JPH01261051A - Transmission control method - Google Patents

Transmission control method

Info

Publication number
JPH01261051A
JPH01261051A JP63089841A JP8984188A JPH01261051A JP H01261051 A JPH01261051 A JP H01261051A JP 63089841 A JP63089841 A JP 63089841A JP 8984188 A JP8984188 A JP 8984188A JP H01261051 A JPH01261051 A JP H01261051A
Authority
JP
Japan
Prior art keywords
preamble
synchronization signal
synchronizing signal
text
main text
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63089841A
Other languages
Japanese (ja)
Inventor
Nobuo Ganji
伸夫 元治
Masami Wada
正己 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63089841A priority Critical patent/JPH01261051A/en
Publication of JPH01261051A publication Critical patent/JPH01261051A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the synchronizing signal of a main text with sufficient time accuracy by sending a pre-text with intermittent amplitude modulation to a carrier modulated by a synchronizing signal to receive the main text, allowing a reception means to detect the synchronizing signal from the pre-text sent by a transmission means to receive the main text. CONSTITUTION:In the case of sending a pre-text data 33, every time a synchronizing pulse 34 generated by a synchronizing signal generating means 30 for main text is generated, a carrier 35 whose phase is inverted by 180 deg. is subjected to 100% amplitude modulation intermitting the transmission in the timing based on the time limit of a synchronizing signal 36 obtained from a power supply synchronizing signal generating means 24 and the result is outputted from an amplitude modulation means 32 to a bus 4. Then a main text data 37 is subjected to phase modulation in matching with a synchronizing signal 34 obtained from a main text synchronizing signal generating means 30 to output the result to the bus 4. Then a reception means 23 detects a synchronizing signal 44 from the pre-text sent by the transmission means 20 to receive the main text. Thus, the synchronizing signal 44 with sufficient accuracy is obtained even from the communication of the high speed main text.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、パスを介して互いに信号を伝送し合う複数の
端末の伝送制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a transmission control method for a plurality of terminals that transmit signals to each other via a path.

従来の技術 発明者等は電文の前文と主文の変調式を変えて衝突を回
避して高速でデータを伝送する方式について第4図、第
6図、第6図及び第7図に示すような方法を提案してい
る。図中、1.2.3はそれぞれ送信手段・受信手段を
備えた端末機であって、一般家庭の交流電力線を兼用し
たパス4に接続されており、パス4上に送信或いはバス
4上に送られた信号を受信している。第6図の1’ 、
 2’ 。
Conventional technology inventors have proposed a system for transmitting data at high speed by changing the modulation formula of the preamble and main text of a message to avoid collisions, as shown in Figures 4, 6, 6, and 7. We are proposing a method. In the figure, 1, 2, and 3 are terminals each equipped with a transmitting means and a receiving means, and are connected to a path 4 that also serves as an AC power line in a general household. Receiving the sent signal. 1' in Figure 6,
2'.

ゴは端末機1.2.3の実際の動作を説明するためのも
のである◎6は、第4図の交流電力線を兼用しているバ
ス4上の商用周波数の電圧波形である0今この商用周波
数の電圧6の半サイクルの前半に搬送波信号が乗ってい
ればデータ0、同じく後半に乗っていればデータ1を表
すものとし、前文3ビツトと主文で1単位の電文を表す
ものとして説明する。端末機1は”000″を端末機2
は@Oo1#を端末機3は”1oO#を前文として送信
しようとする。この場合各端末機はパス4上での信号の
衝突を回避するため、自己が送信しようとするときバス
4上に既に信号が乗っていればこの信号が終了するまで
自己の信号送出を待つよう構成されている。即ち端末機
3は自己の送信手段を使用して“1″という信号を送出
しようとしたが、自己の受信手段がバス4上に乗ってい
る端末機1及び2から送信された1o#という信号を。
◎6 is the voltage waveform of the commercial frequency on the bus 4 which also serves as the AC power line in Figure 4. If the carrier wave signal is in the first half of the half cycle of voltage 6 of the commercial frequency, it represents data 0, and if it is in the second half, it represents data 1, and the 3 bits in the preamble and the main sentence represent one unit of message. do. Terminal 1 sends "000" to terminal 2
Terminal 3 attempts to transmit @Oo1# with ``1oO#'' as a preamble. In this case, in order to avoid signal collision on path 4, each terminal transmits @Oo1# on bus 4. If there is already a signal, the terminal is configured to wait until the end of this signal before sending its own signal.In other words, the terminal 3 tried to send a signal "1" using its own transmission means, but Its receiving means receives the signal 1o# transmitted from the terminals 1 and 2 on the bus 4.

受信しているため、送信することができない0つまり実
際に送信できるのは3′に示すように端末機1及び2の
送信が終ってからになるものであるコ同様に端末機2は
ゼに示すように初めの2ビツト“Oo″は送信できるが
、3ビツト目に“0#を受信したため、−旦送信を中止
する。再度送信を開始するのは端末機1の送信が終了し
てからとなるO また実際に用いられている電文は、第6図のような構成
となっている06はキュリティ信号やその他の信号零、
信号の緊急度を表わす優先コードで2ビツトで表現され
ている07は送信元を示すアドレスで8ビツトで表現さ
れている08は送信先を示すアドレスで8ビツト、9は
データを表わすコードが共通のものかメーカが独自に定
義したものか等を表わす制御コードで2ビツト、1oは
前記した制御コードがメーカ独自のものである場合にそ
のメーカを表すシステムコードで2ビツト、11は自分
の家のコードと隣家のコードとを区別するためのハウス
コードで8ビツト、12はデータ13の長さを表わすコ
ードで2ビツト、13はデータで8〜32ビツト、14
は今送った電文に誤りがあるかどうかをチエツクするた
めのフレームチエツクコードで4ビツトでそれぞれ表現
されている。この優先コード6及び送信元アドレスコー
ド7は電文の前文を、以下の8〜14の各コードは電文
の主文を構成している0これらのうち前文は第6図を用
いて説明したように、同時に複数の端末機が送信を開始
した場合に衝突を回避することができるように振幅変調
で送信するようにしている◎この場合、送信元アドレス
コード7は各端末機1.2.3でそれぞれ異っているた
め、前文送信中に衝突は必ず検知できる0従って前文送
信後に送信される主文に関しては衝突を考慮する必要が
ないため周波数変調・位相変調等の高速でデータ伝送が
できる変調方式が用いられている。
Because it is receiving data, it is not possible to send 0. In other words, it can actually be sent only after terminals 1 and 2 have finished transmitting, as shown in 3'.Similarly, terminal 2 is in 0 As shown, the first two bits "Oo" can be transmitted, but since "0#" is received in the third bit, the transmission is stopped. Transmission is restarted only after terminal 1 finishes transmitting. The actually used telegram has the structure shown in Figure 6. 06 is the security signal and other signals of zero,
07 is the priority code that indicates the urgency of the signal and is expressed as 2 bits. 07 is the address that indicates the source and is expressed as 8 bits. 08 is the address that indicates the destination and is 8 bits. 9 is the common code that indicates the data. 1o is a 2-bit control code that indicates whether the control code is unique to the manufacturer or is uniquely defined by the manufacturer, etc. 1o is a 2-bit system code that represents the manufacturer if the control code is unique to the manufacturer, and 11 is the name of your home. 12 is a 2-bit code that represents the length of data 13, 13 is 8 to 32 bits of data, 14
is a frame check code for checking whether there is an error in the message just sent, each expressed in 4 bits. The priority code 6 and sender address code 7 constitute the preamble of the message, and the following codes 8 to 14 constitute the main text of the message.0 Of these, the preamble is as explained using FIG. In order to avoid collisions when multiple terminals start transmitting at the same time, amplitude modulation is used to transmit. In this case, the source address code 7 is set for each terminal 1, 2, and 3. Therefore, collisions can always be detected during preamble transmission.Therefore, there is no need to consider collisions for the main text sent after the preamble has been sent, so modulation methods that can transmit data at high speed, such as frequency modulation and phase modulation, are It is used.

この場合、各端末機1.2.3は通信に用いる同期信号
をそれぞれパス4の商用周波数から得る構成となってお
りデータ伝送速度や速い主文であっても商用周波数の電
圧に同期させて受信してい、  た。しかし、この場合
交流電力線に接続されている誘導性負荷や容量性負荷に
より電源波形に歪が生じ1通信に用いられる同期信号は
十分な精度が得られなかった@この様子を第7図に示す
◎6は、商用周波数電源の電圧波形であり、16は前記
電圧波形6より得られる同期信号である◎6及び16′
はそれぞれ負荷機器により波形の歪んだ電源波形及び同
期信号である。これから理解できるように、同一の家の
中でも場所により波形の歪み具合が異り、端末機1.2
.3の接続位置によって同期信号の時間位置が異るもの
となる◎ 実際の電源で計測してみるとこの誤差は最大600〜e
ooμ秒になる。さらにデータを送信する端末機から、
受信する端末機までの信号が伝わる遅延時間が最大で約
60μ秒あり、この時間が前記同期信号の誤差時間に加
わることになる。
In this case, each terminal 1, 2, and 3 is configured to obtain the synchronization signal used for communication from the commercial frequency of path 4, so that even if the data transmission speed is high or the main text is high, the terminals 1, 2, and 3 receive the synchronization signal in synchronization with the voltage of the commercial frequency. Was. However, in this case, the power waveform was distorted by the inductive load and capacitive load connected to the AC power line, and the synchronization signal used for 1 communication could not have sufficient accuracy. This situation is shown in Figure 7. ◎6 is the voltage waveform of the commercial frequency power supply, and 16 is the synchronization signal obtained from the voltage waveform 6.◎6 and 16'
are a power supply waveform and a synchronization signal whose waveforms are distorted by the load equipment, respectively. As you can understand, the degree of waveform distortion varies depending on the location even within the same house.
.. The time position of the synchronization signal will differ depending on the connection position of step 3. When measured with an actual power supply, this error will be up to 600~e
It will be ooμ seconds. Furthermore, from the terminal that transmits the data,
The delay time for the signal to travel to the receiving terminal is about 60 microseconds at maximum, and this time is added to the error time of the synchronization signal.

これらの時間誤差はデータ伝送速度の遅い(1oOポー
)前文の通信時には無視できるが、データ伝送速度の速
い(1200ボー)主文の通信時には、電源信号歪によ
る同期信号の誤差は、大きな影響がある。
These time errors can be ignored when communicating the preamble with a slow data transmission rate (1oO baud), but when communicating the main message with a fast data transmission rate (1200 baud), errors in the synchronization signal due to power signal distortion have a large effect. .

例えばデータの変化点の途中から途中までを1ビツトと
して受信してしまったり、1ピツト完全にずれたままデ
ータを解読したりして、受信エラーの原因となるもので
ある◎主文のデータ伝送速度が960oボーとさらに速
い場合には信号の伝送遅延時間も無視できなくなってし
まうものであるO 発明が解決しようとする課題 前記した方式の伝送制御装置では、高速で伝送する主文
の同期信号の精度が十分とれないという解決課題があっ
た。本発明は、この課題を解決するもので、高速である
主文の通信に対しても充分な精度の同期信号を得ること
ができる伝送制御方法を提供するものである。
For example, data may be received as one bit from midway through a change point in the data, or data may be decoded with a complete shift of one pit, causing reception errors.◎Data transmission speed of main text If the speed is even faster than 960o baud, the signal transmission delay time cannot be ignored. Problems to be Solved by the Invention In the transmission control device of the above-mentioned type, the accuracy of the synchronization signal of the main message transmitted at high speed is There was a problem to be solved that it was not possible to obtain sufficient amount of water. The present invention solves this problem and provides a transmission control method that can obtain synchronization signals with sufficient accuracy even for high-speed main message communication.

課題を解決するための手段 本発明は、パスに接続された送信手段及び受信手段を有
する複数の端末機を備え、送信手段より出力される電文
は前文と前文に引続き送信される主文とより成り、前記
前文は主文を受信するための同期信号で位相変調・振幅
位相変調・周波数変調もしくは振幅周波数変調された搬
送波を更に断続して振幅変調をかけて送出し、主文は前
記前文中の同期信号に同期して送出し、受信手段はこの
送信手段が送信した前文中より同期信号を検出して主文
を受信する伝送制御方法とするものである。
Means for Solving the Problems The present invention comprises a plurality of terminals each having a transmitting means and a receiving means connected to a path, and a message outputted from the transmitting means consists of a preamble and a main message sent after the preamble. , the preamble is a synchronization signal for receiving the main text, and a carrier wave that has been subjected to phase modulation, amplitude phase modulation, frequency modulation, or amplitude frequency modulation is further intermittently subjected to amplitude modulation and transmitted, and the main text is the synchronization signal in the preamble. The transmission control method is such that the receiving means detects a synchronization signal from the preamble transmitted by the transmitting means and receives the main sentence.

作用 前記伝送制御方法とすることで、主文の同期信号を充分
な時間精度で得るものである。
Effect: By using the transmission control method described above, the synchronization signal of the main sentence can be obtained with sufficient time accuracy.

実施例 第1図は本発明の伝送制御方法を使用した装置の一実施
例を示すブロック図である。パス4に端末機IJB、1
9が接続されている。それぞれの端末機は同じ構成で、
送信手段20,21.受信手段22.23、電源同期信
号発生手段24.25、データ作成手段26.27とデ
ータ実行手段28゜29より成る。送信手段2oは主文
の同期信号発生手段30、位相変調手段31、振幅変調
手段32よυ成る0前文データ33を送信する時は、主
文の同期信号発生手段3oの発生した同期パルス34が
発生する都度位相が180°反転した搬送波36を電源
同期信号発生手段24よシ得た同期信号3eの時限をも
とにしたタイミングで送信を断続する100%の振幅変
調をかけて振幅変調手段32よシバス4に出力する0次
に主文データ37は主文の同期信号発生手段30よシ得
られる同期信号34に合わせて位相変調をかけてパス4
に出力される〇なお主文送信中は振幅変調手段32は信
号の断続を続の状態にし、送信終了時に断にする。こう
して送られてきた信号を受信する端末機19の受信手段
23は、振幅変調復調手段38、位相変調復調手段39
と同期信号検出手段4oとより成り。
Embodiment FIG. 1 is a block diagram showing an embodiment of a device using the transmission control method of the present invention. Terminal IJB to path 4, 1
9 is connected. Each terminal has the same configuration,
Transmission means 20, 21. It consists of receiving means 22.23, power synchronization signal generation means 24.25, data creation means 26.27, and data execution means 28.29. When the transmitting means 2o transmits the preamble data 33 consisting of the main sentence synchronization signal generation means 30, the phase modulation means 31, and the amplitude modulation means 32, a synchronization pulse 34 generated by the main sentence synchronization signal generation means 3o is generated. The carrier wave 36, whose phase is inverted by 180° each time, is transmitted to the power synchronization signal generation means 24 by applying 100% amplitude modulation to intermittent transmission at a timing based on the time limit of the synchronization signal 3e obtained by the power supply synchronization signal generation means 24. The zero-order main sentence data 37 output to path 4 is phase-modulated in accordance with the synchronization signal 34 obtained from the main sentence synchronization signal generation means 30.
The amplitude modulating means 32 keeps the signal on and off while the main text is being transmitted, and cuts it off when the transmission ends. The receiving means 23 of the terminal device 19 that receives the signals sent in this way includes an amplitude modulation demodulation means 38 and a phase modulation demodulation means 39.
and a synchronization signal detection means 4o.

前文データ受信時は、振幅変調復調手段38で前文デー
タ41を電源同期信号42の時限をもとにしたタイミン
グに合わせて復調すると同時に、位相変調復調手段39
で搬送波の位相を検出し、同期信号検出手段4oで位相
の変化点を検出して引き続いて送信されてくる主文の同
期信号を得ておく0ただし搬送波信号がパス4に送られ
ていない時は、位相変調復調手段39の出力は定まらな
いので、振幅復調手段38より、搬送波が送られている
かどうかの検知信号43を入力し、搬送波のある時のみ
同期信号を見つけるようにして誤まった主文の同期信号
を作成することを防ぐ。主文データは、同期信号検出手
段40が前文受信中に得た同期信号44に合わせて位相
変調復調手段39で主文データ46を復調する◇ 第2図は本発明の伝送制御方法の一実施例を示す概念図
である。6は商用周波数電源の電圧波形、16は電源同
期信号発生手段24.25の出力36゜42の電源同期
信号波形である0前文データ41は電源同期信号16を
基準にした時限で振幅変調で送信され、引続き主文45
が位相変調で送信されている048以下は前文の最後の
ビットと主文部分を時間的に拡大した図である。48は
電源同期信号波形15を拡大したものである。49は、
パス4上に重畳されてる信号波形を示した図である。
When receiving the preamble data, the amplitude modulation demodulation means 38 demodulates the preamble data 41 in accordance with the timing based on the time limit of the power synchronization signal 42, and at the same time, the phase modulation demodulation means 39
The phase of the carrier wave is detected by the synchronization signal detecting means 4o, and the phase change point is detected by the synchronization signal detection means 4o to obtain the synchronization signal of the main text that is subsequently transmitted.0However, when the carrier wave signal is not sent to the path 4, Since the output of the phase modulation demodulation means 39 is not fixed, the detection signal 43 indicating whether or not a carrier wave is being sent is inputted from the amplitude demodulation means 38, and a synchronization signal is found only when a carrier wave is present. prevents the creation of synchronization signals. The main text data 46 is demodulated by the phase modulation demodulation means 39 in accordance with the synchronization signal 44 obtained by the synchronization signal detection means 40 while receiving the preamble. FIG. 6 is the voltage waveform of the commercial frequency power supply, 16 is the power synchronization signal waveform of the output 36° 42 of the power supply synchronization signal generating means 24.25. 0 Preamble Data 41 is transmitted by amplitude modulation with a time limit based on the power supply synchronization signal 16. and continues with main sentence 45
048 and below are diagrams in which the last bit of the preamble and the main sentence are temporally expanded. 48 is an enlarged version of the power synchronization signal waveform 15. 49 is
3 is a diagram showing a signal waveform superimposed on path 4. FIG.

まず前文部分を受信する時の各部の波形について説明す
る。
First, the waveforms of each part when receiving the preamble part will be explained.

前文は搬送波の送出、非送出による振幅変調であるが、
送出される搬送波はさらに位相変調手段31で主文の同
期信号34に合わせて位相変調されている060は振幅
変調復調手段38で搬送波の有無による振幅“変調とし
て復調した出力43の出力波形である0データは電圧波
形60半サイクルの前半の位相に搬送波を受信すると“
0#、同じく半サイクルの後半に搬送波を受信すると′
1#と定義して解釈される。この図に示した例では、電
源同期信号パルス480間隔の前半で出力波形60がO
NになっているのでデータIll Q Jlである0振
幅変調復調手段38は前文復調データ41として″0”
を出力する。61は位相変調復調手段39の出力波形で
ある。この図に示した例では出力波形50がONの期間
の%ごとに位相が0→−π→0へと反転している。同期
信号検出手段4oは、位相の変化するタイミングを検出
し、位相の変化する周期ごとにパルス62を出力し続け
る・このパルスは後に送られてくる主文を受信するため
のもので、主文は前文中で搬送波の位相の変化したタイ
ミングを基準にして変化周期ごとに1ビツトずつ送られ
てくる約束になっている・なお搬送波の送られて来ない
時、すなわち振幅変調復調手段38の出力波形60がO
FFになっている期間は、送信端末より位相情報も送ら
れて来ないので、ON期間に検出した位相変化タイミン
グ情報を保持しておく。
The preamble refers to amplitude modulation by transmitting and not transmitting a carrier wave,
The transmitted carrier wave is further phase modulated by the phase modulation means 31 in accordance with the main synchronization signal 34. 060 is the output waveform of the output 43 demodulated by the amplitude modulation demodulation means 38 as amplitude modulation depending on the presence or absence of the carrier wave. When the carrier wave is received in the first half phase of 60 half cycles of the voltage waveform, the data is “
0#, similarly when the carrier wave is received in the latter half of the half cycle'
It is defined and interpreted as 1#. In the example shown in this figure, the output waveform 60 is O during the first half of the power synchronization signal pulse 480 interval.
Since it is N, the 0 amplitude modulation demodulation means 38 which is data Ill Q Jl outputs “0” as preamble demodulation data 41.
Output. 61 is the output waveform of the phase modulation demodulation means 39. In the example shown in this figure, the phase of the output waveform 50 is inverted from 0 to -π to 0 every % of the ON period. The synchronization signal detection means 4o detects the timing of the phase change and continues to output the pulse 62 for each cycle of the phase change. This pulse is for receiving the main text sent later, and the main text is the previous one. In the text, it is promised that one bit will be sent every change period based on the timing at which the phase of the carrier wave changes.When the carrier wave is not sent, that is, the output waveform 60 of the amplitude modulation demodulation means 38 is O
During the FF period, phase information is not sent from the transmitting terminal, so the phase change timing information detected during the ON period is held.

次に主文を受信する時の各部のはたらきを説明する・ 主文受信中は搬送波が連続して送られて来るので、振幅
変調復調手段38の出力波形6oはONのままである。
Next, the functions of each part when receiving the main text will be explained. Since the carrier wave is continuously sent while receiving the main text, the output waveform 6o of the amplitude modulation demodulation means 38 remains ON.

位相変調復調手段の出力波形51を同期信号検出手段4
0のパルス62ごとに1つの区切りとして主文データを
読み込む。例えば位相−πを“1″9位相0を”0″と
して定義する0以上のように、主文の受信時は、各ビッ
トの区切りを電源波形の歪で誤差を生じる電源同期信号
48を用いるのではなく、送信端末より送信されて来た
信号より抽出した同期信号を用いておこなうので、電源
波形歪の影響を受けない精度のよい受信ができる。また
送信端末から受信端末まで信号が伝わる遅延時間は、前
文、主文とも同じであるので信号遅延時間の誤差は相殺
される。
The output waveform 51 of the phase modulation demodulation means is detected by the synchronization signal detection means 4.
The main sentence data is read as one break every 62 pulses of 0. For example, when receiving the main text, such as 0 or more where phase -π is defined as "1" and phase 0 as "0", the power supply synchronization signal 48, which causes errors due to distortion of the power supply waveform, is used to separate each bit. Instead, since the synchronization signal extracted from the signal transmitted from the transmitting terminal is used, highly accurate reception is possible without being affected by power waveform distortion. Furthermore, since the delay time for a signal to travel from the transmitting terminal to the receiving terminal is the same for both the preamble and the main text, the error in signal delay time is canceled out.

次に第3図を使って複数の端末機が同時に送信を開始し
た状態について述べる◎63は商用周波数の電源電圧で
ある。第4図に示した2台の端末機1.2がいまそれぞ
れ64.55のようにデータを送信しようとしている・
データは、前文と主文より構成され、前文は商用電源6
30半サイク〃の前半に搬送波が送出されるか、後半に
搬送波が送出されるかによってそれぞれ“0−と′″1
′が定義される。前半の”0”6eを受信した端末機2
は後半の″1”67は送信しない。すなわち実際に各端
末機が送信する様子は68.59のようになる・前文で
”001″を送信しようとした端末機2は、データ“0
″66を受信した時点で送信をやめ、もう一方の端末機
1の送信がすべて完了するのを待って再び最初から送信
する。結局、実際に信号伝送線に送信された信号は60
のようになる。ここで前文の搬送波は、主文の同期信号
で変調されているので受信中の端末機はそこから同期信
号を検出するが、始めの2ピツ)61.62は、2台の
端末機1.2からの送信信号が重なって混変調されてい
るので、ここから端末機1の同期信号だけを分離して検
出することは不可能である・しかし前文最後のビット6
3は、端末機1だけが送信しているので、ここから、同
期信号を得れば、端末機1が送信する主文64を正しく
受信することができる0各端末機には必ず違う値が割り
当てられるように設定されているので、前文の全ビット
に信号が重なることはないO例えば″000”。
Next, using FIG. 3, we will describe a state in which a plurality of terminals start transmitting at the same time. ◎63 is the power supply voltage of the commercial frequency. The two terminals 1.2 shown in Figure 4 are now each trying to send data as 64.55.
The data consists of a preamble and a main text, and the preamble is commercial power supply 6
“0-” and “1” depending on whether the carrier wave is sent out in the first half or the second half of the 30 half cycle.
′ is defined. Terminal 2 that received the first half of “0”6e
does not transmit the latter half "1" 67. In other words, the actual transmission by each terminal is as shown in 68.59. Terminal 2, which tried to transmit "001" in the preamble, sends data "001".
When it receives ``66, it stops transmitting, waits for the other terminal 1 to complete its transmission, and then starts transmitting again from the beginning.In the end, the signal actually sent to the signal transmission line is 60.
become that way. Here, the carrier wave in the preamble is modulated by the synchronization signal in the main text, so the receiving terminal detects the synchronization signal from there, but the first two terminals (61.62) are the two terminals (1.2). Since the transmitted signals from the terminals are overlapped and cross-modulated, it is impossible to separate and detect only the synchronization signal of terminal 1. However, the last bit 6 of the preamble
3 is transmitted only by terminal 1, so if you obtain a synchronization signal from this, you can correctly receive the main text 64 transmitted by terminal 1. 0 A different value is always assigned to each terminal. For example, "000", the signals will not overlap with all the bits in the preamble.

と“1oo”では、最初のビットから“1″を出そうと
した端末機は送信しないので、信号が重なるビットは無
く、″000″と“010”では2ビツト目から信号の
重なシは無くなる。このようにどのような組合わせでも
、少なくとも前文の最後のビットには信号の重なシは無
く、主文の同期信号を前文の最後のビットより得るよう
にすれば常に正しい同期信号が得られる。なお上記実施
例では位相変調について述べてきたが周波数変調、振幅
位相変調もしくは振幅周波数変調でもよい。
With "1oo" and "1oo", the terminal that tries to output "1" from the first bit does not transmit, so there is no bit where the signals overlap, and with "000" and "010", there is no overlapping signal from the second bit. It disappears. In this way, in any combination, there is no overlapping signal at least in the last bit of the preamble, and if the synchronization signal of the main sentence is obtained from the last bit of the preamble, a correct synchronization signal can always be obtained. Although phase modulation has been described in the above embodiments, frequency modulation, amplitude phase modulation, or amplitude frequency modulation may also be used.

発明の効果 以上述べてきたように、本発明は、パスに接続された送
信手段及び受信手段を有する複数の端末機を備え、送信
手段よシ出力さ糺る電文は前文に引続き送信される主文
とよ構成9、前文は主文を受信するための同期信号で位
相変調・振幅位相変調・周波数変調もしくは振幅周波数
変調された搬送波を更に断続して振幅変調をかけて送出
し、主文は位相変調・振幅位相変調・周波数変調もしく
は振幅周波数変調で前記前文中の同期信号に同期して送
出し、受信手段はこの送信手段が送信した前文中より同
期信号を検出して主文を受信する構成として主文の同期
信号を充分な時間精度で得ることのできる伝送制御方法
としたものである。
Effects of the Invention As described above, the present invention is provided with a plurality of terminals each having a transmitting means and a receiving means connected to a path, and the message outputted by the transmitting means is the main message transmitted following the preamble. Toyo configuration 9, the preamble is a synchronization signal for receiving the main text, and the carrier wave that has been subjected to phase modulation, amplitude phase modulation, frequency modulation, or amplitude frequency modulation is further intermittently subjected to amplitude modulation, and sent out. The main sentence is transmitted in synchronization with the synchronizing signal in the preamble by amplitude phase modulation, frequency modulation, or amplitude frequency modulation, and the receiving means detects the synchronizing signal from the preamble transmitted by the transmitting means to receive the main sentence. This is a transmission control method that allows synchronization signals to be obtained with sufficient time accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の伝送制御方法を使用した装置の構成の
一実施例を示すブロック図、第2図は本発明の伝送制御
方法の一実施例を示す概念図、第3図は複数の端末機が
同時に送信を開始した場合の動作を説明する図、第4図
は伝送制御装置の接続を示す図、第6図はデータの送信
状態を示す図、第6図は電文の構成図、第7図は商用電
源の波形歪による電源同期信号の時間ずれを説明する図
である。 1.2.3・・・・・・端末機、4・・・・・・バス、
5・・・・・・商用周波数電源の電圧波形、16・・・
・・・電源同期信号、20.21・・・・・・受信手段
、22.23・・・・・・送信手段、31・・・・・・
位相変調手段、32・・・・・・振幅変調手段、38・
・・・・・振幅変調復調手段、39・・・・・・位相変
調復調手段、4o・・・・・・同期信号検出手段O第 
2 口 第 3 図 第 4rgI 第 5 図 第7図 り′
FIG. 1 is a block diagram showing an embodiment of the configuration of a device using the transmission control method of the present invention, FIG. 2 is a conceptual diagram showing an embodiment of the transmission control method of the present invention, and FIG. A diagram explaining the operation when the terminals start transmitting at the same time, FIG. 4 is a diagram showing the connection of the transmission control device, FIG. 6 is a diagram showing the data transmission status, FIG. 6 is a diagram of the structure of the message, FIG. 7 is a diagram illustrating a time shift in a power synchronization signal due to waveform distortion of a commercial power source. 1.2.3...terminal, 4...bus,
5... Voltage waveform of commercial frequency power supply, 16...
...power synchronization signal, 20.21...receiving means, 22.23...transmission means, 31...
Phase modulation means, 32... Amplitude modulation means, 38.
... Amplitude modulation demodulation means, 39 ... Phase modulation demodulation means, 4o ... Synchronization signal detection means O-th
2nd part 3rd figure 4rgI 5th figure 7th diagram'

Claims (2)

【特許請求の範囲】[Claims] (1)パスに接続された送信手段及び受信手段を有する
複数の端末機を備え、送信手段より出力される電文は前
文と、前文に引き続き送信される主文とより成り、前記
前文は、前記主文を受信するための同期信号で位相変調
、振幅位相変調、周波数変調もしくは振幅周波数変調さ
れた搬送波を更に断続して振幅変調をかけて送出し、前
記主文は位相変調、振幅位相変調、周波数変調もしくは
振幅周波数変調で前記前文中の同期信号に同期して送出
し、受信手段はこの送信手段が送信した前文中より同期
信号を検出して主文を受信する伝送制御方法。
(1) Equipped with a plurality of terminals having transmitting means and receiving means connected to a path, the message outputted from the transmitting means consists of a preamble and a main text that is transmitted following the preamble, and the preamble is the main text. A carrier wave that has been subjected to phase modulation, amplitude phase modulation, frequency modulation, or amplitude frequency modulation is further intermittently subjected to amplitude modulation with a synchronization signal for receiving. A transmission control method in which the synchronization signal in the preamble is transmitted by amplitude frequency modulation in synchronization with the synchronization signal in the preamble, and the receiving means detects the synchronization signal from the preamble transmitted by the transmitting means and receives the main sentence.
(2)主文の受信は、前文の断続した振幅変調信号の最
後のビットより得られる同期信号によりおこなう請求項
1記載の伝送制御方法。
(2) The transmission control method according to claim 1, wherein the main sentence is received using a synchronization signal obtained from the last bit of the intermittent amplitude modulation signal of the preamble.
JP63089841A 1988-04-12 1988-04-12 Transmission control method Pending JPH01261051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089841A JPH01261051A (en) 1988-04-12 1988-04-12 Transmission control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089841A JPH01261051A (en) 1988-04-12 1988-04-12 Transmission control method

Publications (1)

Publication Number Publication Date
JPH01261051A true JPH01261051A (en) 1989-10-18

Family

ID=13981987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089841A Pending JPH01261051A (en) 1988-04-12 1988-04-12 Transmission control method

Country Status (1)

Country Link
JP (1) JPH01261051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160869A (en) * 2015-08-31 2015-12-16 浙江工业大学 Virtual-bus-transit-lane-system-based bus transit punctuality rate control method and system thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160869A (en) * 2015-08-31 2015-12-16 浙江工业大学 Virtual-bus-transit-lane-system-based bus transit punctuality rate control method and system thereof

Similar Documents

Publication Publication Date Title
CN103716270B (en) A kind of data sending, receiving method and device
CN102333054B (en) Data sending and receiving method and device
KR100985188B1 (en) Pulse modulation method
JPH01261051A (en) Transmission control method
US7039133B2 (en) Data carrier having means for synchronization with a received data stream
JPH01136430A (en) Communication equipment
CN111034138B (en) Small and seamless carrier detector
JPH10107859A (en) Data transmission method, write/read control unit and data carrier
JP3084777B2 (en) Power line communication system and power line communication device
JPH08237324A (en) Method and equipment to detect radio digital network and digital carrier wave
US4255813A (en) Dicode transmission system
JPS5847898B2 (en) Demodulation circuit in biphasic data transmission system
JPS5911056A (en) Start-stop synchronism type communication system
JPH0817390B2 (en) Transceiver cable test circuit
JPS6363241A (en) Data serial transmission system
RU2192711C2 (en) Cycle-by-cycle synchronization device
JPS63158934A (en) Start bit detection circuit
JP2679648B2 (en) Transmission system
JPS6017186B2 (en) Synchronization establishment method
JPH0193940A (en) Pcm subdata transmission system
JPH0142197B2 (en)
JP2005295679A (en) Motor driving apparatus
JPH0443457B2 (en)
JPH0374932A (en) Biphase code signal demodulation circuit
JP2005341763A (en) Motor drive