldered with Samples 1 to 7 above were tested at -55° C. to +150° C. for 500 hours and 1000 hours of thermal cycles of 1 hour per cycle. Take out the ones that have passed 500 or 1000 hours,
It was cut and examined for microcracks using a cross-sectional microscope. The results are summarized in Table 1.
表 1 0:はんだ付部に割れは見られない ×:はんだ付部に割れがある。Table 1 0: No cracks are seen in the soldered area ×: There is a crack in the soldered part.
表1に示すように試料1〜4は、熱サイクル500時間
及び1000時間の長時間においてもはんだ付部には割
れは認められなかった。当然ながらリード線2側の反応
相6と導体膜4の反応相7は形成されてた。しかしこれ
らの反応相6,7およびはんだ相8のどこにも割れは発
生していなかった。反応相6,7にはE P M A
(Electron Pr。As shown in Table 1, in Samples 1 to 4, no cracks were observed in the soldered parts even after long thermal cycles of 500 hours and 1000 hours. Naturally, a reaction phase 6 on the lead wire 2 side and a reaction phase 7 on the conductor film 4 were formed. However, no cracks were observed in any of these reaction phases 6, 7 and solder phase 8. E PMA for reaction phases 6 and 7
(Electron Pr.
be Miro Analysis)分析結果から試料
4ではCu。be Miro Analysis) According to the analysis results, sample 4 contains Cu.
Zn、Snと、わずかにsbが含有され、試料2ではC
u、Zn、Snからなり、試料3ではCu、Zn、Ag
からなり、試料4では、Fe、Ni、Zn、Snからな
っていた。つまり、従来割れの問題となっていた被接合
部材とSnという2元反応相は見られず、Zn添加のは
んだを用いた効果が表れているものと考える。この現象
はSnよりもZnの反応が著しいことを意味している。It contains Zn, Sn, and a slight amount of sb, and in sample 2, C
Cu, Zn, and Ag in sample 3.
In sample 4, it consisted of Fe, Ni, Zn, and Sn. In other words, the binary reaction phase of the bonded member and Sn, which conventionally caused cracking problems, was not observed, and it is considered that the effect of using the Zn-added solder is evident. This phenomenon means that the reaction of Zn is more remarkable than that of Sn.
これ)こ対し、試料5,6は熱サイクル500時間で既
に割れが発生していた。その箇所も当然の如<CuとS
nの成分からなる反応相6,7が、割れの起点になって
いた。反応相を更に詳しく観察するとリードllA2側
の反応相とはんだ5側の反応相の2相から成っていた。On the other hand, samples 5 and 6 had already cracked after 500 hours of thermal cycling. That part is also natural <Cu and S
The reaction phases 6 and 7 consisting of the component n were the starting point of cracking. A more detailed observation of the reaction phase revealed that it consisted of two phases: a reaction phase on the lead 11A2 side and a reaction phase on the solder 5 side.
そして割れはリード線2側の反応相が起点となりはんだ
5側反応相に連がっているようである。割れは可成多く
発生していた。また、試料3の継手については、500
時間経過時点では割れは認められなかったが、1000
時間後には割れが明らかに認められた。sbの効果は少
し見られるが1000時間の条件には不十分であった。The cracks seem to originate from the reaction phase on the lead wire 2 side and continue to the reaction phase on the solder 5 side. A considerable number of cracks occurred. In addition, for the joint of sample 3, 500
Although no cracking was observed after the passage of time, 1000
After some time, cracks were clearly observed. Although some effect of sb was observed, it was insufficient for the 1000 hour condition.
上記実験結果はプリント基板でのFPP面付はんだ付継
手について割れの有無を調査したものであるが、この他
の面付はんだ付、例えば第2図のPLCC等の継手につ
いても同様に熱サイクル試験を実施した。そして、本実
施例によるZnを用いたはんだ付継手には割れが生じな
かった。さらに本実施例は、プリント基板以外にアルミ
ナ、ムライト等の基板の面付はんだ付継手にも適用でき
る。The above experimental results investigated the presence or absence of cracks in FPP surface-mounted soldered joints on printed circuit boards, but thermal cycle tests were also conducted on other surface-mounted soldered joints, such as PLCC joints shown in Figure 2. was carried out. Further, no cracks occurred in the soldered joint using Zn according to this example. Furthermore, this embodiment can be applied to surface-mounted solder joints on substrates made of alumina, mullite, etc., in addition to printed circuit boards.
また、はんだの中のZn量の効果を明らかにするために
、SnとZnの2元素はんだを溶製し、幅4mn、長さ
40mm、厚さ1.0nynのCu板にはんだをぬらし
て150 ’C1500時間の高温放置試験を行った。In addition, in order to clarify the effect of the amount of Zn in the solder, two-element solder of Sn and Zn was melted, and a Cu plate with a width of 4 mm, a length of 40 mm, and a thickness of 1.0 nyn was wetted with the solder. A high temperature storage test was conducted for 1500 hours.
その後続いて曲げ試験を行い、割れの有無を断面の顕微
鏡写真により評価した。曲げは30度と、90度の2種
で行った。結果を第3図に示す。図において、Oがはん
だ付部に割れは見られなかった場合、×がはんだ付部
に割れが見られた場合を表している。Subsequently, a bending test was conducted, and the presence or absence of cracks was evaluated using microscopic photographs of the cross sections. Bending was performed in two ways: 30 degrees and 90 degrees. The results are shown in Figure 3. In the figure, O indicates a case where no crack was observed in the soldered part, and x indicates a case where a crack was observed in the soldered part.
0.1%Znでは割れを防止するには至っていない。0
.2%Zn添加で曲げの少ない30度で割れは見られな
いが曲げの大きい90度で割れている60.3%では9
0度の曲げでも割れていない。つまり0.2%からZn
添加の効果は見られ、0.3%で十分な効果を発揮する
。すなわち、Znの添加は0.3%以上にすれば良いこ
とがわかる。0.1% Zn does not prevent cracking. 0
.. With the addition of 2% Zn, no cracking was observed at 30 degrees, where the bending was small, but at 60.3%, cracking was observed at 90 degrees, where the bending was large.
No cracking even when bent at 0 degrees. In other words, Zn from 0.2%
The effect of addition can be seen, and a sufficient effect is exhibited at 0.3%. That is, it can be seen that the amount of Zn added should be 0.3% or more.
以上説明したように、本発明のはんだを使用すれば、ハ
イブリットICを面付はんだ付で接合しても、長時間の
使用においてはんだ付部に割れが発生せず、はんだ付物
品の信頼性が大幅に向上する。As explained above, if the solder of the present invention is used, even if hybrid ICs are joined by surface soldering, cracks will not occur in the soldered parts even after long-term use, and the reliability of soldered products will be improved. Significantly improved.
また、本発明のはんだ付方法によれば、従来のSn系合
金を使用した場合でも、上記と同様の効果を得ることが
できる。Further, according to the soldering method of the present invention, the same effects as described above can be obtained even when a conventional Sn-based alloy is used.
第1図は面付はんだ付けで接合された電子部品の断面図
、第2図は他の種類の面付はんだ付けで接合された電子
部品の断面図、第3図はZnの添加量を変えた場合の曲
げ試験結果を示す図である。
1・・電子部品、 2・・・リード線3・プリント
基板 4・・・導体膜
5・・はんだ 6,7−・反応相
8・・はんだ相。Figure 1 is a cross-sectional view of an electronic component joined by surface soldering, Figure 2 is a cross-sectional view of an electronic component joined by another type of surface soldering, and Figure 3 is a cross-sectional view of an electronic component joined by surface soldering. It is a figure which shows the bending test result when 1.Electronic component, 2.Lead wire 3.Printed circuit board 4.Conductor film 5..Solder 6,7-.Reaction phase 8..Solder phase.
Claims (1)
したはんだ。 2、前記Sn系合金はんだに、前記Znの他にSb、I
n、Ag、Au、Cuのうち1種類以上を添加した請求
項1記載のはんだ。 3、Cu系合金からなる被接合部材がSn系合金はんだ
ではんだ付けされ、かつ前記Cu系合金とはんだとの界
面にCu−Zn−Snの合金相が形成されたはんだ付物
品。 4、Cu系合金からなる被接合部材の表面に、Znから
なる被覆層を形成しておき、該被覆層が形成された被接
合部材をSn系合金はんだで接合するはんだ付方法。 5、Cu系合金からなる被接合部材の表面に、Zn入り
ペーストはんだを塗布しておき、該ペーストはんだで接
合するはんだ付方法。[Scope of Claims] 1. Solder in which 0.3 to 3 wt% of Zn is added to Sn-based alloy solder. 2. In addition to the Zn, the Sn-based alloy solder also contains Sb, I
2. The solder according to claim 1, further comprising one or more of n, Ag, Au, and Cu. 3. A soldered article in which a member to be joined made of a Cu-based alloy is soldered with a Sn-based alloy solder, and a Cu-Zn-Sn alloy phase is formed at the interface between the Cu-based alloy and the solder. 4. A soldering method in which a coating layer made of Zn is formed on the surface of a member to be joined made of a Cu-based alloy, and the members to be joined on which the coating layer is formed are joined with Sn-based alloy solder. 5. A soldering method in which a Zn-containing paste solder is applied to the surface of a member to be joined made of a Cu-based alloy, and the solder is joined using the paste solder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63092386A JPH0649238B2 (en) | 1988-04-14 | 1988-04-14 | Solder for joining Cu-based materials and soldering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63092386A JPH0649238B2 (en) | 1988-04-14 | 1988-04-14 | Solder for joining Cu-based materials and soldering method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01262092A true JPH01262092A (en) | 1989-10-18 |
JPH0649238B2 JPH0649238B2 (en) | 1994-06-29 |
Family
ID=14052983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63092386A Expired - Fee Related JPH0649238B2 (en) | 1988-04-14 | 1988-04-14 | Solder for joining Cu-based materials and soldering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649238B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0555404A (en) * | 1991-08-26 | 1993-03-05 | Hitachi Cable Ltd | Printed wiring board for mounting semiconductor devices |
JP2006289493A (en) * | 2005-03-17 | 2006-10-26 | Tamura Kaken Co Ltd | Sn-zn based solder, lead-free solder, its solder work, solder paste, and electronic component-soldering substrate |
JP2009078299A (en) * | 2007-09-07 | 2009-04-16 | Hitachi Metals Ltd | Solder alloy, solder ball using it, and soldered part excellent in drop impact resistance |
US20090197114A1 (en) * | 2007-01-30 | 2009-08-06 | Da-Yuan Shih | Modification of pb-free solder alloy compositions to improve interlayer dielectric delamination in silicon devices and electromigration resistance in solder joints |
US20090197103A1 (en) * | 2007-01-30 | 2009-08-06 | Da-Yuan Shih | Modification of pb-free solder alloy compositions to improve interlayer dielectric delamination in silicon devices and electromigration resistance in solder joints |
US8157158B2 (en) * | 2007-01-30 | 2012-04-17 | International Business Machines Corporation | Modification of solder alloy compositions to suppress interfacial void formation in solder joints |
US8517249B2 (en) * | 2007-03-12 | 2013-08-27 | Samsung Electronics Co., Ltd. | Soldering structure and method using Zn |
JP2019155476A (en) * | 2018-03-06 | 2019-09-19 | 株式会社日本スペリア社 | Solder joint |
KR102025514B1 (en) | 2018-05-25 | 2019-09-25 | 센주긴조쿠고교 가부시키가이샤 | Solder ball, solder joint and method for bonding |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5050250A (en) * | 1973-09-04 | 1975-05-06 | ||
JPS63117494A (en) * | 1986-11-06 | 1988-05-21 | 古河電気工業株式会社 | Circuit board |
-
1988
- 1988-04-14 JP JP63092386A patent/JPH0649238B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5050250A (en) * | 1973-09-04 | 1975-05-06 | ||
JPS63117494A (en) * | 1986-11-06 | 1988-05-21 | 古河電気工業株式会社 | Circuit board |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0555404A (en) * | 1991-08-26 | 1993-03-05 | Hitachi Cable Ltd | Printed wiring board for mounting semiconductor devices |
JP2006289493A (en) * | 2005-03-17 | 2006-10-26 | Tamura Kaken Co Ltd | Sn-zn based solder, lead-free solder, its solder work, solder paste, and electronic component-soldering substrate |
US20090197114A1 (en) * | 2007-01-30 | 2009-08-06 | Da-Yuan Shih | Modification of pb-free solder alloy compositions to improve interlayer dielectric delamination in silicon devices and electromigration resistance in solder joints |
US20090197103A1 (en) * | 2007-01-30 | 2009-08-06 | Da-Yuan Shih | Modification of pb-free solder alloy compositions to improve interlayer dielectric delamination in silicon devices and electromigration resistance in solder joints |
US8157158B2 (en) * | 2007-01-30 | 2012-04-17 | International Business Machines Corporation | Modification of solder alloy compositions to suppress interfacial void formation in solder joints |
US8517249B2 (en) * | 2007-03-12 | 2013-08-27 | Samsung Electronics Co., Ltd. | Soldering structure and method using Zn |
JP2009078299A (en) * | 2007-09-07 | 2009-04-16 | Hitachi Metals Ltd | Solder alloy, solder ball using it, and soldered part excellent in drop impact resistance |
JP2019155476A (en) * | 2018-03-06 | 2019-09-19 | 株式会社日本スペリア社 | Solder joint |
KR102025514B1 (en) | 2018-05-25 | 2019-09-25 | 센주긴조쿠고교 가부시키가이샤 | Solder ball, solder joint and method for bonding |
EP3572183A1 (en) | 2018-05-25 | 2019-11-27 | Senju Metal Industry Co., Ltd | Solder ball, solder joint, and joining method |
US10780530B2 (en) | 2018-05-25 | 2020-09-22 | Senju Metal Industry Co., Ltd. | Solder ball, solder joint, and joining method |
Also Published As
Publication number | Publication date |
---|---|
JPH0649238B2 (en) | 1994-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4441118A (en) | Composite copper nickel alloys with improved solderability shelf life | |
EP0614721B1 (en) | Kinetic solder paste composition | |
WO1999048639A1 (en) | Leadless solder | |
WO2000024544A1 (en) | Lead-free solder | |
GB2346380A (en) | Nickel containing tin-based solder alloys | |
JP5614507B2 (en) | Sn-Cu lead-free solder alloy | |
WO2006131979A1 (en) | METHOD FOR SOLDERING ELCTROLESS Ni PLATING PART | |
JPH01262092A (en) | Solder and soldering commodity using said solder and soldering method | |
JP2000153388A (en) | Soldered article | |
JP5231727B2 (en) | Joining method | |
JP3878978B2 (en) | Lead-free solder and lead-free fittings | |
JP2003290974A (en) | Joining structure of electronic circuit device and electronic parts used for the same | |
KR100678803B1 (en) | Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING SAME | |
JP2000054189A (en) | MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT | |
JP2003112285A (en) | Solder paste | |
WO2002005609A1 (en) | Structure for interconnecting conductors and connecting method | |
JP6379217B2 (en) | Solder alloys and electronic parts for plating | |
JP2802530B2 (en) | Electronic equipment | |
JP4573167B2 (en) | Brazing material sheet | |
JP2668569B2 (en) | Brazing material | |
JP3254901B2 (en) | Solder alloy | |
JP2001043745A (en) | Flat cable | |
JP3551168B2 (en) | Pb-free solder connection structure and electronic equipment | |
JP3551167B2 (en) | Semiconductor device | |
JP4535429B2 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |