JPH0126189B2 - - Google Patents

Info

Publication number
JPH0126189B2
JPH0126189B2 JP5975587A JP5975587A JPH0126189B2 JP H0126189 B2 JPH0126189 B2 JP H0126189B2 JP 5975587 A JP5975587 A JP 5975587A JP 5975587 A JP5975587 A JP 5975587A JP H0126189 B2 JPH0126189 B2 JP H0126189B2
Authority
JP
Japan
Prior art keywords
region
type
impurity density
gate
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5975587A
Other languages
Japanese (ja)
Other versions
JPS6372161A (en
Inventor
Junichi Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5975587A priority Critical patent/JPS6372161A/en
Publication of JPS6372161A publication Critical patent/JPS6372161A/en
Publication of JPH0126189B2 publication Critical patent/JPH0126189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • H01L29/7392Gated diode structures with PN junction gate, e.g. field controlled thyristors (FCTh), static induction thyristors (SITh)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Description

【発明の詳細な説明】 本発明は半導体装置に関し、特に静電誘導サイ
リスタ(Static Induction Thyristor;以下SIサ
イリスタと略称する)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a static induction thyristor (hereinafter abbreviated as SI thyristor).

静電誘導型のトランジスタ及びサイリスタは、
従来のトランジスタないしサイリスタとは別の動
作原理に基づいた新しい半導体装置であり、その
性能の優秀なことによつて近年特に注目を集めて
いる。
Static induction type transistors and thyristors are
It is a new semiconductor device based on an operating principle different from that of conventional transistors or thyristors, and has attracted particular attention in recent years due to its excellent performance.

静電誘導トランジスタ(Static Induction
Transistor;以下SITと略称する)は、チヤンネ
ル領域内で実質的に電流制御を行なう真性ゲート
からソース電極までの直列抵抗を飛躍的に減少さ
せた短チヤンネル構造のユニポーラ型トランジス
タで、三極真空管類似の不飽和型電流―電圧特性
を示し得る。原理的には、負帰還作用を起すチヤ
ンネル内の直列抵抗が非常に小さく、ゲート電圧
のみで電流通路内に電位障壁を形成でき、ゲート
電圧とドレイン電圧とで、この電位障壁を制御で
きるトランジスタである。従つて、チヤンネル中
に電位障壁が存在し、ソース側のキヤリア密度を
無限大と近似できる間は基本的にドレイン電流は
ゲート電圧とドレイン電圧に対して指数関数的に
増大する。
Static Induction Transistor
Transistor (hereinafter abbreviated as SIT) is a unipolar transistor with a short channel structure that dramatically reduces the series resistance from the intrinsic gate to the source electrode, which essentially controls current within the channel region, and is similar to a triode vacuum tube. It can exhibit unsaturated current-voltage characteristics. In principle, the series resistance in the channel that causes negative feedback is extremely small, and a potential barrier can be formed in the current path using only the gate voltage, and this potential barrier can be controlled using the gate voltage and drain voltage. be. Therefore, while a potential barrier exists in the channel and the carrier density on the source side can be approximated to infinity, the drain current basically increases exponentially with respect to the gate voltage and the drain voltage.

その後の研究開発により、ゲート領域を順バイ
アスすることによりゲート領域からの少数キヤリ
ア注入を効果的に利用するものなども実現されて
いる。即ち、直列抵抗の小さい短チヤンネル構造
でゲート領域からソース近傍のチヤンネル領域へ
少数キヤリアを注入することにより、電位障壁の
引下げとソースからの多数キヤリアの引出しを行
なわせ得る。ソースから引出すキヤリアの量が限
界に近づけば、バイポーラトランジスタ同様の飽
和特性を示し始める。
Subsequent research and development has led to the realization of devices that effectively utilize minority carrier injection from the gate region by forward biasing the gate region. That is, by injecting minority carriers from the gate region into the channel region near the source using a short channel structure with low series resistance, it is possible to lower the potential barrier and extract majority carriers from the source. When the amount of carriers extracted from the source approaches its limit, it begins to exhibit saturation characteristics similar to bipolar transistors.

これらの原理を応用したSIサイリスタは、基本
的にpn(より正しくはpinもしくはp πnまたは
p νn)ダイオードの少なくとも1つの領域内
にSIT同様のゲート構造を設けたもので、ゲート
付ダイオードと呼ぶべき特性を示す。即ち、従来
のpnpnサイリスタが互いに正帰還で作用するpnp
トランジスタとnpnトランジスタとの複合構造で
あると解釈できるのに対し、SIサイリスタは、
SITとダイオードとの複合構造であると解釈で
き、両極性のキヤリアが伝導に寄与する点は同じ
であるが、両者の動作機構の基本的原理は異な
る。
An SI thyristor that applies these principles is basically a pn (more correctly pin, pπn, or pvn) diode with a gate structure similar to SIT in at least one region, and is called a gated diode. Indicates the power characteristic. In other words, conventional PNP thyristors act on each other in positive feedback.
While it can be interpreted as a composite structure of a transistor and an npn transistor, an SI thyristor is
It can be interpreted as a composite structure of an SIT and a diode, and although carriers of both polarities contribute to conduction, the basic principles of their operating mechanisms are different.

SIサイリスタは、SIT同様高入力インピーダン
ス、高速大電流動作等の利点を有するがその性能
は未だ改善される可能性が大きい。
SI thyristors have the same advantages as SIT, such as high input impedance and high-speed, large-current operation, but there is still much potential for their performance to be improved.

本発明の目的は、改良された構造を有し特に大
電流動作に適したSIサイリスタを提供することに
ある。
An object of the present invention is to provide an SI thyristor with an improved structure and particularly suitable for high current operation.

本発明の1実施例によれば、第1の導電型のゲ
ート領域に囲まれた第2の導電型のチヤンネル領
域のうち、その中央部の不純物密度が外側部分の
不純物密度より低く設定されている。この構成に
よりゲート領域に囲まれたチヤンネル領域を空乏
層化すると中央部の不純物密度の低い所ではイオ
ン化する電荷が少ないため比較的平坦な電位プロ
フイルを有し、外側部分はイオン化する電荷が多
いため比較的急な電位プロフイルを有する。従つ
て、空乏層によつて形成される電位障壁を制御し
て一方の主電極から他方の主電極へ電荷を輸送さ
せる時、電位の低い実効的チヤンネルとなるべき
部分の幅が広くなる。このため、同一のゲート間
距離の構造において、最大許容電流が大きくな
る。
According to one embodiment of the present invention, the impurity density in the central part of the channel region of the second conductivity type surrounded by the gate region of the first conductivity type is set to be lower than the impurity density in the outer part. There is. With this configuration, when the channel region surrounded by the gate region is made into a depletion layer, the central part where the impurity density is low has a relatively flat potential profile because there are few charges to be ionized, and the outer part has a relatively flat potential profile because there are many charges to be ionized. It has a relatively steep potential profile. Therefore, when controlling the potential barrier formed by the depletion layer to transport charges from one main electrode to the other, the width of the portion that should become an effective channel with a low potential becomes wider. Therefore, in a structure with the same distance between gates, the maximum allowable current increases.

以下図面を参照して本発明の実施例に沿つて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

なお図面中、同一番号は対応する部分を示す
が、寸法は任意であり、部分的に誇張してある。
理解を容易にするため、本発明の実施例に先立つ
て、従来のSIサイリスタを説明する。
In the drawings, the same numbers indicate corresponding parts, but the dimensions are arbitrary and some parts are exaggerated.
To facilitate understanding, a conventional SI thyristor will be explained prior to the embodiments of the present invention.

従来の表面型接合ゲートSIサイリスタの1例を
第1図a,bに示す。aは断面図、bは上面図で
ある。第1図aの断面図において、p+型シリコ
ン基板11の上にn-型領域(エピタキシヤル層)
13が形成されている。n+型基板にp+型領域を
設けてもよいことは自明であろう。これが基本的
なp+n-ダイオード構造を形成する。n-型領域1
3の上部に浅いn+型領域12と比較的深いp+
領域14とが拡散、イオン打込、ないしは選択エ
ツチ・選択成長などで形成されている。即ち、
p+n-ダイオードの陰極領域であるn-型領域13
内にドレイン構造を簡略化したSIT構造が形成さ
れている。n+型領域12は、nチヤンネルSITの
ソースであり、SIサイリスタの陰極となつてい
る。p+型領域14は、nチヤンネルSITのゲート
領域であり、SIサイリスタのゲート領域となつて
いる。p+型ゲート領域14は、熱処理工程等に
よる不純物密度の再分布、結晶内の歪の発生等に
よつて装置の性能に悪影響を与えない範囲ででき
るだけ低抵抗率となるように高い不純物密度を有
するのが望ましい。p+型ゲート領域14にはさ
まれた、チヤンネル領域となるn-型領域13′は
所定の動作条件の下でゲート領域との境界(pn
接合面)から延びる空乏層がチヤンネル領域を横
断して電位障壁を形成できるような幅と不純物密
度を有するように選ばれる。不純物密度は通常
1010ないし1016cm-3の範囲内で選択される。p+
領域14とp+型領域11との間のn+型領域の不
純物密度と厚さとは主として順方向阻止電圧を考
慮して設定される。
An example of a conventional surface-type junction gate SI thyristor is shown in FIGS. 1a and 1b. A is a cross-sectional view, and b is a top view. In the cross-sectional view of FIG. 1a, an n - type region (epitaxial layer) is formed on a p + type silicon substrate 11.
13 is formed. It is obvious that a p + type region may be provided on an n + type substrate. This forms a basic p + n - diode structure. n -type region 1
A shallow n + type region 12 and a relatively deep p + type region 14 are formed on the upper part of the semiconductor device 3 by diffusion, ion implantation, selective etching, selective growth, or the like. That is,
n - type region 13 which is the cathode region of p + n - diode
A SIT structure, which is a simplified drain structure, is formed inside. The n + type region 12 is the source of the n-channel SIT and serves as the cathode of the SI thyristor. The p + type region 14 is the gate region of the n-channel SIT, and serves as the gate region of the SI thyristor. The p + -type gate region 14 has a high impurity density so that the resistivity is as low as possible without adversely affecting the performance of the device due to redistribution of impurity density due to heat treatment process, generation of strain in the crystal, etc. It is desirable to have one. The n - type region 13', which serves as a channel region and is sandwiched between the p + type gate region 14, forms a boundary with the gate region (pn
The depletion layer extending from the junction surface is chosen to have a width and impurity density such that it can form a potential barrier across the channel region. Impurity density is usually
It is selected within the range of 10 10 to 10 16 cm -3 . The impurity density and thickness of the n + type region between the p + type region 14 and the p + type region 11 are set mainly in consideration of the forward blocking voltage.

p+型領域11、n+型領域12、p+型領域14
の上にはアルミニウム、モリブデン、他の金属や
ポリシリコン等の材料から成る低抵抗率の電極2
1,22,24がそれぞれ設けられ、電極のない
表面は酸化膜、窒化膜、その他の絶縁膜や絶縁複
合膜から成る保護膜15が設けられている。n+
型ソース領域12、p+型ゲート領域14は、電
流値を大きくするように図中垂直方向に細長く延
在している。又チヤンネル数を多くすることによ
つても大電流化がはかられている。第1図bに簡
略化した上面図を示す。
p + type region 11, n + type region 12, p + type region 14
On top is a low resistivity electrode 2 made of materials such as aluminum, molybdenum, other metals or polysilicon.
1, 22, and 24, respectively, and a protective film 15 made of an oxide film, nitride film, other insulating film, or insulating composite film is provided on the surface without electrodes. n +
The type source region 12 and the p + type gate region 14 are elongated in the vertical direction in the figure so as to increase the current value. Furthermore, a large current can be achieved by increasing the number of channels. FIG. 1b shows a simplified top view.

電極22,24は互いに対向した櫛形をしてお
り、櫛の歯の部分でそれぞれソース領域12、ゲ
ート領域14に電気的に接続されている。最も外
側の2つを除き各ゲート領域14は、それぞれの
両端のチヤンネルに共通であり、対向する1対の
ゲート領域14が1つのチヤンネル領域13′を
規定している。
The electrodes 22 and 24 are comb-shaped and face each other, and are electrically connected to the source region 12 and the gate region 14 at the tooth portions of the combs, respectively. Each gate region 14 except the outermost two is common to the channels at both ends, and a pair of opposing gate regions 14 defines one channel region 13'.

ゲート領域14とチヤンネル領域13′との間
の作りつけ電位を含むゲート電圧によつてチヤン
ネル領域13′が空乏化している(ピンチオフし
ている)場合のゲート・ゲート間の電子に対する
ポテンシヤル分布を第1図cに示す。ゲート領域
14の不純物密度はチヤンネル領域の不純物密度
に比べ非常に高いのでゲート領域14内には電位
勾配はないと近似できる。
The potential distribution for electrons between the gates when the channel region 13' is depleted (pinch-off) due to the gate voltage including the built-in potential between the gate region 14 and the channel region 13' is shown below. Shown in Figure 1c. Since the impurity density in the gate region 14 is much higher than that in the channel region, it can be approximated that there is no potential gradient within the gate region 14.

チヤンネル領域13内に形成される電位勾配の
傾きはチヤンネル領域の不純物密度の依存し、不
純物密度が高ければ急になり、低ければゆるくな
る。ソース領域から陽極領域に向う電子は、その
ほとんどが電位勾配の最も低い部分13″を通つ
て流れる。
The slope of the potential gradient formed in the channel region 13 depends on the impurity density of the channel region, and becomes steeper as the impurity density is higher and becomes gentler as the impurity density is lower. Most of the electrons traveling from the source region to the anode region flow through the portion 13'' where the potential gradient is lowest.

陰極となるソース領域12と陽極となるp+
域11との間に順方向電圧が印加されている時の
両領域間の電子に対するポテンシヤル分布を第1
図dに示す。
The first potential distribution for electrons between the source region 12, which becomes the cathode, and the p + region 11, which becomes the anode, when a forward voltage is applied between the two regions.
Shown in Figure d.

チヤンネル領域13′内では、ゲート電位の影
響でポテンシヤルが持ち上げられており、鞍部形
状を形成している。この鞍部点を真性ゲート点と
呼び、鞍部点の電位、即ち電位障壁V* Gがゲート
電位で制御されて電子による電流を制御する。陽
極に存在するホールはこの図では高いポテンシヤ
ルの所程到達し易いが、陽型前面にp+n-接合の
ポテンシヤル障壁が残る間は13に入り込まず
に、阻止されている。電位障壁V* Gが熱エネルギ
と同程度以下になれば多量の電子がソース領域1
2から陽極領域11に向つて流れる。
In the channel region 13', the potential is raised due to the influence of the gate potential, forming a saddle shape. This saddle point is called the intrinsic gate point, and the potential at the saddle point, that is, the potential barrier V * G , is controlled by the gate potential to control the current caused by electrons. In this figure, holes existing in the anode are more likely to reach the higher the potential, but as long as the potential barrier of the p + n -junction remains on the front surface of the positive type, they do not enter the hole 13 and are blocked. If the potential barrier V * G becomes less than the same level as the thermal energy, a large amount of electrons will flow into the source region 1.
2 towards the anode region 11.

n-型領域13とp+型陽極領域11との間のpn
接合により生じているホールの障壁部に、流れ込
んだ電子が蓄積し、結果的に負に帯電することか
らホールに対する障壁が消滅し、陽極のp+領域
からホールが注入され、速やかにオン状態にな
る。このようにしてpn接合における電位障壁が
消滅すると、p+型陽極領域から多量の正孔がn-
型領域11へ流れ込む。正孔に対する電位分布は
電子に対する電位分布を高低反転したものである
ので、注入された多量の正孔は電子と逆方向へ流
れる。
pn between the n - type region 13 and the p + type anode region 11
The inflowing electrons accumulate in the hole barrier created by the junction, and as a result it becomes negatively charged, so the barrier to holes disappears, holes are injected from the p + region of the anode, and the device quickly turns on. Become. When the potential barrier at the p-n junction disappears in this way, a large amount of holes flow from the p + type anode region to the n -
It flows into the mold area 11. Since the potential distribution for holes is an inversion of the potential distribution for electrons, a large amount of injected holes flow in the opposite direction to the electrons.

p+型ゲート領域14は、正孔に対してはチヤ
ンネル領域と同等程度ないしいく分低いポテンシ
ヤルを有するので電子正孔の相互作用があつても
正孔の1部はゲート領域に流れる。電流を切る場
合は、p+型ゲート領域14を逆バイアスする。
すると、電位障壁* Gが大きくなり、電子流を遮断
する。
The p + -type gate region 14 has a potential comparable to or somewhat lower than that of the channel region for holes, so that even if there is an electron-hole interaction, a portion of the holes will flow to the gate region. When cutting off the current, the p + type gate region 14 is reverse biased.
Then, the potential barrier * G increases and blocks the electron flow.

このとき陰極陽極間が電気的に切り離される
が、p+型領域13内に存在する正孔がポテンシ
ヤルの下げられたp+型ゲート領域14に流れ込
み、真性ゲート点近傍の真性ゲート領域とp+
陽極領域の間のn-型領域に正孔が存在しなくな
ると電流は遮断される。
At this time, the cathode and anode are electrically separated, but the holes existing in the p + type region 13 flow into the p + type gate region 14 whose potential has been lowered, and the intrinsic gate region near the intrinsic gate point and the p + The current is cut off when there are no more holes in the n - type region between the type anode regions.

第2図aに本発明の1実施例である改良された
SIサイリスタを示す。簡単の為、図には1チヤン
ネル分のみが示されている。n-型チヤンネル領
域13より不純物密度の低いn--型領域18をn+
型カソード領域12に接して設け、真性ゲート領
域をこのn--型領域18中に形成したのが新規な
点である。ゲート間での電子に対するポテンシヤ
ル分布を第2図bに示す。不純物密度の比較的高
いn-型領域13はイオン化(空乏層化)するこ
とによつて大きな電位差を生じ、不純物密度の少
ないn--型チヤンネル領域18はイオン化しても
小さな電位差しか生じない。例えば、ターンオン
条件での、チヤンネル領域18に生じる電位差を
熱エネルギ程度に設計すると、実効的チヤンネル
幅をチヤンネル領域18の幅とほぼ同程度にでき
る。オフ状態にする場合はチヤンネルの電位が速
やかに上昇して電流の切断が速い。同時に、n--
型領域18はn-型領域13より正孔に対するポ
テンシヤルが低いので、p+型ゲート領域14を
順バイアスしてターンオンにする動作モードの場
合はp+型ゲート領域14から注入された正孔は
n--型領域18に集まり、n+型ソース領域12か
ら電子を引出すのに有効に働く。
FIG. 2a shows an improved example of an embodiment of the present invention.
Shows SI thyristor. For simplicity, only one channel is shown in the figure. The n -- type region 18, which has a lower impurity density than the n - type channel region 13, is replaced with an n +
The novel point is that it is provided in contact with the n-type cathode region 12, and the intrinsic gate region is formed in this n - type region 18. The potential distribution for electrons between the gates is shown in FIG. 2b. The n - type region 13, which has a relatively high impurity density, generates a large potential difference by being ionized (depleted layer), and the n - type channel region 18, which has a low impurity density, generates only a small potential difference even when it is ionized. For example, if the potential difference generated in the channel region 18 under turn-on conditions is designed to be approximately equal to thermal energy, the effective channel width can be made approximately the same as the width of the channel region 18. When turning off, the potential of the channel rises quickly and the current is cut off quickly. At the same time, n --
Since the type region 18 has a lower potential for holes than the n - type region 13, in the operation mode in which the p + type gate region 14 is forward biased and turned on, the holes injected from the p + type gate region 14 are
They gather in the n -- type region 18 and work effectively to extract electrons from the n + type source region 12.

n-領域13内に生じる電位差とn--型領域18
内に生じる電位差は原理的にポアツソンの方程式
を解くことによつて求められるが、さらに実験的
最適条件を求めるのが好ましい。n--型領域18
がn+型領域12と同じ断面積を有する構造を図
示したが、両者の寸法は適当に変更してよいこと
は明らかであろう。本実施例の要点はソース高不
純物密度領域に隣接して超低不純物密度領域を設
けることである。
Potential difference generated within n - region 13 and n -- type region 18
Although the potential difference generated within can be determined in principle by solving Poisson's equation, it is preferable to further determine the optimum conditions experimentally. n --type area 18
Although shown as having the same cross-sectional area as n + type region 12, it will be clear that the dimensions of both may be modified as appropriate. The key point of this embodiment is to provide an ultra-low impurity density region adjacent to the source high impurity density region.

ゲート領域やソース領域等がほぼ矩形断面を有
する構造を図示したが通常の拡散で得られる構造
にしても何ら差し使えない。解析が困難にはなる
が実験的に最適条件を求めればよいからである。
すべての導電型を逆にしてもよいことは自明であ
ろう。全ての実施例を通して図示した構造は例示
であつて何ら制限的なものではない。
Although a structure in which the gate region, source region, etc. have a substantially rectangular cross section is illustrated, there is no difference in the structure obtained by ordinary diffusion. This is because, although analysis becomes difficult, it is sufficient to find the optimal conditions experimentally.
It will be obvious that all conductivity types may be reversed. The structures illustrated throughout all the embodiments are illustrative and not restrictive.

第2図の構造の変形を第3図に示す。n--型領
域18がソース領域12が隣接せず離れているも
のである。実効チヤンネル幅を広げるのに有効で
イオン打ち込みで製造するものに適している。
A modification of the structure of FIG. 2 is shown in FIG. In the n -- type region 18, the source region 12 is not adjacent to each other but is separated from the source region 12. It is effective in widening the effective channel width and is suitable for products manufactured by ion implantation.

以上述べたように本発明によるSIサイリスタは
チヤンネル領域に不純物勾配を設けることにより
実効チヤンネル幅を広くし大電流動作を容易にし
ている。反対導電型のゲート領域を不純物密度が
比較的高い領域で囲んだ場合はゲート電流を減少
し、順方向阻止電圧を高めるのに有効である。
As described above, the SI thyristor according to the present invention widens the effective channel width by providing an impurity gradient in the channel region, thereby facilitating large current operation. Surrounding the gate region of the opposite conductivity type with a region having relatively high impurity density is effective in reducing the gate current and increasing the forward blocking voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至dは従来のSIサイリスタの断面
図、上面図、横方向及び縦方向のポテンシヤル分
布図、第2図a及びbは本発明の実施例のSIサイ
リスタの断面図と横方向ポテンシヤル分布図、第
3図は本発明の他の実施例の断面図である。 11…アノード領域、12…カソード領域、1
3…n-型半導体領域、14…ゲート領域、18
…超低不純物密度半導体領域。
Figures 1a to d are cross-sectional views, top views, and horizontal and vertical potential distribution diagrams of a conventional SI thyristor, and Figures 2 a and b are cross-sectional views and horizontal potential distributions of an SI thyristor according to an embodiment of the present invention. The distribution diagram, FIG. 3, is a sectional view of another embodiment of the present invention. 11... Anode region, 12... Cathode region, 1
3...n - type semiconductor region, 14... gate region, 18
...Ultra-low impurity density semiconductor region.

Claims (1)

【特許請求の範囲】 1 第1導電型高不純物密度のアノード領域11
と、前記アノード領域の上部に形成された第2導
電型低不純物密度のチヤンネル領域13と、前記
チヤンネル領域の上部に形成された第2導電型高
不純物密度のカソード領域12と、前記チヤンネ
ル領域を挟んで形成された少なく共一対の第1導
電型高不純物密度のゲート領域14と、前記チヤ
ンネル領域の内部に、前記少なく共一対のゲート
領域の中間位置の、前記ゲート領域から延びる空
乏層が互いにピンチオフする位置近傍に配置され
た、第2導電型で、かつ、不純物密度が前記チヤ
ンネル領域よりも小さい超低不純物密度半導体領
域18とを少なく共備えたことを特徴とする静電
誘導サイリスタ。 2 前記超低不純物密度半導体領域が前記カソー
ド領域に接していることを特徴とする前記特許請
求の範囲第1項記載の静電誘導サイリスタ。
[Claims] 1. First conductivity type high impurity density anode region 11
a second conductivity type low impurity density channel region 13 formed above the anode region; a second conductivity type high impurity density cathode region 12 formed above the channel region; A pair of gate regions 14 of the first conductivity type with high impurity density formed in between and a depletion layer extending from the gate region at an intermediate position between the pair of gate regions are formed inside the channel region. An electrostatic induction thyristor characterized by comprising a small number of ultra-low impurity density semiconductor regions 18 of a second conductivity type and having an impurity density lower than that of the channel region, which are arranged near a pinch-off position. 2. The electrostatic induction thyristor according to claim 1, wherein the ultra-low impurity density semiconductor region is in contact with the cathode region.
JP5975587A 1987-03-12 1987-03-12 Static induction type thyristor Granted JPS6372161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5975587A JPS6372161A (en) 1987-03-12 1987-03-12 Static induction type thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5975587A JPS6372161A (en) 1987-03-12 1987-03-12 Static induction type thyristor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP760979A Division JPS5599772A (en) 1978-03-17 1979-01-24 Electrostatic induction type thyristor

Publications (2)

Publication Number Publication Date
JPS6372161A JPS6372161A (en) 1988-04-01
JPH0126189B2 true JPH0126189B2 (en) 1989-05-22

Family

ID=13122388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5975587A Granted JPS6372161A (en) 1987-03-12 1987-03-12 Static induction type thyristor

Country Status (1)

Country Link
JP (1) JPS6372161A (en)

Also Published As

Publication number Publication date
JPS6372161A (en) 1988-04-01

Similar Documents

Publication Publication Date Title
US5554862A (en) Power semiconductor device
US5962893A (en) Schottky tunneling device
USRE38953E1 (en) Insulated gate semiconductor device and method of manufacturing the same
JP2519369B2 (en) Semiconductor device
US4514747A (en) Field controlled thyristor with double-diffused source region
JP2752184B2 (en) Power semiconductor device
SE454732B (en) SEMICONDUCTOR DEVICE
KR20120091231A (en) Power semiconductor devices having selectively doped jfet regions and related methods of forming such devices
US8878237B2 (en) Active edge structures providing uniform current flow in insulated gate turn-off thyristors
US8937502B2 (en) Lateral insulated gate turn-off devices
US10797131B2 (en) Enhancements to cell layout and fabrication techniques for MOS-gated devices
US9806152B2 (en) Vertical insulated gate turn-off thyristor with intermediate p+ layer in p-base
JPH06268227A (en) Insulated gate bipolar transistor
US5861638A (en) Insulated gate bipolar transistor
JPH0126187B2 (en)
JP3863926B2 (en) Three-terminal power insulated gate transistor and manufacturing method thereof
JPH04312977A (en) Semiconductor device
JP3329642B2 (en) Semiconductor device
JPS639386B2 (en)
JPH0888357A (en) Lateral igbt
JPS6124832B2 (en)
JPH0126189B2 (en)
JPS6362911B2 (en)
JP2003017700A (en) Bipolar semiconductor device
JPS59150474A (en) Semiconductor device