JPH0125964B2 - - Google Patents
Info
- Publication number
- JPH0125964B2 JPH0125964B2 JP58209134A JP20913483A JPH0125964B2 JP H0125964 B2 JPH0125964 B2 JP H0125964B2 JP 58209134 A JP58209134 A JP 58209134A JP 20913483 A JP20913483 A JP 20913483A JP H0125964 B2 JPH0125964 B2 JP H0125964B2
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- fluidized
- amount
- temperature
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 12
- 238000007664 blowing Methods 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 14
- 239000004576 sand Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000012530 fluid Substances 0.000 description 11
- 238000000605 extraction Methods 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 239000002699 waste material Substances 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000012717 electrostatic precipitator Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1809—Controlling processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/18—Details; Accessories
- F23C10/28—Control devices specially adapted for fluidised bed, combustion apparatus
- F23C10/30—Control devices specially adapted for fluidised bed, combustion apparatus for controlling the level of the bed or the amount of material in the bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/00044—Temperature measurement
- B01J2208/00061—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00327—Controlling the temperature by direct heat exchange
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Incineration Of Waste (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、低位発熱量の廃棄物等を焼却する旋
回流動型流動床燃焼炉の運転方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of operating a swirling fluidized bed combustion furnace for incinerating waste with a low calorific value.
旋回流動型流動床燃焼炉において、発熱量が或
る程度大きくて常時補助燃料を添加することなく
焼却しうる低位の発熱量を有する都市ごみ、産業
廃棄物、石炭、泥炭或いは含油砂などを燃焼させ
る場合、流動媒体の使用量は、炉内の流動媒体の
量が一定に保たれるように調節するのが普通であ
る。この方法は流動床の保有熱をほぼ一定に保持
し、また流動床内へ供給する流動用空気等の流
量・圧力を一定に保持でき、安定した燃焼を行う
のに有効であつた。しかしながら、その反面必要
以上の流動媒体量を用いて運転する傾向があつ
た。これは流動媒体の炉内の保有量が多い程被燃
焼物の投入量、水分含有量並びに組成等の変動に
よる影響が小となること、全発熱量に占める流動
床内での発熱量の割合が高まるため発熱量の小さ
い低位発熱量の燃却物を焼却する場合にも燃焼に
必要な流動床温度(通常500〜600℃以上)を保持
できること、及び流動床内へ供給する流動床用空
気等の流量、圧力或いは温度の変動による影響が
小となるからである。即ち、安定な燃焼を優先す
るあまり、燃焼物量等の最大変動巾及び最小低位
発熱量等にそなえた最大炉内流体媒体保有量で運
転するのが通常であつた。
In a swirling fluidized bed combustion furnace, municipal waste, industrial waste, coal, peat, oil-containing sand, etc., which have a relatively high calorific value and a low calorific value that can be incinerated without the constant addition of auxiliary fuel, are burned. In this case, the amount of fluidized medium used is usually adjusted so that the amount of fluidized medium in the furnace remains constant. This method was effective in maintaining the retained heat of the fluidized bed almost constant, as well as the flow rate and pressure of the fluidizing air supplied into the fluidized bed, and achieving stable combustion. However, on the other hand, there was a tendency to operate using a larger amount of fluid medium than necessary. This is because the larger the amount of fluidized media held in the furnace, the smaller the influence of changes in the input amount of materials to be combusted, moisture content, composition, etc., and the ratio of calorific value in the fluidized bed to the total calorific value. The temperature of the fluidized bed required for combustion (usually 500 to 600°C or higher) can be maintained even when incinerating low-calorific materials with a small calorific value, and the air for the fluidized bed supplied to the fluidized bed increases. This is because the influence of fluctuations in flow rate, pressure, or temperature is reduced. That is, because priority was given to stable combustion, it was usual to operate the reactor at the maximum amount of fluid medium held in the reactor to accommodate the maximum fluctuation range of the amount of combustible material, etc., and the minimum lower calorific value.
このような通常の燃焼状態においては不都合な
点も生じていた。即ち、流動媒体の量が多くなる
とこれに従つて流動床の層も高くなる為、流動媒
体を流動させる流動床内へ供給する流動用空気等
の吹込量及び吹込圧力も大きくなり、流動用空気
等の供給量の調節にプロワの回転数制御、吸込ベ
ーンによる制御或いはダンパ制御等を用いる場
合、吹込圧力が大きい程駆動力も大となり動力を
無駄に消費することとなり、都市ごみ焼却施設等
においては、この無駄な動力費が全運転コストの
1〜2割にものぼることがあり無視できない状況
であつた。 Such normal combustion conditions also have some disadvantages. In other words, as the amount of the fluidized medium increases, the layer of the fluidized bed also becomes higher, so the amount and pressure of fluidizing air to be supplied into the fluidized bed that fluidizes the fluidized medium also increases. When using blower rotational speed control, suction vane control, damper control, etc. to adjust the supply amount of This wasteful power cost could amount to 10 to 20% of the total operating cost and could not be ignored.
また、全発熱量に占める流動床内における発熱
量の割合が高いことから、流動床の温度が必要以
上に高くなり好ましくなかつた。即ち、流動床の
温度が高くなり過ぎると、流動媒体や焼却残渣の
一部が溶融してクリンカーとなり流動不良を生
じ、また炉壁等に付着物を生じたり或いは有害金
属が排ガス中へ揮散したり、炉壁や炉床等に損傷
を与える等の弊害が生じることもあつた。又、特
に流動床内に伝熱面を設けて熱回収をする設備を
備えたものにあつては、過剰の熱が加えられたり
或いは伝熱面が高温にさらされる結果、その寿命
や性能の面で問題が生じていた。このような問題
を解決する為、燃焼物投入量の制御、注水或いは
空気を吹込むことによつて流動床を一定の温度
(800〜900℃)以下に抑えることが行なわれてい
るが、この場合処理量の低下、流動媒体の消耗量
増加或いは大きな空気供給設備の設置或いは運転
コストの上昇等の欠点があつた。 Furthermore, since the proportion of the calorific value in the fluidized bed to the total calorific value is high, the temperature of the fluidized bed becomes higher than necessary, which is undesirable. In other words, if the temperature of the fluidized bed becomes too high, part of the fluidized medium and incineration residue will melt and become clinker, causing poor fluidization, deposits on the furnace walls, etc., or harmful metals being vaporized into the exhaust gas. In some cases, harmful effects such as damage to the furnace walls, hearth, etc. may occur. In addition, especially for those equipped with equipment for heat recovery by installing a heat transfer surface in the fluidized bed, excessive heat may be applied or the heat transfer surface may be exposed to high temperatures, resulting in shortened lifespan and performance. There was a problem with the surface. In order to solve these problems, the temperature of the fluidized bed is kept below a certain level (800-900°C) by controlling the amount of combustibles input and by injecting water or blowing air. In this case, there are disadvantages such as a decrease in throughput, an increase in consumption of the fluidizing medium, installation of large air supply equipment, and increase in operating costs.
本発明は、このような欠点を除く為、流動床の
温度等に基いて流動床上部にスロート部を有する
旋回流動型流動床燃焼炉内の流動媒体保有量を変
化させることにより、流動床の温度を一定の範囲
内に保持する方法を提供することを目的とする。
In order to eliminate such drawbacks, the present invention aims to increase the fluidized bed temperature by changing the amount of fluidized medium held in a swirling fluidized bed combustion furnace that has a throat section above the fluidized bed based on the temperature of the fluidized bed. The purpose is to provide a method for maintaining the temperature within a certain range.
本発明は、流動床上部にスロート部を有する旋
回流動型流動床燃焼炉において、流動床の温度が
680℃以下で且つ流動床への空気吹込設備に余裕
のある場合、燃焼炉内の流動媒体保有量を増加さ
せるように制御し、流動床の温度が700℃以上で
流動床層の高さに余裕のある場合、燃焼炉内の流
動媒体保有量を減少させるように制御することを
特徴とする流動床燃焼炉の運転方法である。
The present invention provides a swirling fluidized bed combustion furnace having a throat section above the fluidized bed, in which the temperature of the fluidized bed is
If the temperature is below 680°C and there is sufficient air blowing equipment to the fluidized bed, control is performed to increase the amount of fluidized medium held in the combustion furnace, and when the temperature of the fluidized bed is above 700°C, the height of the fluidized bed layer is increased. This method of operating a fluidized bed combustion furnace is characterized in that the amount of fluidized medium held in the combustion furnace is controlled to be reduced if there is a margin.
本発明者等は、前述の従来方法の問題点を解決
するため種々検討を行つて来たが、流動床の温度
に基いて旋回流動型流動床焼却炉内の流動媒体の
保有量を制御することにより、流動床の温度を適
正に保持しうることを見出だした。 The present inventors have conducted various studies in order to solve the problems of the conventional method described above. It has been found that the temperature of the fluidized bed can be maintained appropriately by this method.
つぎに第1図乃至第3図に基いて本発明を説明
する。 Next, the present invention will be explained based on FIGS. 1 to 3.
第1図は、本発明の旋回流型流動床燃焼炉の断
面概略図であつて、符号1は焼却炉、2は空気供
給装置、3は焼却炉の底部に設けた空気室、4は
炉床(空気室天井)、5は流動床、6は給じん装
置、7は排出シユート、8は分給機、9は流動媒
体供給装置、10は不燃物排出装置、11は二次
空気供給装置、12は排ガス排出装置、13はデ
イフレクタ部、14はスロート部、15はフリー
ボード部、16は水供給装置、17は散水装置を
示す。 FIG. 1 is a schematic cross-sectional view of a swirling flow type fluidized bed combustion furnace of the present invention, in which reference numeral 1 is an incinerator, 2 is an air supply device, 3 is an air chamber provided at the bottom of the incinerator, and 4 is a furnace. Floor (air chamber ceiling), 5 is a fluidized bed, 6 is a dust supply device, 7 is a discharge chute, 8 is a distributor, 9 is a fluidized medium supply device, 10 is a non-combustible material discharge device, 11 is a secondary air supply device , 12 is an exhaust gas discharge device, 13 is a deflector portion, 14 is a throat portion, 15 is a freeboard portion, 16 is a water supply device, and 17 is a water sprinkler device.
第1図に示す焼却炉1において、焼却物は給じ
ん装置6より流動床5内に供給され、流動床5は
空気供給装置2から空気室3及び炉床4を経て供
給される燃焼用空気によつて流動化されている。
デイフレクタ13の形状(右側炉壁形状)や、左
側を小さく右側を大きくした空気室からの吹出し
風速分布などの作用により、流動媒体には図に示
されているような矢印方向の旋回流が与えられて
いる。このため、供給された燃焼物は流動媒体の
動きに押し流されるように流動床内に拡散しつつ
燃焼(一次燃焼)し、一部の揮発分やCOガスそ
の他の熱分解ガス、微粉等が上昇するガス流に伴
なわれて流動床の上のスロート部14やフリーボ
ード部15で二次燃焼する。この間、流動媒体の
一部はごみ等に含まれている不燃物と一緒に排出
シユート7から抜き出され、分給機で流動媒体
(砂)と不燃物に分離され、分離された焼却媒体
は流動媒体供給装置9を経て燃焼炉に所定量ずつ
供給され、一方不燃物は不燃物排出装置10より
系外に取り出される。流動媒体供給装置には、通
常流動媒体貯留槽が設けられている。 In the incinerator 1 shown in FIG. 1, the materials to be incinerated are supplied into a fluidized bed 5 from a dust supply device 6, and the fluidized bed 5 is filled with combustion air supplied from an air supply device 2 through an air chamber 3 and a hearth 4. It is fluidized by.
Due to the shape of the deflector 13 (the shape of the right furnace wall) and the velocity distribution of the blowing air from the air chamber, which is smaller on the left side and larger on the right side, the fluidized medium is given a swirling flow in the direction of the arrow shown in the figure. It is being For this reason, the supplied combustion material is combusted (primary combustion) while being swept away by the movement of the fluidized bed while diffusing within the fluidized bed, and some volatile matter, CO gas, other pyrolysis gases, fine powder, etc. rise. Secondary combustion occurs in the throat section 14 and freeboard section 15 above the fluidized bed as a result of the gas flow. During this time, a part of the fluid medium is extracted from the discharge chute 7 together with non-combustible materials contained in garbage, etc., and is separated into fluid media (sand) and non-combustible materials by a distributor, and the separated incineration media are A predetermined amount of the fluid is supplied to the combustion furnace via the fluidized medium supply device 9, while incombustibles are taken out of the system through the incombustibles discharge device 10. A fluidized medium supply device is usually provided with a fluidized medium storage tank.
流動床からの揮発分、COガス等の熱分解ガス
或いは可燃性微粉は、スロート部14及びフリー
ボード部15において燃焼用空気中の残存酸素或
いは二次空気供給装置11から供給される二次空
気により燃焼され、生成した排ガスは散水装置1
7より導かれる水により一部冷却された後、排ガ
ス排出装置を経て排ガス処理装置(図示されてい
ない)に導かれる。 Volatile matter, pyrolysis gas such as CO gas, or combustible fine powder from the fluidized bed is removed from residual oxygen in the combustion air or secondary air supplied from the secondary air supply device 11 in the throat section 14 and freeboard section 15. The generated exhaust gas is sent to the water sprinkler device 1.
After being partially cooled by the water introduced from 7, it is led to an exhaust gas treatment device (not shown) via an exhaust gas discharge device.
第2図は、炉各部のガスの分析結果を示してい
る。第2図において、a,b,c,d,e,f,
gの各記号は、第1図に示したa,b,c,d,
e,f,gの各符号に対応するもので、第1図の
各符号の位置のガスをサンプリングして分析した
結果を示している。なお、第2図は二次空気を供
給しない場合の各部における酸素濃度を測定した
ものである。 FIG. 2 shows the analysis results of gas in each part of the furnace. In Figure 2, a, b, c, d, e, f,
Each symbol of g is a, b, c, d, shown in Figure 1.
The graphs correspond to the symbols e, f, and g, and show the results of sampling and analyzing the gas at the positions of the symbols in FIG. 1. In addition, FIG. 2 shows the measurement of oxygen concentration at each part when secondary air is not supplied.
この図からわかるように、燃焼炉においては流
動床部a〜cにおける一次燃焼の割合が大きい
が、スロート部及びフリーボード部においても二
次燃焼が行われていることがわかる。燃焼はこの
様に一次燃焼と二次燃焼に区分できる。この全体
の燃焼にしめる一次燃焼の割合は、当然流動床層
高が大きい程、即ちガスの流動床部における滞留
時間が長い程大きくなる。つまり同様の運転状態
でも流動媒体の炉内保有量が多い程流動床中にて
発熱する熱量が増加する。流動床部における熱収
支を説明すると次の様になる。 As can be seen from this figure, in the combustion furnace, the proportion of primary combustion is large in the fluidized bed sections a to c, but it can be seen that secondary combustion also occurs in the throat section and freeboard section. Combustion can thus be divided into primary combustion and secondary combustion. Naturally, the ratio of primary combustion to the total combustion increases as the height of the fluidized bed increases, that is, as the residence time of gas in the fluidized bed increases. In other words, even under similar operating conditions, the amount of heat generated in the fluidized bed increases as the amount of fluidized medium held in the furnace increases. The heat balance in the fluidized bed section is explained as follows.
入熱q1:一次燃焼熱(流動床内での燃焼に伴う発
熱)
入熱又は出熱q2:フリーボード部・スロート部か
らの出入熱(輻射熱や流動媒体がフリーボ
ード部やスロート部を通過する際受け取り
同伴する熱)
q3:流動床部温度変化に要する熱(炉壁、流動媒
体等の熱容量による熱)
出熱q4:昇温に要する顕熱(吹込空気、供給燃
料、炉外より投入される流動媒体等を流動
床温度まで昇温するに要する熱)
q5:昇温に要する潜熱(供給燃料等に含まれる水
分等のうばう蒸発潜熱)
q6:同伴熱(流動床部より出てゆくガスや排出シ
ユートに抜出される不燃物、流動媒体等に
伴われる熱)
q7:放熱(流動床部を構成する壁・床等から逃げ
る熱)
なお、これはあくまで通常の運転時を想定した
もので、立上時、運転停止時、補助燃焼時等では
若干異なる。流動媒体の炉内保有量を増加して流
動層高を高くすることでq1が増加すると、それに
伴なつて流動床温度が上昇してq4,q6,q7が増加
し、またq2は出熱の場合に増加し入熱の場合に減
少しq3に熱が出熱するようにバランスが変化す
る。即ち、熱収支によつて、流動床層高の大きい
程流動床温度は高くなる。実際の運転において炉
内の流動媒体の量を変化させた場合の流動床温
度、高さ、並びに空気室圧力の変化の概要を第3
図に示す。Heat input q 1 : Primary combustion heat (heat generated due to combustion in the fluidized bed) Heat input or heat output q 2 : Heat input/output from the freeboard section/throat section (radiant heat or fluidized medium flows through the freeboard section or throat section) q 3 : Heat required to change the temperature of the fluidized bed (heat due to the heat capacity of the furnace wall, fluidized medium, etc.) Heat output q 4 : Sensible heat required to raise the temperature (blow air, supplied fuel, furnace Heat required to raise the temperature of the fluidized medium, etc. input from outside to the fluidized bed temperature) q 5 : Latent heat required to raise the temperature (latent heat of vaporization of moisture, etc. contained in the supplied fuel, etc.) q 6 : Entrained heat (heat required to raise the temperature of the fluidized bed) q 7 : Heat radiation (heat escaping from the walls, floor, etc. that make up the fluidized bed) (heat accompanying the gas exiting from the fluidized bed, incombustibles extracted into the exhaust chute, fluidized media, etc.) This assumes operation, but differs slightly at startup, shutdown, auxiliary combustion, etc. When q 1 increases by increasing the fluidized bed height by increasing the amount of fluidized medium held in the furnace, the fluidized bed temperature increases accordingly and q 4 , q 6 , and q 7 increase, and q 2 increases in the case of heat output and decreases in the case of heat input, and the balance changes so that heat is output at q 3 . That is, depending on the heat balance, the larger the height of the fluidized bed, the higher the fluidized bed temperature. Part 3 outlines the changes in fluidized bed temperature, height, and air chamber pressure when the amount of fluidized medium in the furnace is changed in actual operation.
As shown in the figure.
第3図は縦軸に流動床の温度又は炉内の流動床
の高さ及び空気室の圧力を示し、横軸に時間を示
す。 In FIG. 3, the vertical axis shows the temperature of the fluidized bed or the height of the fluidized bed in the furnace and the pressure of the air chamber, and the horizontal axis shows time.
第3図からわかるように、炉内の流動媒体を抜
きはじめると流動床の温度が抜出し量に応じて下
がると共に当然のことながら流動床の高さ及び空
気室の圧力も下がり、又流動媒体を添加しはじめ
ると流動床の高さ及び空気室の圧力は高くなり、
また流動媒体を添加し終ると流動体の温度も次第
に高くなつてくる。尚流動媒体の添加操作は流動
床の温度の急変をさせる為徐々に加えているの
で、添加操作の間は温度はほぼ一定に保たれてい
る。 As can be seen from Figure 3, when the fluidized medium in the furnace begins to be withdrawn, the temperature of the fluidized bed decreases in proportion to the amount withdrawn, and naturally the height of the fluidized bed and the pressure in the air chamber also decrease. As the addition begins, the height of the fluidized bed and the pressure in the air chamber increase,
Further, when the addition of the fluid medium is finished, the temperature of the fluid gradually increases. Since the fluidized medium is added gradually in order to cause a sudden change in the temperature of the fluidized bed, the temperature is kept almost constant during the addition operation.
つぎに、第4図に示す都市ごみの二層流旋回流
式流動床焼却炉に基いて本発明を更に詳しく説明
する。 Next, the present invention will be explained in more detail based on the two-layer swirling flow type fluidized bed incinerator for municipal waste shown in FIG.
第4図において符号21は二層流旋回流式流動
床焼却炉、22は押込送風機、23は空気予熱
部、24は移動層用空気室、25は流動層用空気
室、26は流動床、27はフリーボード部、28
は排出シユート29は不燃物取出コンベア、30
は振動篩、31は砂循環エレベータ、32は手動
切換器、33は砂貯留槽、34は手動切換弁、3
5はごみ投入ホツパ、36は給じん装置、37は
二次空気送風機、38は冷却水槽、39は噴射水
加圧ポンプ、40は炉頂冷却水スプレーノズル、
41はガス冷却室、42は温水発生器、43は伝
熱管、44はガス冷却水スプレーノズル、45は
電気集じん器、46は炉内圧コントロール弁、4
7は誘引送風機、48は煙突、49は不燃物貯
槽、50は飛灰貯槽、Aは電流計、Fは流量計、
Mはモータ、Pは圧力計、Tは温度計を示す。 In FIG. 4, reference numeral 21 is a two-layer swirling flow fluidized bed incinerator, 22 is a forced air blower, 23 is an air preheating section, 24 is an air chamber for a moving bed, 25 is an air chamber for a fluidized bed, 26 is a fluidized bed, 27 is the freeboard section, 28
The discharge chute 29 is a non-combustible material removal conveyor, 30
3 is a vibrating sieve, 31 is a sand circulation elevator, 32 is a manual switching device, 33 is a sand storage tank, 34 is a manual switching valve, 3
5 is a garbage input hopper, 36 is a dust supply device, 37 is a secondary air blower, 38 is a cooling water tank, 39 is an injection water pressure pump, 40 is a furnace top cooling water spray nozzle,
41 is a gas cooling chamber, 42 is a hot water generator, 43 is a heat exchanger tube, 44 is a gas cooling water spray nozzle, 45 is an electrostatic precipitator, 46 is a furnace pressure control valve, 4
7 is an induced blower, 48 is a chimney, 49 is a non-combustible material storage tank, 50 is a fly ash storage tank, A is an ammeter, F is a flow meter,
M is a motor, P is a pressure gauge, and T is a thermometer.
第4図において、流動用兼燃焼用一次空気は押
込送風機22によつて吸引され昇圧された後空気
予熱部23で排ガスにより予熱された後、二層流
旋回流式流動床焼却炉の下部の移動層用空気室2
4及び流動層用空気室25から、その天井に設け
られている穴より流動床の下部に導入される。こ
の空気により流動媒体例えば砂は流動され流動床
26を形成し、中央部は流動層を形成し、周辺部
の流動層用空気室から導入される流動層用空気及
び炉壁の形状により、矢印方向に旋回運動をして
いる流動層を形成する。ごみ投入ホツパに投入さ
れた都市ごみは、給じん装置にて炉頂より移動層
部の上に投入され、移動層部に落下した都市ごみ
は流動層部からかぶさるように旋回してくる流動
媒体に埋まるようにして同伴されながら拡散し、
流動床内にて分解燃焼され、流動床内にて生成し
たCOや揮発分及び可燃性微粒子は、スロート部
及びフリーボード部27で燃焼し尽し、不燃物の
うち小粒径のものは炉中を上昇するガスに同伴さ
れ排出される。なお、フリーボード部側壁より、
二次空気送風機37により加圧された燃焼用二次
空気を吹込み、押込送風機22の負荷を軽減して
動力の削減と流動床における熱収支の改善をはか
つている例が多い。燃焼排ガスは、冷却水槽38
から噴射水加圧ポンプ39により炉頂冷却水スプ
レーノズル40よりスプレーされる水により一部
冷却された後、ガス冷却室に導かれ温水発生器4
2の伝熱管43を流れる水を加熱した後、ガス冷
却水スプレーノズル44からスプレーされる水に
より冷却された後、空気予熱部23に導かれ、空
気予熱部23中で熱交換により加熱炉に送られる
燃焼用空気を加熱した後、電気集じん器45、炉
内圧コントロール弁46、誘引送風機47を経て
煙突48から排出される。この間、ガス冷却室4
1、空気予熱部23及び電気集じん器45等で排
ガスから分離された飛灰は、飛灰貯槽50に送ら
れる。 In FIG. 4, primary air for both fluidization and combustion is sucked and pressurized by a forced air blower 22, and then preheated by exhaust gas in an air preheating section 23. Moving layer air chamber 2
4 and the fluidized bed air chamber 25, the air is introduced into the lower part of the fluidized bed through a hole provided in the ceiling thereof. A fluidized medium, such as sand, is fluidized by this air to form a fluidized bed 26, and a fluidized bed is formed in the central part. Forms a fluidized bed with swirling motion in the direction. The municipal waste put into the waste input hopper is fed from the top of the furnace onto the moving bed section by the dust supply device, and the municipal waste that falls into the moving bed section is covered by a fluidized medium that swirls from the fluidized bed section so as to cover it. It spreads as it buries itself and is accompanied by
The CO, volatile matter, and combustible particulates that are decomposed and burned in the fluidized bed are completely burned in the throat section and freeboard section 27, and the non-combustibles with small particle size are transferred to the furnace. It is emitted along with the gas rising inside. In addition, from the side wall of the freeboard part,
In many cases, pressurized secondary air for combustion is blown in by the secondary air blower 37 to reduce the load on the forced air blower 22, thereby reducing power and improving the heat balance in the fluidized bed. The combustion exhaust gas is transferred to the cooling water tank 38.
After being partially cooled by water sprayed from the top cooling water spray nozzle 40 by the water injection pressure pump 39, the water is led to the gas cooling chamber and heated to the hot water generator 4.
After heating the water flowing through the heat transfer tube 43 of No. 2, it is cooled by water sprayed from the gas cooling water spray nozzle 44, and then guided to the air preheating section 23, where it is heated to a heating furnace through heat exchange. After the combustion air sent is heated, it is discharged from the chimney 48 via an electrostatic precipitator 45, a furnace pressure control valve 46, and an induced blower 47. During this time, the gas cooling chamber 4
1. The fly ash separated from the exhaust gas by the air preheating section 23, the electrostatic precipitator 45, etc. is sent to the fly ash storage tank 50.
不燃物のうち大径のものは流動媒体によつて炉
床(空気室の天井)端部の排出シユートに吹き寄
せられ、流動媒体の一部とともに不燃物取出コン
ベヤ29により炉内から取出され振動篩30で流
動媒体より分級され排出される。これは通常一定
時間毎に一定量が取出される。振動篩で分離され
た流動媒体は砂循環エレベータ31により持ち上
げられ、再び炉内に投入され流動媒体循環系が形
成される。 Large-diameter noncombustibles are blown by the fluidized medium to a discharge chute at the end of the hearth (ceiling of the air chamber), and are taken out of the furnace together with a portion of the fluidized medium by the noncombustibles removal conveyor 29 and passed through a vibrating sieve. At 30, the fluid is classified and discharged from the fluid medium. This is usually taken out in a fixed amount at fixed intervals. The fluidized medium separated by the vibrating sieve is lifted up by the sand circulation elevator 31 and thrown into the furnace again to form a fluidized medium circulation system.
流動床部26には温度検出端が挿入されてい
る。その温度が例えば550〜650℃程度特に600℃
以下の燃焼の維持に不安のあるような温度を低迷
しているようであれば、手動にて切換弁34を操
作し、砂貯留槽33から流動媒体を取出し、前述
の砂循環エレベータ31をへて炉内に添加する。
なお、このとき流動床層高と空気室の圧力は漸増
するので、押込送風機の風量を変化させぬよう押
込送風機の流量計を監視しながら、モータの回転
数制御ならば回転数をあげ、吸込ベーン制御なら
ばベーンをたて、ダンパ制御ならばその開度をあ
げるなどして風圧をあげる方向に調節する。逆に
700℃〜850℃程度と流動床部26の温度が高目で
あれば手動にて砂循環エレベータ31と炉への投
入部との間にある手動切換器32を切換えて流動
媒体の流れを砂貯留槽33の方に抜き出す。この
場合送風機の風量を変えぬよう、流動媒体を焼却
炉に添加する場合とは逆の方向に操作することは
言うまでもない。流動媒体を抜き出す場合、炉内
は高温であるため、そのままの温度で流動媒体を
取出すと機器をいためる。そこで排出シユートや
不燃物取出コンベヤにおいて水冷ケーシングなど
を用いて50〜300℃少くとも400℃以下まで冷却す
る。そしてその冷却能力から、炉内からの流動媒
体抜出速度が小さく抑えられるために流動媒体の
抜出しには時間を要し、第3図に示した例では
150℃の流動床温度降下をもたらす流動媒体抜出
に約1時間を要している。この間流動床の高さは
約13%減少した。 A temperature detection end is inserted into the fluidized bed section 26. The temperature is for example 550~650℃ especially 600℃
If the temperature is so low that there is a concern about maintaining the following combustion, manually operate the switching valve 34 to take out the fluid medium from the sand storage tank 33 and transfer it to the sand circulation elevator 31 mentioned above. and add it to the furnace.
At this time, the height of the fluidized bed and the pressure in the air chamber gradually increase, so while monitoring the flow meter of the forced air blower so as not to change the air volume of the forced air blower, increase the rotation speed and increase the rotation speed if the motor rotation speed is controlled. For vane control, the vane is raised, and for damper control, the opening is increased to increase the wind pressure. vice versa
If the temperature of the fluidized bed part 26 is high, about 700°C to 850°C, the manual switching device 32 located between the sand circulation elevator 31 and the inlet part to the furnace is manually switched to change the flow of the fluidized medium to sand. It is extracted to the storage tank 33. In this case, it goes without saying that the blower should be operated in the opposite direction to that when adding the fluidized medium to the incinerator so as not to change the air volume of the blower. When removing the fluidized medium, the inside of the furnace is at a high temperature, so if the fluidized medium is removed at that temperature, the equipment will be damaged. Therefore, the discharge chute and the non-combustible material removal conveyor are cooled down to 50-300°C or at least 400°C using a water-cooled casing or the like. Due to its cooling capacity, the speed at which the fluidized medium is removed from the furnace is kept low, so it takes time to remove the fluidized medium, and in the example shown in Figure 3, it takes time to remove the fluidized medium.
It takes approximately 1 hour to withdraw the fluidized medium resulting in a fluidized bed temperature drop of 150°C. During this period, the height of the fluidized bed decreased by approximately 13%.
逆に流動媒体を添加する場合、添加する流動媒
体の奪う顕熱によつて流動床温度が一時的に低下
する。このため、昇温を目的とする場合、流動床
温度を観察しながら少量ずつ添加する必要があ
る。第3図に示した例では既に600℃程度まで流
動床温度が低下していたため、それ以上流動床温
度が低下しないよう徐々に添加しつづけて、流動
床層高を約15%増加するのに約3時間を要した
が、これによつて最終的に流動床温度が約200℃
上昇し800℃近くとなつた。 Conversely, when a fluidized medium is added, the temperature of the fluidized bed is temporarily lowered due to the sensible heat removed by the added fluidized medium. Therefore, when the purpose is to raise the temperature, it is necessary to add it little by little while observing the fluidized bed temperature. In the example shown in Figure 3, the fluidized bed temperature had already fallen to about 600℃, so the addition was continued gradually to prevent the fluidized bed temperature from dropping any further, increasing the height of the fluidized bed by about 15%. It took about 3 hours, but the final temperature of the fluidized bed was about 200℃.
The temperature rose to nearly 800℃.
以上説明したように、流動媒体の炉内保有量調
節による流動床温度の昇降は大きな効果をもたら
すものの、単純な応答反応に置きかえられないた
めに、自動的にこの操作を行うためには種々の情
報による判断を含む回路を必要とする。従つて、
むしろ“流動床温度低”でかつ“流動床層高をま
だあげられる”場合には“流動媒体添加”の警報
または表示を操作盤等に出させ、“流動床温度高”
でかつ“流動床層高をまだ下げられる”場合には
“流動媒体抜出”の警報または表示を出させ、流
動床の温度を監視しながら手動により流動媒体の
量を調節する方法が実用的である。もちろん、マ
イコン内蔵の操作盤においては、第3図に関し説
明したような判断を行わせて自動制御することも
可能である。また、流動媒体の抜出又は添加操作
は、予め定められた量を抜出した後又は添加した
後、その変化流動媒体量に応じた抜出又は添加の
休止時間をおいて流動床温度を確認し、引続いて
抜出・添加操作を続けるべきかどうかを判断しな
がら抜出又は添加を行うのが安全である。なお、
この休止時間は添加の方が抜出の場合より長時間
を必要とする。1回の抜出又は添加の量は温度変
化にて20℃〜100℃、流動層高で1.5〜15%程度と
するのがよい。休止時間は抜出で5〜50分、添加
で10〜100分程度とするのがよい。 As explained above, raising and lowering the temperature of the fluidized bed by adjusting the amount of fluidized medium held in the furnace has a great effect, but since it cannot be replaced with a simple response reaction, various methods are required to automatically perform this operation. Requires a circuit that includes information-based judgment. Therefore,
Rather, if the fluidized bed temperature is low and the height of the fluidized bed can still be raised, an alarm or display of "addition of fluidized medium" will be displayed on the control panel, etc., and the fluidized bed temperature will be high.
If the height of the fluidized bed can still be lowered, a practical method is to issue an alarm or display that says "fluidized medium has been removed" and manually adjust the amount of fluidized medium while monitoring the temperature of the fluidized bed. It is. Of course, in the case of an operation panel with a built-in microcomputer, it is also possible to perform automatic control by making judgments as explained in connection with FIG. 3. In addition, when withdrawing or adding a fluidized medium, after withdrawing or adding a predetermined amount, check the fluidized bed temperature after a pause period of withdrawal or addition according to the change in the amount of fluidized medium. It is safe to perform extraction or addition while determining whether to continue extraction or addition operations. In addition,
This pause time is longer for addition than for withdrawal. The amount to be extracted or added at one time is preferably about 20°C to 100°C depending on the temperature change, and about 1.5% to 15% depending on the height of the fluidized bed. The resting time is preferably about 5 to 50 minutes for extraction and 10 to 100 minutes for addition.
抜出又は添加の速度も前述したように一定値以
下に抑えねばならない。抜出操作では、通常の流
動媒体循環時の抜出量をそのまま継続する方が操
作量が少なくてすみかつ安全である。 The rate of withdrawal or addition must also be kept below a certain value as described above. In the extraction operation, it is safer and requires less operation if the amount of extraction during normal circulation of the fluid medium is continued.
また、手動の場合抜出又は添加操作の適当な運
転条件になつた際、確実に操作員に抜出又は添加
を実行させるよう、警報または表示を出すように
するのが望ましい。 Further, in the case of manual operation, it is desirable to issue an alarm or display when appropriate operating conditions for the extraction or addition operation are reached to ensure that the operator executes the extraction or addition operation.
つぎに流動層高を何によつて測定するかについ
て述べる。 Next, we will discuss how the height of the fluidized bed is measured.
運転停止時にマンホール等から目視により確認
したり、おもりを下げて実測する方法は確実であ
るが、運転中にできないという欠点がある。 Visual confirmation from a manhole etc. when the operation is stopped or actual measurement by lowering a weight are reliable methods, but they have the disadvantage that they cannot be performed during operation.
運転中に測定する手段としては空気室(第1図
において符号3、第4図においては符号24又は
25で示される)の圧力があり、一般的に行われ
ている。即ち“空気室圧力”は“炉内圧力+流動
床通過圧損+空気室からの吹出圧損”に等しく、
空気室圧力又は炉内圧力は容易に測定でき、空気
室からの吹出圧損も吹出風量・圧力・温度などか
ら容易に計算でき、流動床通過圧損は流動床の単
位面積あたりのみかけ重量と流動床層高の積にほ
ぼ等しいなどから次式にて容易に求めることがで
きる。 The pressure in the air chamber (indicated by 3 in FIG. 1 and 24 or 25 in FIG. 4) is commonly used as a means for measuring during operation. In other words, "air chamber pressure" is equal to "furnace pressure + pressure loss passing through the fluidized bed + blowout pressure loss from the air chamber",
The air chamber pressure or furnace pressure can be easily measured, and the blowout pressure loss from the air chamber can also be easily calculated from the blowout air volume, pressure, temperature, etc., and the pressure loss passing through the fluidized bed is calculated by calculating the apparent weight per unit area of the fluidized bed and the fluidized bed pressure loss. Since it is approximately equal to the product of the layer heights, it can be easily determined using the following formula.
〔流動床層高〕=〔空気室圧力〕−〔炉内圧力〕−〔
空気室からの吹出圧損〕/〔流動床の単位体積あたりの
みかけ重量〕
ところで、通常、流動床層高の最大点は、炉の
構造などより施設の押込送機等の流動床内への空
気吹込設備の能力によつてきまる。これは空気吹
込設備の運転動力の最大点を経済性から定め、そ
れに合わせて焼却炉や砂貯留槽など他の設備の能
力を設定してあることによる。従つて、特に運転
中の流動床層高を確認しなくとも十分である。 [Fluidized bed height] = [Air chamber pressure] - [Furnace pressure] - [
Blowout pressure loss from the air chamber] / [apparent weight per unit volume of the fluidized bed] By the way, the maximum point of the fluidized bed bed height is usually determined by the amount of air flowing into the fluidized bed from the facility's forced feeder, etc., depending on the furnace structure. It depends on the capacity of the blowing equipment. This is because the maximum operating power of the air blowing equipment is determined based on economic efficiency, and the capacity of other equipment such as the incinerator and sand storage tank is set accordingly. Therefore, there is no need to particularly check the height of the fluidized bed during operation.
押込送機駆動部の回転数を制御することにより
風圧を制御しようという装置では、その回転数が
可変範囲のどの位置にあるかが判ればよく、吸込
ベーン制御やダンパ制御の場合にも開度が可変範
囲のどの位置にあるかが判ればよい。 In a device that attempts to control wind pressure by controlling the rotation speed of the feeder drive section, it is only necessary to know where the rotation speed is within the variable range, and in the case of suction vane control or damper control, the opening degree can also be determined. It is sufficient to know where in the variable range the position is.
“流動床層高をまださげられる”の意味は炉の
構造的な限界から来ることが多い。即ち、流動床
部に設けられた各種検出端、図1の例の給じん装
置、デイフレクタ位置などによる。従つて、その
流動床層高における空気室圧力、押込送風機風圧
制御位置を確認し、その値を用いてチエツクする
ことができる。従つて、流動床層高に関する情報
のかわりにそれらで代用することもやや間接的な
きらいはあるが、実用上さしつかえない。 The meaning of “the height of the fluidized bed can still be lowered” often comes from the structural limitations of the furnace. That is, it depends on the various detection ends provided in the fluidized bed section, the dust supply device of the example shown in FIG. 1, the position of the deflector, etc. Therefore, the air chamber pressure and forced air blower wind pressure control position at the height of the fluidized bed can be confirmed and checked using those values. Therefore, although it may be somewhat indirect to use such information in place of information regarding the height of the fluidized bed, it is practically acceptable.
流動媒体は、都市ごみ焼却炉等では燃焼物に混
入して持込まれる砂やがれき等、流動媒体となり
得るものがあるために漸増の傾向にあつたり、製
紙スラツジ焼却炉をかじめとする産業廃棄物焼却
炉のように流動媒体は消耗する一方で常に漸減し
ていくものがあつたりするが、その変化量はそれ
程大きくない。そこで運転停止時の概略量や通常
の単位時間、単位体積あたりの消耗量ないしは燃
焼物持込量を測定しておけば、抜出量は例えば第
4図に示す不燃物取出コンベヤの能力から容易に
わり出せるし、添加量も添加速度と添加時間から
容易に割りだすことができるため、概略の炉内流
動媒体保有量を類推することができる。この様な
管理を併用すればより安全に操業することができ
る。 The amount of fluidized media tends to increase gradually in municipal waste incinerators, etc. because there are things that can become fluidized media, such as sand and debris that are mixed in with the combustion materials, and in industrial waste, including paper sludge incinerators. In some cases, such as in a material incinerator, the fluidized medium gradually decreases as it is consumed, but the amount of change is not that large. Therefore, if you measure the approximate amount when the operation is stopped, the amount consumed or the amount of combustibles brought in per unit time and unit volume, the amount to be extracted can be easily determined based on the capacity of the non-combustibles removal conveyor shown in Figure 4. Since the addition amount can be easily determined from the addition rate and addition time, the approximate amount of fluidized medium held in the furnace can be estimated. If such management is used in combination, safer operations can be achieved.
本発明は、流動床燃焼炉において、流動床層高
を変化させることにより被燃焼物の組成や水分量
の変化に対応して運転費用を低減できると共に、
適正な流動床温度での運転が可能となる結果流動
床温度が高くなることによる焼却炉の損傷を軽減
し、且つ流動媒体の寿命を延長することができ
る。
The present invention is capable of reducing operating costs in a fluidized bed combustion furnace by changing the height of the fluidized bed in response to changes in the composition and moisture content of the material to be combusted.
As a result of being able to operate at an appropriate fluidized bed temperature, damage to the incinerator due to an increase in fluidized bed temperature can be reduced and the life of the fluidized medium can be extended.
第1図は、旋回流動型流動床燃焼炉の断面概略
図、第2図は第1図に示す炉の各部におけるガス
の分析結果を示す図表、第3図は流動媒体の抜出
操作と添加操作を行う間の流動床の温度、流動床
の高さ及び空気室圧力の変化の状況を示す図表、
第4図は二層流旋回流式流動床焼却炉の断面概略
図を示す。
1……燃焼炉、2……空気供給装置、3……空
気室、4……炉床、5……流動床、6……給じん
装置、8……分給機、9……流動媒体供給装置、
10……不燃物排出装置、13……デイフレクタ
部、14……スロート部、21……二層流旋回流
式流動床焼却炉、22……押込送風機、23……
空気予熱部、24……移動層用空気室、25……
流動層用空気室、26……流動床、30……振動
篩、31……砂循環エレベータ、32……手動切
換器、33……砂貯留槽、34……手動切換弁、
35……ごみ投入ホツパ、36……給じん装置、
37……二次空気送風機、41……ガス冷却室、
45……電気集じん器、48……煙突。
Figure 1 is a cross-sectional schematic diagram of a swirling fluidized bed combustion furnace, Figure 2 is a chart showing the analysis results of gas in each part of the furnace shown in Figure 1, and Figure 3 is a diagram showing the extraction and addition of fluidized media. a chart showing the changes in the temperature of the fluidized bed, the height of the fluidized bed and the air chamber pressure during the operation;
FIG. 4 shows a cross-sectional schematic diagram of a two-layer swirling flow fluidized bed incinerator. 1... Combustion furnace, 2... Air supply device, 3... Air chamber, 4... Hearth, 5... Fluidized bed, 6... Dust supply device, 8... Distributor, 9... Fluidized medium feeding device,
DESCRIPTION OF SYMBOLS 10... Incombustible discharge device, 13... Deflector part, 14... Throat part, 21... Two-layer swirl flow type fluidized bed incinerator, 22... Forced blower, 23...
Air preheating section, 24...Air chamber for moving layer, 25...
Air chamber for fluidized bed, 26... Fluidized bed, 30... Vibrating sieve, 31... Sand circulation elevator, 32... Manual switching device, 33... Sand storage tank, 34... Manual switching valve,
35... Garbage input hopper, 36... Dust supply device,
37...Secondary air blower, 41...Gas cooling room,
45...Electrostatic precipitator, 48...Chimney.
Claims (1)
流動床燃焼炉において流動床の温度が680℃以下
で且つ流動床への空気吹込設備に余裕のある場
合、燃焼炉内の流動媒体保有量を増加させるよう
に制御し、流動床の温度が700℃以上で流動床層
の高さに余裕のある場合、燃焼炉内の流動媒体保
有量を減少させるように制御することを特徴とす
る流動床上部にスロート部を有する旋回流動型流
動床燃焼炉の運転方法。 2 燃焼炉内の流動媒体保有量を予め定められた
一定量だけ変化させ、その後変化量に応じて一定
時間保有量の変化を停止することにより、燃焼炉
内の燃焼を安定化させる特許請求の範囲第1項記
載の流動床上部にスロート部を有する旋回流動型
流動床燃焼炉の運転方法。 3 流動床への空気吹込設備の余裕又は流動床層
高の余裕を、流動床への吹込空気圧調節機構の調
節範囲における位置で検知する特許請求の範囲第
1項記載の流動床上部にスロート部を有する旋回
流動型流動床燃焼炉の運転方法。 4 流動床へ空気を吹込む為の空気室の圧力によ
つて、流動床への空気吹込設備の余裕又は流動床
層高の余裕を検知する特許請求の範囲第1項記載
の流動床上部にスロート部を有する旋回流動型流
動床燃焼炉の運転方法。[Claims] 1. In a swirling fluidized bed combustion furnace having a throat section above the fluidized bed, if the temperature of the fluidized bed is 680°C or less and there is sufficient air blowing equipment to the fluidized bed, The amount of fluidized medium held in the combustion furnace is controlled to increase, and when the temperature of the fluidized bed is 700°C or higher and there is sufficient height of the fluidized bed layer, the amount of fluidized medium held in the combustion furnace is controlled to be decreased. A method of operating a swirling fluidized bed combustion furnace having a throat section above the fluidized bed. 2. A patent claim that stabilizes combustion in a combustion furnace by changing the amount of fluidized medium held in the combustion furnace by a predetermined constant amount, and then stopping the change in the amount held for a certain period of time according to the amount of change. A method for operating a swirling fluidized bed combustion furnace having a throat section above the fluidized bed according to scope 1. 3. A throat section in the upper part of the fluidized bed according to claim 1, which detects the margin of the air blowing equipment to the fluidized bed or the margin of the fluidized bed bed height by the position within the adjustment range of the air pressure adjustment mechanism for blowing into the fluidized bed. A method of operating a swirling fluidized bed combustion furnace having: 4. In the upper part of the fluidized bed according to claim 1, which detects the margin of the air blowing equipment to the fluidized bed or the margin of the height of the fluidized bed layer based on the pressure of the air chamber for blowing air into the fluidized bed. A method of operating a swirling fluidized bed combustion furnace having a throat section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58209134A JPS60101414A (en) | 1983-11-09 | 1983-11-09 | Operation of fluidized-bed combustion furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58209134A JPS60101414A (en) | 1983-11-09 | 1983-11-09 | Operation of fluidized-bed combustion furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60101414A JPS60101414A (en) | 1985-06-05 |
JPH0125964B2 true JPH0125964B2 (en) | 1989-05-22 |
Family
ID=16567850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58209134A Granted JPS60101414A (en) | 1983-11-09 | 1983-11-09 | Operation of fluidized-bed combustion furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60101414A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05141637A (en) * | 1991-11-25 | 1993-06-08 | Ebara Corp | Fluidized bed incineration plant and operating method thereof |
CN106402852B (en) * | 2016-08-31 | 2018-10-02 | 中国神华能源股份有限公司 | A method of burning coal |
JP6944498B2 (en) * | 2019-10-28 | 2021-10-06 | 川崎重工業株式会社 | Bubbling type fluidized bed reactor and fluidized bed bubbling state stabilization method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54141072A (en) * | 1978-04-24 | 1979-11-01 | Babcock Hitachi Kk | Method for controlling temperture in moving layer of incinerator |
JPS5618531B2 (en) * | 1978-04-13 | 1981-04-30 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021622Y2 (en) * | 1979-07-23 | 1985-06-27 | 石川島播磨重工業株式会社 | Fluidized bed incinerator operation control device |
-
1983
- 1983-11-09 JP JP58209134A patent/JPS60101414A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618531B2 (en) * | 1978-04-13 | 1981-04-30 | ||
JPS54141072A (en) * | 1978-04-24 | 1979-11-01 | Babcock Hitachi Kk | Method for controlling temperture in moving layer of incinerator |
Also Published As
Publication number | Publication date |
---|---|
JPS60101414A (en) | 1985-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100852507B1 (en) | Treatment method and treatment apparatus for combustible gas in waste melting furnace | |
US5762008A (en) | Burning fuels, particularly for incinerating garbage | |
JPH0363408A (en) | Method of burning exhaust smoke | |
JP4830140B2 (en) | Combustion control method and incinerator | |
WO1988008504A1 (en) | Combustion control method for fluidized bed incinerator | |
JP5611418B2 (en) | Combustion control method for gasification melting system and system | |
US4976209A (en) | Furnaces for incinerating waste material | |
JPH0125964B2 (en) | ||
US3905312A (en) | Process and apparatus for incinerating waste materials | |
JP2002098308A (en) | Circulated fluidized bed combustion apparatus | |
JP3247066B2 (en) | Freeboard temperature control method for fluidized bed incinerator. | |
JP2003185116A (en) | Method and device for burning circulating fluidized-bed | |
JP3902454B2 (en) | Combustion control method and waste treatment apparatus | |
JP3442521B2 (en) | Combined fluidized bed waste combustion boiler | |
RU2766964C1 (en) | Furnace device with ash remover | |
JP3081943B2 (en) | Stirred incinerator and its operation management method | |
JP2004003757A (en) | Circulating fluidized bed furnace | |
JP6965842B2 (en) | Waste incinerator and waste incinerator method | |
GB2196099A (en) | Furnace | |
CN1017745B (en) | Method of controlling combustion in fluidized bed incinerator | |
JPH0816526B2 (en) | Method and apparatus for controlling circulating particle amount in fluidized bed incinerator | |
JPH109548A (en) | Incineration of sludge by fluidized-bed incinerator | |
JP3095815B2 (en) | Fluidized bed combustion device | |
JP2004205180A (en) | Cyclone incinerating/melting system and incinerating/melting furnace to be used for the same | |
JP4068001B2 (en) | Waste combustion method and combustion apparatus |