JPH01259163A - Reactive gas ionization promotion type ion plating method - Google Patents

Reactive gas ionization promotion type ion plating method

Info

Publication number
JPH01259163A
JPH01259163A JP8441688A JP8441688A JPH01259163A JP H01259163 A JPH01259163 A JP H01259163A JP 8441688 A JP8441688 A JP 8441688A JP 8441688 A JP8441688 A JP 8441688A JP H01259163 A JPH01259163 A JP H01259163A
Authority
JP
Japan
Prior art keywords
reactive gas
discharge
pressure
intermediate electrodes
ion plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8441688A
Other languages
Japanese (ja)
Inventor
Joshin Uramoto
上進 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8441688A priority Critical patent/JPH01259163A/en
Publication of JPH01259163A publication Critical patent/JPH01259163A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the ionization efficiency of reactive gas by allowing the reactive gas to flow between the intermediate electrodes of a pressure gradient type discharge source in the title method in which the above-mentioned discharge source is utilized. CONSTITUTION:The ionization promotion type reactive gas is introduced 7 between the intermediate electrodes 2, 3 provided to the interval 4 of a cathode 1 of a pressure gradient type discharge source and a hearth 4. For example, in the case of performing TiN coating while utilizing 200A discharge of gaseous Ar by this method, the flow rate of N2 is sufficiently regulated to about 1/5 in comparison with the ordinary method in which the reactive gas is directly introduced 8 into a vacuum vessel 10 and the partial pressure of the reactive gas at this time can be regulated to several fractions of pressure. As this reason, since the pressure of reactive gas introduced 7 between the intermediate electrodes 2, 3 is 30-100 times higher than the case performing the introduction 8, ionizing collision against electron current of discharge is promoted and it is supposed that the ionization efficiency of the reactive gas is remarkably improved as a result.

Description

【発明の詳細な説明】 通常のイオンプレーテング法では、反応ガス(例えばT
iNの場合のN2)は直接放電領域(主真空容器内、図
面で10の内部)に導入(図面で8から)する方法が一
般的である。しかしながら、この領域での反応ガスの分
圧は通常1O−3Torr程度以下であり、放電の電子
流(図面て]1)による電離衝突回数は小さく、反応ガ
スのイオン化効率は極めて低いと推定される。従って、
充分な反応ガスイオンの密度を得るには多量の反応カス
を流さなけれはならなくなり、必然的に大型排気ポンプ
が要求される。もし、反応カスのイオン化効率を上げる
ことができれは、多量の反応ガスの処理に要した分の排
気系を縮小することができる。また、反応カスの分圧が
下がるのでイオンプレーテングのベース圧力(キャリア
ガスと反応ガスの台用圧力)も低くなる。従って、イオ
ンの平均自由行程が長くなるのでコーテングの有効領域
(真空容器内の)を広げることもできる。
DETAILED DESCRIPTION OF THE INVENTION In the usual ion plating method, a reaction gas (for example, T
In the case of iN, N2) is generally introduced directly into the discharge area (inside the main vacuum vessel, indicated by 10 in the figure) (from 8 in the figure). However, the partial pressure of the reactant gas in this region is usually about 1O-3 Torr or less, and the number of ionization collisions due to the electron flow of the discharge (1) in the drawing is small, and the ionization efficiency of the reactant gas is estimated to be extremely low. . Therefore,
In order to obtain a sufficient density of reaction gas ions, it is necessary to flow a large amount of reaction scum, and a large exhaust pump is inevitably required. If the ionization efficiency of reaction scum can be increased, the exhaust system required for processing a large amount of reaction gas can be reduced. Furthermore, since the partial pressure of the reaction scum decreases, the base pressure of ion plating (base pressure of carrier gas and reaction gas) also decreases. Therefore, since the mean free path of the ions becomes longer, the effective area of the coating (inside the vacuum vessel) can also be expanded.

本発明は圧力勾配型の放電源を利用して」1記反応ガス
のイオン化効率を飛躍的に改善する方法である。圧力勾
配型放電はすでに本発明者が真空25、660 (19
82)、真空27.64. (1984)等に発表して
いる。この放電源では陰極とハース(図面で1と4)の
間に中間電極(図面で2及び3)が配置されているので
反応ガスの導入は3箇所考えられる。即ち、(1)キャ
リアガスと同じ陰極(t!II (図面で6)から流す
方法、(2)真空容器内に直接流す(図面で8から)通
常の方法、(3)中間電極の間から流す(図面で7から
)方法である。通常の方法(2)は上述の様に大きな欠
点を有する。
The present invention is a method of dramatically improving the ionization efficiency of the reaction gas described in item 1 by using a pressure gradient type discharge source. The pressure gradient type discharge has already been developed by the present inventor in vacuum 25, 660 (19
82), vacuum 27.64. (1984), etc. In this discharge source, intermediate electrodes (2 and 3 in the drawing) are arranged between the cathode and the hearth (1 and 4 in the drawing), so there are three possible introduction points for the reaction gas. Namely, (1) the method of flowing from the same cathode as the carrier gas (t! The conventional method (2) has major drawbacks as described above.

次に(1)の方法は実験の結果、放電を極め7て不安定
にし、反応ガスの流量をキャリアカスの流量以上にする
と放電が周期的に中断する現象も見られたので採用でき
ない。最後に圧力勾配型放電源でのみ可能な(3)の方
法が試みられた。結果として、通常の方法(2)で一定
のコーテングする場合に必要な反応ガスの流量(例えば
アルゴンガスの20OA放電を使用してTiNコーテン
グする場合、N2の流量は1503CCM程度)の]1
5稈度で充分なことが確かめられた。このとき反応ガス
の分圧も(2)の場合に比較l〜で数分の1であった。
Next, method (1) cannot be adopted because, as a result of experiments, it has been found that the discharge becomes extremely unstable, and when the flow rate of the reaction gas is made higher than the flow rate of the carrier scum, a phenomenon in which the discharge is periodically interrupted is observed. Finally, method (3), which is possible only with a pressure gradient type discharge source, was attempted. As a result, the flow rate of the reaction gas required for constant coating in the usual method (2) (for example, when coating TiN using a 20OA discharge of argon gas, the flow rate of N2 is about 1503 CCM)]1
It was confirmed that 5 culms were sufficient. At this time, the partial pressure of the reaction gas was also a few times lower than in case (2).

この理由としては、(3)の方法では中間電極(図面の
2と3の間)で反応ガスの圧力が(2)の方法の場合に
比較して30〜100倍高くなるので、放電の電子流と
の電離衝突が促進され、反応ガスのイオン化効率が飛躍
的に向」ニした結果と推定される。また、(1)の方法
が陰極領域に直接反応ガスを流したために放電の不安定
を起こしたのに対して、中間電極(図[nlで2)の介
在で陰極への悪影響か除去され、放電の不安定は全く見
られなかった。以上の(2)の方法は、圧力勾配型放電
源のみで可能であり、従来の直接放電型や電子ビームと
高周波放電及びアーク放電の併用型では不可能たった方
法である。
The reason for this is that in method (3), the pressure of the reaction gas at the intermediate electrode (between 2 and 3 in the drawing) is 30 to 100 times higher than in method (2), so the discharge electrons This is presumed to be the result of accelerated ionization collisions with the flow, and a dramatic improvement in the ionization efficiency of the reactant gas. In addition, whereas method (1) caused instability of the discharge due to flowing the reactive gas directly into the cathode region, the negative influence on the cathode was eliminated by the intervention of the intermediate electrode (2 in Figure [nl)]. No instability of discharge was observed. The above method (2) is possible only with a pressure gradient discharge source, and is impossible with a conventional direct discharge type or a combination type of electron beam, high frequency discharge, and arc discharge.

本発明により、従来のイオンプレーテングがハースから
の金属蒸気のイオン化効率の向上のみに注目していたの
に対して、反応ガスのイオン化効率の向上も追究できる
ようになり、装置の経済性の改善と共に、コーテングの
質的改善、コーテング有効領域の拡大等が可能になると
考えられる。なお、プラズマCVD1去における反1j
、;カス、金属化合気体の導入に関しても同様にしてイ
オン化を促進し、且つ有害ガスの処理にイj効であるこ
とを附記する。
With the present invention, while conventional ion plating focused only on improving the ionization efficiency of metal vapor from the hearth, it has become possible to pursue improvements in the ionization efficiency of the reactant gas, thereby improving the economic efficiency of the device. It is thought that along with the improvement, it will become possible to improve the quality of coating, expand the effective area of coating, etc. In addition, anti-1j in plasma CVD 1
It should be noted that the introduction of dregs and metal compound gases similarly promotes ionization and is also ineffective in treating harmful gases.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図は反応ガスイオン化促進型イオンプレーテン
グ法の装置構成図である。図において、]は陰極、2は
第]中間電極、3は第2中間電極、4はハース(陽極)
、5はコーテングを行なう試料、6は放電用キャリアガ
スの導ノい 7はイオン化促進型の反応ガス導入、8は
従来の反応カス導入、9は4Jl気ポンプ、]0は真空
容器、]1は放″jLプラズマ電子流、12は放電を導
く磁場(空芯コイルと永久磁石で発生)。
FIG. 1 is a diagram showing the configuration of an apparatus for an ion plating method that promotes ionization of a reactive gas. In the figure, ] is the cathode, 2 is the] intermediate electrode, 3 is the second intermediate electrode, and 4 is the hearth (anode).
, 5 is the sample to be coated, 6 is the introduction of carrier gas for discharge, 7 is the introduction of ionization promoting type reaction gas, 8 is the introduction of conventional reaction gas, 9 is the 4Jl air pump, ] 0 is the vacuum container, ] 1 is the emitted plasma electron flow, and 12 is the magnetic field that guides the discharge (generated by an air-core coil and a permanent magnet).

Claims (1)

【特許請求の範囲】[Claims] 圧力勾配型放電の中間電極の間から反応ガスを流すイオ
ンプレーテング法及びプラズマCVD法。
Ion plating method and plasma CVD method that flow a reactive gas between intermediate electrodes of pressure gradient discharge.
JP8441688A 1988-04-06 1988-04-06 Reactive gas ionization promotion type ion plating method Pending JPH01259163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8441688A JPH01259163A (en) 1988-04-06 1988-04-06 Reactive gas ionization promotion type ion plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8441688A JPH01259163A (en) 1988-04-06 1988-04-06 Reactive gas ionization promotion type ion plating method

Publications (1)

Publication Number Publication Date
JPH01259163A true JPH01259163A (en) 1989-10-16

Family

ID=13829984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8441688A Pending JPH01259163A (en) 1988-04-06 1988-04-06 Reactive gas ionization promotion type ion plating method

Country Status (1)

Country Link
JP (1) JPH01259163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691010A (en) * 1993-10-19 1997-11-25 Sanyo Electric Co., Ltd. Arc discharge plasma CVD method for forming diamond-like carbon films
US5695832A (en) * 1993-07-07 1997-12-09 Sanyo Electric Co., Ltd. Method of forming a hard-carbon-film-coated substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695832A (en) * 1993-07-07 1997-12-09 Sanyo Electric Co., Ltd. Method of forming a hard-carbon-film-coated substrate
US5691010A (en) * 1993-10-19 1997-11-25 Sanyo Electric Co., Ltd. Arc discharge plasma CVD method for forming diamond-like carbon films

Similar Documents

Publication Publication Date Title
JP2003506826A (en) Enhanced electron emission surface for thin film deposition systems using ion sources
US4710283A (en) Cold cathode ion beam source
US4941430A (en) Apparatus for forming reactive deposition film
US4716340A (en) Pre-ionization aided sputter gun
JPH01259163A (en) Reactive gas ionization promotion type ion plating method
JPH01252781A (en) Plasma cvd device utilizing pressure gradient type discharge
JPS61135126A (en) Equipment of plasma treatment
JP2849771B2 (en) Sputter type ion source
EP0469631B1 (en) Ion pump and vacuum pumping unit using the same
JP3079802B2 (en) Plasma gun
JP3079789B2 (en) Plasma gun and plasma generator
GB1398167A (en) High pressure ion sources
EP0499239B1 (en) Ion pump and vacuum pumping unit using the same
JP3032380B2 (en) Plasma electron gun
JPH0845697A (en) Plasma processing device with reflection type sheet plasma
JPH0535538B2 (en)
JP3078602B2 (en) HCD type ion plating equipment
JP3236928B2 (en) Dry etching equipment
JPS63307254A (en) Apparatus for forming thin oxide film
JPH0822802A (en) Plasma processor by double pressure gradient type pig discharge
JPH04198468A (en) Device for continuous pre-treatment of steel strip
JPH03150353A (en) Reactive ion plating method
JPH06349442A (en) Ion pump
JPS63252400A (en) Synchrotron accelerator
JPS60176224A (en) Plasmic chemical vapor-deposition method