JPH01260058A - Electrically conductive fiber - Google Patents

Electrically conductive fiber

Info

Publication number
JPH01260058A
JPH01260058A JP8343788A JP8343788A JPH01260058A JP H01260058 A JPH01260058 A JP H01260058A JP 8343788 A JP8343788 A JP 8343788A JP 8343788 A JP8343788 A JP 8343788A JP H01260058 A JPH01260058 A JP H01260058A
Authority
JP
Japan
Prior art keywords
conductive
electrically conductive
fiber
fibers
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8343788A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nakayama
和幸 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8343788A priority Critical patent/JPH01260058A/en
Publication of JPH01260058A publication Critical patent/JPH01260058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electrically conductive fiber having durability against friction and washing, by forming an adhesive coating film on the surface of a thermoplastic synthetic fiber and subsequently forming a resin layer containing mica coated with an electrically conductive metal and/or an electrically conductive metal compound. CONSTITUTION:An adhesive coating film comprising a polyepoxide compound and a blocked polyisocyanate is formed on the surface of a thermoplastic synthetic fiber such as polyester or polyamide fiber. On the surface is subsequently further formed a resin layer comprising a mixture of a phenolic resin with natural rubber or NBR containing mica coated with an electrically conductive metal such as nickel, cobalt, copper or silver and/or an electrically conductive metal compound such as tin oxide, antimony oxide or indium oxide to provide an electrically conductive fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、無色ないしは白色〜淡色の導電性繊維に関し
、更に詳しくは、熱可塑性合成繊維を基体とし、その表
面に導電性物質を含有する樹脂層を形成せしめた導電性
繊維に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a colorless or white to light-colored conductive fiber, and more specifically, a conductive fiber having a thermoplastic synthetic fiber as a base and containing a conductive substance on the surface thereof. The present invention relates to conductive fibers having a resin layer formed thereon.

(従来の技術) ポリエステル繊維、ポリアミド繊維等の熱可塑性合成繊
維は、一般に衣料用や産業用に大量に用いられているが
、疎水性であり、10’Ω/ cm以上の電気抵抗を有
する絶縁体であるため、特に低湿度で使用される際に、
摩擦を受けると静電気を帯びるという欠点がある。この
帯電現象により、繊維製品の使用時に埃が付着し易く、
又静電気の放電により人体に不快感を与えるばかりでな
(、ガソリンスタンド等の危険物を取扱う場所では、爆
発火災等の重大事故をもたらすことになる。
(Prior art) Thermoplastic synthetic fibers such as polyester fibers and polyamide fibers are generally used in large quantities for clothing and industrial purposes, but they are hydrophobic and have an electrical resistance of 10'Ω/cm or more. body, especially when used in low humidity.
It has the disadvantage that it becomes charged with static electricity when subjected to friction. Due to this charging phenomenon, dust tends to adhere to textile products when they are used.
In addition, the discharge of static electricity not only causes discomfort to the human body, but also causes serious accidents such as explosions and fires in places such as gas stations where hazardous materials are handled.

疎水性繊維の帯電による問題を解消する方法の一つとし
て、疎水性繊維と共に少量の金属繊維を混用する方法が
ある。この方法は、細デニールの金属繊維を必要とし、
金属繊維が高価であり、しかも異質の金属繊維が加工性
や製品の品質を低下させると言う問題がある。
One method for solving the problem caused by electrostatic charge on hydrophobic fibers is to mix a small amount of metal fibers with hydrophobic fibers. This method requires fine denier metal fibers,
There are problems in that metal fibers are expensive and, moreover, foreign metal fibers degrade processability and product quality.

一方、金属繊維と同様の目的に用いられる導電性繊維と
して、各種導電性微粒子を混合した繊維が知られている
。例えば溶融可能な合成重合体中に、酸化第2錫で表面
をコーティングした酸化チタン微粒子を分散セしめた制
電性合成重合体組成物からなる繊維(特開昭58−39
175号公報)、導電性金属酸化物の皮膜を有する無機
粒子を含有する導電性熱可塑性重合体を芯成分とした導
電性複合繊維(特開昭61−174469号公報)、酸
化錫で表面をコーティングした酸化チタン微粒子及び/
又は酸化錫微粒子を含有する導電性複合繊維(特開昭5
6−169816号公報)などがそれである。これらの
導電性繊維は、いずれも非導電性の合成重合体に導電性
微粒子を混合分散させて溶融紡糸することにより得られ
るものであるが、十分な導電性を発揮させるためには、
導電性微粒子を高濃度に分散含有させ、導電性微粒子間
の距離を接近させる必要がある。しかしながら、合成重
合体の導電性微粒子濃度が高くなると、溶融紡糸時にノ
ズル詰まりが起こり易くなり、可紡性が悪化し、紡糸パ
ックや口金等の解体清掃の頻度が増して生産性が低下す
るほか、強度が低くて延伸工程や後の加工工程で毛羽発
生や断糸等のトラブルを起こし易く、さらに導電性重合
体の展延性が劣るために、導電性の層が切断して導電性
性能が低下し、高い導電性を得にくいといった問題があ
る。
On the other hand, fibers mixed with various conductive fine particles are known as conductive fibers used for the same purpose as metal fibers. For example, fibers made of an antistatic synthetic polymer composition in which fine titanium oxide particles whose surface is coated with tin oxide are dispersed in a meltable synthetic polymer (Japanese Patent Laid-Open No. 58-39
No. 175), conductive composite fibers whose core component is a conductive thermoplastic polymer containing inorganic particles having a conductive metal oxide film (Japanese Patent Application Laid-open No. 174469/1983), whose surface is coated with tin oxide. Coated titanium oxide fine particles and/or
Or conductive composite fiber containing tin oxide fine particles (Japanese Patent Application Laid-open No. 5
6-169816). All of these conductive fibers are obtained by melt-spinning a mixture of conductive fine particles mixed and dispersed in a non-conductive synthetic polymer, but in order to exhibit sufficient conductivity,
It is necessary to disperse and contain conductive fine particles at a high concentration and to shorten the distance between the conductive fine particles. However, when the concentration of conductive fine particles in synthetic polymers increases, nozzle clogging becomes more likely to occur during melt spinning, deteriorating spinnability, increasing the frequency of disassembly and cleaning of spinning packs and nozzles, and reducing productivity. , its strength is low, and it tends to cause problems such as fuzzing and yarn breakage during the drawing process and subsequent processing steps.Furthermore, because the conductive polymer has poor malleability, the conductive layer may break, resulting in poor conductive performance. There is a problem that it is difficult to obtain high conductivity.

また、上述の問題がない導電性繊維として、通常の合成
繊維の表面に導電性物質の微粒子を分散含有した樹脂液
を塗布して導電性樹脂層を形成した繊維が知られている
Furthermore, as conductive fibers that do not have the above-mentioned problems, there are known fibers in which a conductive resin layer is formed by applying a resin liquid containing fine particles of a conductive substance dispersed on the surface of an ordinary synthetic fiber.

(発明が解決しようとする課題) しかし、このような導電性樹脂層を表面に形成した繊維
は、導電性微粒子を混合分散させた導電性繊維に比較し
て、屈曲や摩擦により導電性樹脂層が剥離、脱落し易く
、特に、導電性を向上させるために導電性粒子を60〜
70重量%といったように多量に添加すると、導電性樹
脂層の被膜強度が著しく低下する。その結果、屈曲、摩
擦、更には洗濯に対する導電耐久性が悪化するという問
題が生ずる。
(Problem to be Solved by the Invention) However, compared to conductive fibers in which conductive fine particles are mixed and dispersed, fibers with such a conductive resin layer formed on the surface do not easily bend or rub against the conductive resin layer. are likely to peel off and fall off, and in particular, to improve conductivity, conductive particles are added to
When added in a large amount, such as 70% by weight, the film strength of the conductive resin layer decreases significantly. As a result, a problem arises in that conductive durability against bending, friction, and even washing deteriorates.

本発明の目的は、上記問題点を解消し、表面に導電性樹
脂層を形成した熱可塑性合成繊維において、導電性樹脂
層の剥離、脱落を防止し、導電耐久性に優れた無色(白
色〜淡色)の導電性繊維を一提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, to prevent peeling and falling off of the conductive resin layer in thermoplastic synthetic fibers with a conductive resin layer formed on the surface, and to provide colorless (white to white) fibers with excellent conductive durability. An object of the present invention is to provide a light-colored conductive fiber.

(課題を解決するための手段) 本発明者は、上記目的を達成すべく種々検討を重ねた結
果、熱可塑性合成繊維の表面に特定の接着剤被膜を形成
し、更にその上に特定の導電性微粉末を含有する導電性
樹脂層を形成することによって導電性樹脂層の脱落を防
止し、耐久性を著しく向上させうることを見出し本発明
に到達した。
(Means for Solving the Problems) As a result of various studies to achieve the above object, the present inventor formed a specific adhesive film on the surface of thermoplastic synthetic fibers, and further applied a specific conductive film on the surface of thermoplastic synthetic fibers. The inventors have discovered that by forming a conductive resin layer containing a conductive fine powder, the conductive resin layer can be prevented from falling off and its durability can be significantly improved, and the present invention has been achieved.

即ち、本発明は、熱可塑性合成繊維表面に、ポリエポキ
シド化合物(A)とブロックドポリイソシアネート化合
物(B)とを含む接着剤被膜を形成し、更にその上に、
導電性金属及び/又は導電性金属酸化物で表面をコーテ
ィングしたマイカ微粉末を含有する樹脂層を形成したこ
とを特徴とする導電性繊維である。
That is, in the present invention, an adhesive film containing a polyepoxide compound (A) and a blocked polyisocyanate compound (B) is formed on the surface of a thermoplastic synthetic fiber, and further, on the adhesive film,
This is a conductive fiber characterized by forming a resin layer containing fine mica powder whose surface is coated with a conductive metal and/or a conductive metal oxide.

本発明における熱可塑性合成繊維としては、ポリエチレ
ンテレフタレート、ポリブチレンテレフタレート、ポリ
エチレンナフタレートのような芳香族又はナフタレン環
含有線状ポリエステルからなる繊維、ナイロン6、ナイ
ロン66等の脂肪族ポリアミドからなる繊維、(P−フ
ェニレンテレフタルアミド)、ポリ(P−フェニレン−
3,4−ジフェニルエーテルテレフタルアミド)等の芳
香族ポリアミドからなる繊維などを挙げることができる
。また、繊維形態は、長繊維、短繊維のいずれでもよく
、断面形状は、異形、中空でもよい。
The thermoplastic synthetic fibers in the present invention include fibers made of aromatic or naphthalene ring-containing linear polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; fibers made of aliphatic polyamides such as nylon 6 and nylon 66; (P-phenylene terephthalamide), poly(P-phenylene-
Examples include fibers made of aromatic polyamides such as 3,4-diphenyl ether terephthalamide). Further, the fiber form may be long fibers or short fibers, and the cross-sectional shape may be irregular or hollow.

更に薬品処理、物理的な表面処理(プラズマ処理等)に
よって繊維表面が粗面化されていてもよい。
Furthermore, the fiber surface may be roughened by chemical treatment or physical surface treatment (plasma treatment, etc.).

熱可塑性合成繊維表面に接着剤被膜を形成するには、ポ
リエポキシド化合物(A)とブロックドポリイソシアネ
ート化合物(B)とを含む乳化液あるいは溶液のような
前処理液を、従来公知の漫漬搾液法、スプレー法、塗布
法等によって繊維表面に付与し、次いで乾燥、ベーキン
グする方法が用いられる。この際、前処理液の付与は、
未延伸糸、延伸糸、紡績糸、捲縮加工糸、織編物、不織
布等任意の形の繊維に行うことができる。本発明におい
て用いられる接着剤被膜は、ポリエポキシド化合物(A
)とブロックドポリイソシアネート化合物(B)との両
方を含んでいることが必要であり、いずれか一方のみで
は十分な耐久性が得られない。本発明において用いられ
るポリエポキシド化合物(A)は1分子中に少なくとも
2個以上のエポキシ基を化合物100g当り062g当
呈以上で有する化合物であり、このようなポリエポキシ
ド化合物としては、エチレングリコール、グリセロール
、ソルビトール、ペンタエリスリトール、ポリエチレン
グリコール等の多価アルコール類とエピクロルヒドリン
の如きハロゲン含有エポキシド類との反応生成物、レゾ
ルシン、ビス(4−ヒドロキシフェニル)ジメチルメタ
ン、フェノール、ホルムアルデヒド樹脂、レゾルシン・
ホルムアルデヒド樹脂等の多価フェノール類と前記ハロ
ゲン含有エポキシド類との反応生成物、過酢酸又は過酸
化水素等で不飽和結合部を酸化して得られるポリエポキ
シド化合物、即ち、3.4−エポキシシクロヘキセンエ
ポキシド、3,4−エポキシシクロヘキシルメチル−3
,4−エポキシシクロヘキセンカルボキシレート、ビス
(3,4−エポキシ−6−メチル−シクロヘキシメチル
)アジペートなどを挙げることができる。これらの内、
特に多価アルコールとエピクロルヒドリンとの反応生成
物、即ち多価アルコールのポリグリシジルエーテル化合
物が優れた性能を発現するので好ましい。
In order to form an adhesive film on the surface of thermoplastic synthetic fibers, a pretreatment liquid such as an emulsion or solution containing a polyepoxide compound (A) and a blocked polyisocyanate compound (B) is subjected to a conventionally known manzuke-squeezing process. A method is used in which it is applied to the fiber surface by a liquid method, a spray method, a coating method, etc., followed by drying and baking. At this time, the application of pretreatment liquid is
The treatment can be applied to fibers in any form, such as undrawn yarn, drawn yarn, spun yarn, crimped yarn, woven or knitted fabric, or nonwoven fabric. The adhesive coating used in the present invention is made of a polyepoxide compound (A
) and the blocked polyisocyanate compound (B), and sufficient durability cannot be obtained with either one alone. The polyepoxide compound (A) used in the present invention is a compound having at least two epoxy groups in one molecule in an amount of 0.62 g or more per 100 g of the compound, and examples of such polyepoxide compounds include ethylene glycol, glycerol, and sorbitol. , pentaerythritol, reaction products of polyhydric alcohols such as polyethylene glycol and halogen-containing epoxides such as epichlorohydrin, resorcinol, bis(4-hydroxyphenyl)dimethylmethane, phenol, formaldehyde resin, resorcinol.
A reaction product of polyhydric phenols such as formaldehyde resin and the above-mentioned halogen-containing epoxides, a polyepoxide compound obtained by oxidizing the unsaturated bond with peracetic acid or hydrogen peroxide, i.e., 3,4-epoxycyclohexene epoxide , 3,4-epoxycyclohexylmethyl-3
, 4-epoxycyclohexenecarboxylate, bis(3,4-epoxy-6-methyl-cyclohexymethyl)adipate, and the like. Among these,
In particular, reaction products of polyhydric alcohols and epichlorohydrin, ie, polyglycidyl ether compounds of polyhydric alcohols, are preferred because they exhibit excellent performance.

一方、ブロックドポリイソシアネート化合物(B)はポ
リイソシアネート化合物とブロック化剤との付加化合物
であり、加熱によりブロック成分が遊離して活性なポリ
イソシアネート化合物を生ぜしめるものである。ポリイ
ソシアネート化合物としては、例えばトリレンジイソシ
アネート、メタフェニレンジイソシアネート、ジフェニ
ルメタンジイソシアネート、ヘキサメチレンジイソシア
ネート、ポリメチレンポリフェニルイソシアネート、ト
リフェニルメタントリイソシアネート等のポリイソシア
ネート、或いはこれらのポリイソシアネートと、トリメ
チロールプロパン、ペンタノールIJ )−ル等の活性
水素原子を2個以上有する化合物とを、NC010H>
1となるモル比で反応させて得られる末端NCO基含有
のポリアルキレングリコールアダクトポリイソシアネー
トが挙げられる。特にトリレンジイソシアネート、ジフ
ェニルメタンジイソシアネート、ポリメチレンポリフェ
ニルイソシアネートの如き芳香族ポリイソシアネートが
優れた性能を発現するので好ましい。
On the other hand, the blocked polyisocyanate compound (B) is an addition compound of a polyisocyanate compound and a blocking agent, and the blocking component is liberated by heating to produce an active polyisocyanate compound. Examples of the polyisocyanate compound include polyisocyanates such as tolylene diisocyanate, metaphenylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, polymethylene polyphenylisocyanate, and triphenylmethane triisocyanate, or these polyisocyanates together with trimethylolpropane and pen. NC010H>
Examples include terminal NCO group-containing polyalkylene glycol adduct polyisocyanates obtained by reacting at a molar ratio of 1. In particular, aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenylisocyanate are preferred because they exhibit excellent performance.

ブロック化剤としては、例えば、フェノール、チオフェ
ノール、クレゾール、レゾルシノール等のフェノール類
、t−ブタノール、L−ペンタノール等の第3級アルコ
ール類、ジフェニルアミン、キシリジン等の芳香族第2
級アミン類、フタル酸イミド等のイミド類、カプロラク
タム、バレロラクタム等のラクタム類、アセトキシム、
メチルエチルケントンオキシム、シクロヘキサンオキシ
ム等のオキシム類及び酸性亜流酸ソーダがある。
Examples of blocking agents include phenols such as phenol, thiophenol, cresol, and resorcinol, tertiary alcohols such as t-butanol and L-pentanol, and aromatic secondary alcohols such as diphenylamine and xylidine.
amines, imides such as phthalic acid imide, lactams such as caprolactam and valerolactam, acetoxime,
These include oximes such as methyl ethyl kentone oxime and cyclohexane oxime, and acidic sodium sulfite.

これらのポリエポキシド化合物(A)及びブロックドポ
リイソシアネート化合物(B)は、そのまま、あるいは
必要に応じて少量の溶媒に溶解して、公知の乳化剤、例
えばアルキルベンゼンスルホン酸ソーダ、ジオクチルス
ルホサクシネートNa塩、ノニルフェノールエチレンオ
キサイド付加物等を用いて乳化又は溶解し、水等の希釈
剤で希釈して、前処理液とする。前処理液でのポリエポ
キシド化合物(A)とブロックドポリイソシアネート化
合物(B)との配合重量比は、(A)/ (B)=98
/2〜20/80とするのが好ましい。(A)/ (B
)が上記範囲外になると、熱可塑性合成繊維への樹脂層
の接着力が低下する傾向がある。
These polyepoxide compound (A) and blocked polyisocyanate compound (B) can be used as they are, or if necessary, dissolved in a small amount of solvent and mixed with known emulsifiers such as sodium alkylbenzenesulfonate, dioctylsulfosuccinate Na salt, Emulsify or dissolve using a nonylphenol ethylene oxide adduct, etc., and dilute with a diluent such as water to obtain a pretreatment liquid. The blending weight ratio of the polyepoxide compound (A) and the blocked polyisocyanate compound (B) in the pretreatment liquid is (A)/(B) = 98
It is preferable to set it as /2 - 20/80. (A)/(B
) outside the above range, the adhesive strength of the resin layer to the thermoplastic synthetic fiber tends to decrease.

また、前処理液の総固形分濃度(ポリエポキシド化合物
(A)とブロックドポリイソシアネート化合物(B)と
を含む)は、充分な接着剤層を形成させ、かつ繊維の風
合いを低下させないという点で、1〜30重量%、特に
3〜20重量%とするのが望ましい。
In addition, the total solids concentration of the pretreatment liquid (including the polyepoxide compound (A) and blocked polyisocyanate compound (B)) is set so that a sufficient adhesive layer is formed and the texture of the fibers is not deteriorated. , 1 to 30% by weight, preferably 3 to 20% by weight.

また、前処理液を乳化分散液とするのに用いる乳化剤即
ち界面活性剤は、処理液の全固形分に対応して15重量
%以下、特に10重量%以下とすることが好ましい。こ
れを多(用いると、導電性樹脂層の繊維表面に対する接
着力が低下するようになる。
Further, the amount of the emulsifier, ie, the surfactant, used to form the pretreatment liquid into an emulsified dispersion is preferably 15% by weight or less, particularly 10% by weight or less, based on the total solid content of the treatment liquid. If too much of this is used, the adhesive force of the conductive resin layer to the fiber surface will decrease.

前処理液は、熱可塑性合成繊維に対してポリエボキシド
化合物(A)およびブロックドポリイソシアネート化合
物(B)の付着量が0.1〜10重量%、特に0.2〜
5重量%となるように付与するのが好ましい。この量が
少なすぎると、導電性樹脂層の接着性を高める被膜が形
成されないようになるし、多過ぎると被膜が厚過ぎて繊
維を硬化させるようになる。好ましい付着量は、前述の
ような濃度の前処理液を用いることによって容易に得ら
れる。
The pretreatment liquid has a coating amount of the polyeboxide compound (A) and the blocked polyisocyanate compound (B) based on the thermoplastic synthetic fibers of 0.1 to 10% by weight, particularly 0.2 to 10% by weight.
It is preferable to add it in an amount of 5% by weight. If this amount is too small, a film that enhances the adhesion of the conductive resin layer will not be formed, and if it is too large, the film will be too thick and will harden the fibers. A preferable coating amount can be easily obtained by using a pretreatment liquid having the concentration as described above.

前処理液を付与した後の乾燥、固化は、熱可塑性合成繊
維の強度やモジユラス等に変化を与えない温度や加熱時
間で行うことが望ましく、生産性の点から、180 ’
C以下で乾燥し、200〜250°Cで短時間熱処理す
ることが好ましい。
It is desirable to dry and solidify after applying the pretreatment liquid at a temperature and heating time that do not change the strength, modulus, etc. of the thermoplastic synthetic fiber, and from the viewpoint of productivity,
It is preferable to dry at a temperature below C and heat-treat at 200 to 250°C for a short time.

導電性物質の微粒子を含有する樹脂層は、導電性物質の
微粒子を分散含有した樹脂の溶液あるいは分散液を熱可
塑性合成繊維にポリエポキシド化合物(A)及びブロッ
クドポリイソシアネート化合物(B)の被膜を形成させ
た糸、織編物、不織布等に前処理液の付与方法と同様の
方法で付与して、乾燥、固化することにより形成される
The resin layer containing fine particles of a conductive substance is produced by coating a thermoplastic synthetic fiber with a solution or dispersion of a resin containing fine particles of a conductive substance dispersed therein and applying a coating of a polyepoxide compound (A) and a blocked polyisocyanate compound (B). It is formed by applying the pretreatment liquid to the formed yarn, woven or knitted fabric, nonwoven fabric, etc. in the same manner as the method of applying the pretreatment liquid, and drying and solidifying it.

また、樹脂層に添加する導電性物質の微粒子としては、
表面を導電性金属瓦d/又は導電性金属M(IJIでコ
ーティングしたマイカのリン片状微粉末を使用する。マ
イカのリン片状微粉末を用いることで、(1)酸化チタ
ンなどの粒状微粉末に導電性成分をコーティングしたも
のに比較して、樹脂層の添加量が少なくても、有効に導
電性能を発揮させることができ、(2)添加量を少なく
することによって、導電性樹脂被膜の強度が向上し、か
つ柔軟性及び耐摩耗性が改良され、さらに(3)導電性
樹脂被膜の透明性が向上し、樹脂層が目立ちにくくなる
In addition, as fine particles of conductive substance added to the resin layer,
Use a mica scale-like fine powder whose surface is coated with conductive metal tile d/or conductive metal M (IJI).By using mica scale-like fine powder, (1) granular fine powder such as titanium oxide is used. Compared to a powder coated with a conductive component, even if the amount of the resin layer added is small, it can effectively exhibit conductive performance. (2) By reducing the amount added, the conductive resin coating (3) The transparency of the conductive resin coating is improved, and the resin layer becomes less noticeable.

マイカとしては、フロゴバイト(金雲母)、マスコバイ
ト(白雲母)、パオタイト(黒雲母)、セリサイト(絹
雲母)などの天然フレーク状のマイカ及び合成雲母を挙
げることができ、その微粉末の大きさは、通常10μm
以下、好ましくは5μm以下である。
Examples of mica include natural flake mica and synthetic mica such as phlogovite, muscovite, paotite, and sericite, and the size of the fine powder The diameter is usually 10μm
The thickness is preferably 5 μm or less.

マイカの表面にコーティングする導電性金属としては、
ニッケル、コバルト、銅、銀等の各種導電性金属又はそ
れらの合金を挙げることができ、これらは、単層又は2
層以上で用いることができる。また、導電性金属酸化物
としては、酸化錫、酸化アンチモン、酸化インジウム、
酸化カドミウム等の各種導電性金属酸化物を挙げること
ができ、これらは、単独又は2種以上の混合物として用
いられる。導電性金属又は導電性金属酸化物のマイカに
対するコーテイング量は、20〜80重量%が適当であ
る。
As a conductive metal to coat the surface of mica,
Examples include various conductive metals such as nickel, cobalt, copper, and silver, and alloys thereof.
It can be used in more than one layer. In addition, examples of conductive metal oxides include tin oxide, antimony oxide, indium oxide,
Various conductive metal oxides such as cadmium oxide can be mentioned, and these can be used alone or as a mixture of two or more. The appropriate amount of the conductive metal or conductive metal oxide to be coated on mica is 20 to 80% by weight.

また、樹脂には、天然ゴムやアクリロニトリル−ブタジ
ェン共重合体(NBR)のような合成ゴムとそれに共溶
性があるフェノール系樹脂との組合わせ、レゾルシン−
ホルマリン−ゴムラテックス系の樹脂及びホントメルト
型ポリエステル系接着剤士イソシアネートとの組合わせ
、ポリウレタン系重合体、尿素、メラミン、アミノアル
キル、アミノアリールトリアジン等のアミノ化合物の少
な(とも1種とホルムアルデヒドの縮合物をブタノール
、イソプロパツール等のアルコール類で従来公知の方法
により変性したアルコール変性アミノ樹脂、塩化ビニー
ル酢酸ビニルの共重合体の一部を酸化したビニル重合体
、アクリニ酸エステル又はメタクリル酸エステルとスチ
レンとメチロールアクリルアミド、グリジルアクリレー
ト、ヒドロキシエチルメタクリレート等の反応性モノマ
ーとを共重合させたアクリル系重合体、ポリビニルブチ
ラール等のポリビニルアセクール系重合体等のビニル重
合体が柔軟性、可撓性を有して破断伸度10〜500%
の被膜を形成するので好ましく用いられる。このほか、
エポキシ系樹脂、アルキッド系樹脂、メラミン樹脂、尿
素樹脂等も用いられる。
In addition, resins include combinations of natural rubber and synthetic rubbers such as acrylonitrile-butadiene copolymer (NBR) and phenolic resins that are cosoluble therein, and resorcinol-based resins.
Combinations of formalin-rubber latex resins and true-melt polyester adhesives with isocyanates, polyurethane polymers, urea, melamine, aminoalkyl, aminoaryltriazine, and other amino compounds (both one type and formaldehyde). Alcohol-modified amino resins obtained by modifying condensates with alcohols such as butanol and isopropanol by conventionally known methods, vinyl polymers obtained by partially oxidizing vinyl chloride vinyl acetate copolymers, acrinic acid esters or methacrylic acid esters. Vinyl polymers such as acrylic polymers made by copolymerizing styrene and reactive monomers such as methylol acrylamide, glycylacrylate, and hydroxyethyl methacrylate, and polyvinyl acecoolic polymers such as polyvinyl butyral are flexible and flexible. Breaking elongation 10-500%
It is preferably used because it forms a film of other than this,
Epoxy resins, alkyd resins, melamine resins, urea resins, etc. are also used.

特に、NBRとそれに共溶性のあるフェノール系樹脂と
の併用がポリエポキシド化合物(A)及びブロックドポ
リイソシアネート化合物(B)によって形成された被膜
との接着性に優れて好ましい。
In particular, it is preferable to use NBR in combination with a phenolic resin that is co-soluble therein since it has excellent adhesion to the film formed from the polyepoxide compound (A) and the blocked polyisocyanate compound (B).

導電性金属及び/又は導電性金属酸化物で表面をコーテ
ィングしたマイカ微粉末の樹脂に対する配合割合は、3
0〜80重量%、特に40〜60重量%であることが好
ましい。この範囲であれば、密着性と被膜強度に優れて
繊維の電気抵抗を109Ω/cm以下とする導電性樹脂
層を容易に形成することができる。これに対し、導電性
物質の割合が少ないと、導電性樹脂層の電気抵抗が大き
くなって繊維の電気抵抗を109Ω/ cm以下とする
ことが困難となり、また導電性物質の割合いが多過ぎる
と、導電性樹脂層の密着性と被膜強度が低下して、耐久
性が劣るようになる。
The mixing ratio of mica fine powder whose surface is coated with conductive metal and/or conductive metal oxide to resin is 3.
It is preferably 0 to 80% by weight, particularly 40 to 60% by weight. Within this range, it is possible to easily form a conductive resin layer that has excellent adhesion and film strength and has a fiber electrical resistance of 10 9 Ω/cm or less. On the other hand, if the proportion of the conductive substance is small, the electrical resistance of the conductive resin layer will increase, making it difficult to reduce the electrical resistance of the fiber to 109Ω/cm or less, and if the proportion of the conductive substance is too high. As a result, the adhesion and film strength of the conductive resin layer decrease, resulting in poor durability.

上述のような割合で導電性物質の微粒子を分散含有した
樹脂液としては、ブタノールのようなアルコールi、M
EKのようなケ1−ン類、トルエンのような芳香族炭化
水素、エチルセロソルブ等の単独または混合を溶剤とし
て前述のような樹脂の溶液を作成し、これに前述のよう
な導電性物質の微粒子を分散させた適当な粘度のもの、
さらに必要に応じて燐酸モノアルキルエステルのような
硬化促進剤や可塑剤あるいは他のポリマーを適宜添加し
た適当な粘度のものが好ましく用いられる。
The resin liquid containing fine particles of a conductive substance dispersed in the proportions described above may include alcohols such as butanol, M
A solution of the above-mentioned resin is prepared using a solvent such as a carbon such as EK, an aromatic hydrocarbon such as toluene, ethyl cellosolve, etc. alone or in combination, and a conductive substance such as the above-mentioned conductive substance is added to this solution. Appropriate viscosity with fine particles dispersed in it,
Further, it is preferable to use a resin having an appropriate viscosity and containing a curing accelerator such as a phosphoric acid monoalkyl ester, a plasticizer, or other polymer as appropriate.

この粘度は、従来公知の方法で樹脂液を付与して、0.
5〜15μm(7)厚さの導電性樹脂層を形成する付着
量が容易に得られる粘度とするのが好ましい。
This viscosity can be determined by applying a resin liquid using a conventionally known method.
It is preferable that the viscosity is such that a coating amount that forms a conductive resin layer with a thickness of 5 to 15 μm (7) can be easily obtained.

樹脂液を付与したら前処理液の場合と同様に乾燥、固化
し、それによって導電性樹脂層を形成する。乾燥、固化
は、樹脂液を付与した糸等を70〜180″Cの熱風炉
中に通して溶剤を除去し、次いで130〜240°Cの
熱風炉中に通して樹脂を硬化させる方法で行うことが好
ましい。これによって、ポリエステル繊維の強度やモジ
ュラス等を保ち、電気抵抗が104〜109Ω/ cm
の耐久性に優れた導電性繊維が得られる。
Once the resin liquid is applied, it is dried and solidified in the same manner as the pretreatment liquid, thereby forming a conductive resin layer. Drying and solidification are carried out by passing the thread, etc. to which the resin liquid has been applied, through a hot air oven at 70 to 180"C to remove the solvent, and then passing it through a hot air oven at 130 to 240°C to harden the resin. This preferably maintains the strength, modulus, etc. of the polyester fiber, and reduces the electrical resistance to 104 to 109 Ω/cm.
A conductive fiber with excellent durability can be obtained.

本発明の導電性繊維は、ステープル、フィラメント糸、
加工糸、織編物等の100%使いで用いられしる、また
他の絶縁性の繊維や糸に混ぜて帯電を防止するように用
いてもよい。
The conductive fibers of the present invention include staples, filament yarns,
It can be used 100% in processed yarns, woven and knitted fabrics, etc., or it can be mixed with other insulating fibers or threads to prevent static electricity.

(作用) 本発明において、表面に導電性金属及び/又は導電性金
属酸化物をコーティングしたマイカを用いることにより
、樹脂層への添加量を少なくしても十分な導電性能を発
揮するのは、次の理由によるものと考えられる。
(Function) In the present invention, by using mica whose surface is coated with a conductive metal and/or conductive metal oxide, sufficient conductive performance is exhibited even if the amount added to the resin layer is reduced. This is thought to be due to the following reasons.

即ち、リン片状マイカを基体とする導電性物質を含む樹
脂を、繊維表面に塗布する過程で、リン片状マイカの平
面が塗布面と平行に配列する確率が高く、その結果、マ
イカ微粉末同志が近接して、間隔がせまくなり、導電性
能が向上するものである。
That is, in the process of applying a resin containing a conductive substance based on flaky mica to the fiber surface, there is a high probability that the planes of the flaky mica will be aligned parallel to the applied surface, and as a result, fine mica powder The comrades are brought closer together, the distance between them becomes narrower, and the conductive performance is improved.

(実施例) 以下、さらに実施例、比較例によって本発明を説明する
。尚、実施例、比較例において、電気抵抗は、横河電機
製作所製FMマルチテスターL−19−B型及び自動式
絶縁抵抗計L−68型で測定し、摩耗試験は、試料糸を
モジュール3.61、歯数20、回転数120 rpm
のナイロンギアに掛けて先端に0゜36g/deの荷重
を吊るす方法で行った。
(Examples) Hereinafter, the present invention will be further explained by Examples and Comparative Examples. In the Examples and Comparative Examples, the electrical resistance was measured using an FM multi-tester L-19-B model and an automatic insulation resistance meter L-68 model manufactured by Yokogawa Electric Corporation. .61, number of teeth 20, rotation speed 120 rpm
The test was carried out by hanging a load of 0°36 g/de on the tip of a nylon gear.

実施例1〜5、比較例1〜4 ツルビートルポリグリシジルエーテル(長瀬産業社製デ
ナコールEX−611)60gに界面活性剤としてジオ
クチルスルフオサクシネートNa塩の30重量%水溶液
(第−工業製薬社製ネオコールSW −30) 40g
を加えて均一に溶解する。これを水740g中に激しく
撹拌しながら加え、次いで、4゜4′−ジフェニルメタ
ンジイソシアネートのε−カプロラクタム・ブロック体
の25%乳化分散物(明成化学■製S5−3)160を
加えて均一に混合し、前処理液を得る。
Examples 1 to 5, Comparative Examples 1 to 4 A 30% by weight aqueous solution of dioctyl sulfosuccinate Na salt (Dai-Kogyo Seiyaku Co., Ltd.) as a surfactant was added to 60 g of Trubeetle polyglycidyl ether (Denacol EX-611, manufactured by Nagase Sangyo Co., Ltd.). Neocol SW-30) 40g
Add to dissolve uniformly. Add this to 740 g of water with vigorous stirring, then add 160 g of a 25% emulsified dispersion of ε-caprolactam block of 4゜4'-diphenylmethane diisocyanate (S5-3 manufactured by Meisei Kagaku ■) and mix uniformly. and obtain a pretreatment solution.

この前処理液に20デニールのポリエチレンテレフタレ
ートモノフィラメントを浸漬し引き上げた後、150°
Cで2分間乾燥、次いで230°Cで1分間熱処理した
。前処理剤の固着量は0.25重量%であった。得られ
たモノフィラメントの複数本を間隔をあけて並べた整列
状態で下記組成の樹脂液中を通過させ、次いでスリット
を通して樹脂液の付着厚さを調整し、引き続き130°
Cの熱風乾燥器を通して乾燥し、さらに200 ”Cの
空気浴中に導いて樹脂を固化した後、複数のモノフィラ
メントを1本に纏めてワインダに巻取って、構成フィラ
メントの導電性被膜の厚さが平均2.5μmの導電性マ
ルチフィラメントを得た。この糸の性能を第1表に示す
After immersing a 20 denier polyethylene terephthalate monofilament in this pretreatment solution and pulling it up, the
It was dried at 230°C for 2 minutes and then heat treated at 230°C for 1 minute. The amount of pretreatment agent fixed was 0.25% by weight. A plurality of the obtained monofilaments were passed through a resin liquid having the composition shown below in an aligned state with intervals, and then passed through a slit to adjust the adhesion thickness of the resin liquid, and then heated at 130°.
After drying in a hot air dryer at 200°C and solidifying the resin by introducing it into an air bath at 200"C, the plurality of monofilaments are rolled up in a winder to determine the thickness of the conductive coating on the constituent filaments. A conductive multifilament having an average diameter of 2.5 μm was obtained.The performance of this yarn is shown in Table 1.

第   1   表 比較例5〜7 実施例において、前処理液による処理を行わなかった場
合(比較例5)、前処理液として60gのブナコール6
11と40gのネオコール5W−30のみを含むものを
使用した場合(比較例6)及び前処理液としてS−3の
みを160g含むものを使用した場合(比較例7)につ
いて、得られた導電性マルチフィラメント糸の性能を測
定し、その結果を第2表に示した。
Table 1 Comparative Examples 5 to 7 In the example, when the treatment with the pretreatment liquid was not performed (Comparative Example 5), 60 g of Bunacol 6 was used as the pretreatment liquid.
The conductivity obtained when using a solution containing only 11 and 40 g of Neocol 5W-30 (Comparative Example 6) and when using a solution containing only 160 g of S-3 as a pretreatment solution (Comparative Example 7) The performance of the multifilament yarn was measured and the results are shown in Table 2.

第2表 第1表および第2表に見る通り、本発明の導電性繊維は
、導電性物質の添加量を少なくしても十分な導電性を示
す。従って、導電性物質の添加量を少なくすることによ
って、導電性樹脂層の密着性と被膜強度が低下するのを
防ぎ、耐久性の優れた導電性繊維を提供することができ
る。
Table 2 As shown in Tables 1 and 2, the conductive fibers of the present invention exhibit sufficient conductivity even when the amount of the conductive substance added is reduced. Therefore, by reducing the amount of the conductive substance added, it is possible to prevent the adhesion and film strength of the conductive resin layer from decreasing and provide a conductive fiber with excellent durability.

(発明の効果) 本発明導電性繊維は、摩擦や、洗濯に対する導電性の耐
久性が非常に優れると言う効果を奏する。
(Effects of the Invention) The conductive fiber of the present invention exhibits an effect that the conductivity is extremely durable against friction and washing.

Claims (1)

【特許請求の範囲】[Claims] 1、熱可塑性合成繊維の表面にポリエポキシド化合物(
A)とブロックドポリイソシアネート化合物(B)とを
含む接着剤被膜を形成し、更にその上に、導電性金属及
び/又は導電性金属酸化物で表面をコーティングしたマ
イカ微粉末を含有する樹脂層を形成したことを特徴とす
る導電性繊維。
1. Polyepoxide compound (
An adhesive film containing A) and a blocked polyisocyanate compound (B) is formed, and further thereon, a resin layer containing mica fine powder whose surface is coated with a conductive metal and/or a conductive metal oxide. A conductive fiber characterized by forming.
JP8343788A 1988-04-04 1988-04-04 Electrically conductive fiber Pending JPH01260058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8343788A JPH01260058A (en) 1988-04-04 1988-04-04 Electrically conductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8343788A JPH01260058A (en) 1988-04-04 1988-04-04 Electrically conductive fiber

Publications (1)

Publication Number Publication Date
JPH01260058A true JPH01260058A (en) 1989-10-17

Family

ID=13802406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8343788A Pending JPH01260058A (en) 1988-04-04 1988-04-04 Electrically conductive fiber

Country Status (1)

Country Link
JP (1) JPH01260058A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241067A (en) * 1990-02-20 1991-10-28 Kanebo Ltd Electrically conductive fiber
KR20000036402A (en) * 2000-03-02 2000-07-05 권귀숙 Far-infrared emission functional fiber manufacturing method to block electromagnetic waves and water waves
WO2008103013A1 (en) * 2007-02-22 2008-08-28 Inktec Co., Ltd. Conductive fibers and a method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241067A (en) * 1990-02-20 1991-10-28 Kanebo Ltd Electrically conductive fiber
KR20000036402A (en) * 2000-03-02 2000-07-05 권귀숙 Far-infrared emission functional fiber manufacturing method to block electromagnetic waves and water waves
WO2008103013A1 (en) * 2007-02-22 2008-08-28 Inktec Co., Ltd. Conductive fibers and a method of manufacturing the same
KR101296404B1 (en) * 2007-02-22 2013-08-14 주식회사 잉크테크 Conductive fibers and a method of manufacturing the same
US8518478B2 (en) 2007-02-22 2013-08-27 Inktec Co., Ltd. Conductive fibers and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4472463A (en) Two-step process for dipping textile cord or fabric and resorcinol/formaldehyde-free composition used therein
US5047448A (en) Antimicrobial-shaped article and a process for producing the same
US7166354B2 (en) Metal coated fiber and electroconductive composition comprising the same and method for production thereof and use thereof
CA1241787A (en) Preparation of cord for bonding to rubber
TWI599687B (en) Aqueous sizing agent and glass fiber and glass fiber cloth using the same
JPH01260058A (en) Electrically conductive fiber
EP0343496B1 (en) Conductive composite filament and process for producing the same
JPH01148878A (en) Conductive fiber
US3669736A (en) Textile material having a durable antistatic property and the fibers to be used for its purpose
US4121901A (en) Size composition for improving the adherence of multifilament polymeric yarns to substrates such as rubber, and methods using same
JP2006037251A (en) Treatment liquid for rubber/fiber adhesion and method for producing fiber material for rubber reinforcement
JP5584050B2 (en) Hybrid cord for reinforcing rubber and method for manufacturing the same
JP3179292B2 (en) Processing method of polyester fiber
JP6573759B2 (en) Water-based sizing agent
JPH02127571A (en) Treatment of fiber material for rubber reinforcement
JP5519401B2 (en) Method for producing rubber reinforcing fiber
JPS63175174A (en) Conductive fiber
CN111286800B (en) Polyester filament yarn and manufacturing method thereof, polyester base fabric and dipped polyester cord fabric
JP2005256215A (en) Electrically-conductive fiber
JPS6245354B2 (en)
JPS6392777A (en) Conductive fiber
JPS6142545A (en) Method for treating polyester fiber
JPS6065117A (en) Production of polyester fiber for reinforcing rubber
JPS6211086B2 (en)
EP0048481A2 (en) Shaped polyester composite material having an activated surface thereof and process for producing the same