JPH01257229A - Measuring method of shape of transmission wavefront of substance to be measured and apparatus used for the same - Google Patents

Measuring method of shape of transmission wavefront of substance to be measured and apparatus used for the same

Info

Publication number
JPH01257229A
JPH01257229A JP31172487A JP31172487A JPH01257229A JP H01257229 A JPH01257229 A JP H01257229A JP 31172487 A JP31172487 A JP 31172487A JP 31172487 A JP31172487 A JP 31172487A JP H01257229 A JPH01257229 A JP H01257229A
Authority
JP
Japan
Prior art keywords
measured
reflected
wavefront
optical path
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31172487A
Other languages
Japanese (ja)
Other versions
JP2698362B2 (en
Inventor
Hiroaki Shimozono
裕明 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP31172487A priority Critical patent/JP2698362B2/en
Publication of JPH01257229A publication Critical patent/JPH01257229A/en
Application granted granted Critical
Publication of JP2698362B2 publication Critical patent/JP2698362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the shape of a transmission wavefront of a substance to be measured, by using interference patterns formed of reflection wavefronts from first and second reflecting surfaces, and the lateral surface of the substance to be measured, etc. CONSTITUTION:Based on an interference pattern formed of a reflection wavefront of a light emitted from an interferometer (not shown) and reflected on first and second reflecting surfaces 1 and 3, an optical path distribution obtained from the shape of the wavefront in a state wherein a substance 6 to be measured is absent in optical paths, is determined. Next, the optical path distribution containing a change in the shape of the reflection wavefront of the reflecting surfaces 1 and 3 in a state wherein the substance 6 to be measured comes into the optical paths, is determined. Moreover, based on an interference pattern formed by the reflecting surface 1 and one side surface 6a of the substance 6 to be measured, the optical path distribution containing the change in the shape of the reflection wavefront caused by the side surface 6a of the substance 6 to be measured is determined. Based on an interference pattern formed by the reflecting surface 3 and the other side surface 6b of the substance 6 to be measured, subsequently, the optical path distribution containing the change in the shape of the reflection wavefront caused by the side surface 6b of the substance 6 to be measured is determined. From these optical path distributions, the shape of a transmission wavefront of the light transmitted through the substance 6 to be measured can be measured accurately.

Description

【発明の詳細な説明】 見肌勿■頂 (産業上の利用分野) 本発明は、被測定物としての光学材料の屈折率の均質性
(ホモジニティー)、すなわち、屈折率分布の測定に際
して必要な被測定物の透過波面の形状を測定する被測定
物の透過波面の形状測定方法及びその方法に用いる装置
に関する。
[Detailed Description of the Invention] Appearance (industrial application field) The present invention aims to improve the homogeneity of the refractive index of an optical material as an object to be measured, that is, the homogeneity necessary for measuring the refractive index distribution. The present invention relates to a method for measuring the shape of a transmitted wavefront of a measured object for measuring the shape of a transmitted wavefront of a measured object, and an apparatus used in the method.

(従来の技術) 従来から、被測定物としての光学材料の屈折率の均質性
(ホモジニティー)は、干渉計を用いて以下に説明する
手順により求めている。
(Prior Art) Conventionally, the homogeneity of the refractive index of an optical material as an object to be measured has been determined using an interferometer according to the procedure described below.

たとえば、第12図に示すようなフィゾータイプの干渉
計を用い、まず、第1反射面1を有する第1反射部材2
と第2反射面3を有する第2反射部材4とを互いに間隔
を開けて対向させ、その対向間に容器5に収納された被
測定物6を配置する。
For example, using a Fizeau type interferometer as shown in FIG.
and a second reflecting member 4 having a second reflecting surface 3 are opposed to each other with an interval therebetween, and an object to be measured 6 housed in a container 5 is placed between the opposed members.

容器5は被測定物6を狭んで対向するガラス板7.8と
上蓋9.下蓋lOからなり、ガラス板7.8と被測定物
6との間の隙間はマツチング液11により満たされてい
る。
The container 5 has a glass plate 7.8 and a top lid 9.8 facing each other with the object to be measured 6 in between. It consists of a lower lid lO, and the gap between the glass plate 7.8 and the object to be measured 6 is filled with a matching liquid 11.

ここで、マツチング液11は被測定物6の屈折率nに略
等しい屈折率を有する液体で、たとえば、アニリン、エ
チルアルコール、グリセリンを混合して作製される。こ
のマツチング液11は被測定物6の側面68.6bの凹
凸に基づく波面形状変化を除くためのもので、被測定物
6の側面6a、6bの面形状をS(x、y)とし、被測
定物6が置かれた媒質の屈折率と被測定物6の屈折率n
との屈折率差Δnとすると、一般に、側面6a、 6b
の面形状S(xry)に基づく光路長分布W(x、y)
にはΔn−8(xey)の影響があるが、Δn=oのマ
ツチング液11により隙間を満たすと、被測定物6の側
面6a、 6bの凹凸が補正され、被測定物6の側面6
a、6bの凹凸に基づく波面形状変化を除くことができ
る。
Here, the matching liquid 11 is a liquid having a refractive index substantially equal to the refractive index n of the object to be measured 6, and is prepared by mixing aniline, ethyl alcohol, and glycerin, for example. This matching liquid 11 is used to remove changes in wavefront shape due to irregularities on the side surfaces 68.6b of the object to be measured 6. The refractive index of the medium in which the measuring object 6 is placed and the refractive index n of the measuring object 6
Generally speaking, if the refractive index difference Δn between the side surfaces 6a and 6b is
Optical path length distribution W (x, y) based on the surface shape S (xry) of
Although there is an influence of Δn-8(xey), when the gap is filled with the matching liquid 11 with Δn=o, the unevenness of the side surfaces 6a and 6b of the object to be measured 6 is corrected, and the side surface 6 of the object to be measured 6 is
Changes in the wavefront shape due to the irregularities of a and 6b can be eliminated.

上記のように、第1反射部材2と第2反射部材4との対
向間に、被測定物6を収納した容器5を配置した状態で
、レーザー光源12を駆動して、レーザー光を出射させ
、集光レンズ13、拡大レンズ14により平面波として
の平行光束Pを第1反射部材2、第2反射部材4に導く
、すると、その平面波の一部は第1反射部材2の第1反
射面1により反射される。第1反射部材2の第1反射面
1を透過した残りの平面波は容器5を通過して第2反射
部材4の第2反射面3に至り、この第2反射面3で反射
され、再び元の光路を通って第1反射部材2の第1反射
面1に至り、第1反射面1により反射された平面波と干
渉する。このようにして、第1反射面1で反射された平
面波と第2反射面で反射された平面波とにより干渉光が
形成される。この干渉光は、集光レンズ13と拡大レン
ズ14との間に配置されたハーフミラ−15により結像
レンズ16の存在する方向に光路を曲げられて、撮像素
子17の撮像面17aに結像され、撮像面17aに干渉
パターンが形成される。この干渉パターンは映像信号に
変換され、演算制御部を含むモニター18に送られる。
As described above, with the container 5 containing the object to be measured 6 placed between the first reflecting member 2 and the second reflecting member 4 facing each other, the laser light source 12 is driven to emit laser light. , a parallel light beam P as a plane wave is guided to the first reflection member 2 and the second reflection member 4 by the condensing lens 13 and the magnifying lens 14. Then, a part of the plane wave is reflected on the first reflection surface 1 of the first reflection member 2. reflected by. The remaining plane wave that has passed through the first reflective surface 1 of the first reflective member 2 passes through the container 5, reaches the second reflective surface 3 of the second reflective member 4, is reflected by this second reflective surface 3, and is returned to its original state. It reaches the first reflecting surface 1 of the first reflecting member 2 through the optical path, and interferes with the plane wave reflected by the first reflecting surface 1. In this way, interference light is formed by the plane wave reflected by the first reflecting surface 1 and the plane wave reflected by the second reflecting surface. The optical path of this interference light is bent by a half mirror 15 placed between the condensing lens 13 and the magnifying lens 14 in the direction of the imaging lens 16, and an image is formed on the imaging surface 17a of the imaging device 17. , an interference pattern is formed on the imaging surface 17a. This interference pattern is converted into a video signal and sent to a monitor 18 that includes an arithmetic control section.

今、第1反射面1の幾何学的な面形状を5x(xty)
、第2反射面3の幾何学的な面形状を5t(Xty)、
容器5のガラス板7の第1反射面1に近い側の面7aの
幾何学的な面形状を5a(xty)、容器5のガラス板
8の第2反射面3に近い側の面8aの幾何学的な面形状
を84(x,y)、被測定物6を透過した透過波面の形
状n (x t y )−空気の屈折率を1とすると、
被測定物6が光路に存在する状態での干渉パターンWA
(x、y)は、 という式によって表される。
Now, the geometric surface shape of the first reflective surface 1 is 5x (xty)
, the geometrical surface shape of the second reflective surface 3 is 5t (Xty),
The geometric surface shape of the surface 7a of the glass plate 7 of the container 5 on the side closer to the first reflective surface 1 is 5a(xty), and the geometric surface shape of the surface 8a of the glass plate 8 of the container 5 on the side closer to the second reflective surface 3 is 5a(xty). Assuming that the geometrical surface shape is 84 (x, y), and the shape of the transmitted wavefront transmitted through the object to be measured 6 n (x ty ) - the refractive index of air is 1,
Interference pattern WA when the object to be measured 6 is present in the optical path
(x, y) is expressed by the following formula.

次に、被4]1定物6を光路から取り除いてガラス板7
,8を密着させた状態での干渉パターンW。
Next, the object 4] 1 is removed from the optical path and the glass plate 7 is removed.
, 8 in close contact with each other.

(xpy)を以下に説明するようにして求める。(xpy) is determined as described below.

すなわち、第13図に示すように、容器5がら被測定物
6を除いてマツチング液11を挾んでガラス板7.8を
密接させたものを第1反射部材2と第2反射部材3との
間の光路に挿入した状態で、レーザー光源12を駆動し
て、レーザー光を出射させ、集光レンズ13.拡大レン
ズ14により平面波としての平行光束Pを第1反射部材
2、第2反射部材4に導く。すると、その平面波の一部
は第1反射面1により反射される。第1反射面1を透過
した残りの平面波はガラス板7、マツチング液11、ガ
ラス板8を通過して第2反射面3に至り、この第2反射
面3で反射され、再び元の光路を通って第1反射面1に
至り、第1反射面1により反射された平面波と干渉し、
干渉光が形成される。この干渉光に基づき、゛干渉パタ
ーンW、(x、y)が撮像面17aに形成される。
That is, as shown in FIG. 13, the first reflecting member 2 and the second reflecting member 3 are made by removing the object 6 from the container 5, sandwiching the matching liquid 11, and bringing the glass plates 7.8 into close contact with each other. While the laser light source 12 is inserted into the optical path between the condenser lenses 13 and 13, the laser light source 12 is driven to emit a laser beam. The magnifying lens 14 guides the parallel light beam P as a plane wave to the first reflecting member 2 and the second reflecting member 4. Then, a part of the plane wave is reflected by the first reflecting surface 1. The remaining plane wave that has passed through the first reflective surface 1 passes through the glass plate 7, the matching liquid 11, and the glass plate 8, reaches the second reflective surface 3, is reflected by the second reflective surface 3, and returns to the original optical path. and reaches the first reflecting surface 1, and interferes with the plane wave reflected by the first reflecting surface 1,
Interfering light is formed. Based on this interference light, an interference pattern W, (x, y) is formed on the imaging surface 17a.

この干渉パターンW@(xt V>は、下記の式によっ
て表される。
This interference pattern W@(xt V> is expressed by the following equation.

ここで、■、■式を用いて、H(x、y)について解け
ば、 H(xt y)=WA(Xl y)−W、(x、y) 
 ・・”・・■という式が得られる。
Here, if we solve for H (x, y) using formulas ■ and ■, we get H (xt y) = WA (Xl y) - W, (x, y)
The formula ``...■'' is obtained.

この0式は、被測定物6を光路に介在させた状態での干
渉パターンをまず求め、その光路から被測定物6を取り
除いた状態での干渉パターンを次に求めて、被測定物6
を光路に介在させた状態での干渉パターンからその光路
から被測定物6のみを取り除いた状態での干渉パターン
を求めれば、被測定物6を透過した透過波面の形状を求
めることができることを意味する。
This equation 0 first calculates the interference pattern with the object to be measured 6 interposed in the optical path, then calculates the interference pattern with the object 6 removed from the optical path, and then
This means that the shape of the transmitted wavefront transmitted through the object 6 can be determined by finding the interference pattern with only the object 6 removed from the optical path from the interference pattern with do.

よって、求められた透過波面の形状HCXe y)の最
大値をHaa(Xs’/)、最小値をHM(XI y)
とすると、被81!I定物6の屈折率分布δnは、下記
の式によって与えられる。
Therefore, the maximum value of the obtained transmitted wavefront shape HCXe y) is Haa(Xs'/), and the minimum value is HM(XI y)
Then, the number of hits is 81! The refractive index distribution δn of the I constant 6 is given by the following formula.

δn=(HMI(X t y)  Hum (X + 
3’)〕 ’λ/dただし、λは測定に用いる光の波長
、dは被測定物6の厚さである。
δn=(HMI(X t y) Hum (X +
3')] 'λ/d where λ is the wavelength of the light used for measurement, and d is the thickness of the object to be measured 6.

(発明が解決しようとする問題点) ところが、被測定物6とマツチング液Uとの間の屈折率
差Δnが0となるようなマツチング液11を製作するの
は困難かつ面倒である。
(Problems to be Solved by the Invention) However, it is difficult and troublesome to manufacture the matching liquid 11 such that the refractive index difference Δn between the object to be measured 6 and the matching liquid U is 0.

また、干渉パターンの観察の際、マツチング液11の流
動に基づき干渉パターンの各編が動いて安定して観察で
きないという不都合がある。
Furthermore, when observing the interference pattern, each stitch of the interference pattern moves due to the flow of the matching liquid 11, making it difficult to observe the interference pattern stably.

さらに、マツチング液11自体にも屈折率の不均質性が
あり、干渉パターンWA(XI Y)を求める際のマツ
チング液11.の屈折率の不均質性と干渉パターンW@
(XI y)を求める際のマツチング液11の屈折率の
不均質性との間に差があると、得られた透過波面の形状
に誤差が生じるという問題点もある。
Furthermore, the matching liquid 11 itself has non-uniformity in refractive index, and the matching liquid 11. Inhomogeneity of refractive index and interference pattern W@
If there is a difference between the inhomogeneity of the refractive index of the matching liquid 11 when determining (XI y), there is also the problem that an error occurs in the shape of the obtained transmitted wavefront.

(発明の目的) 本発明は、゛上記の各種の事情に鑑みて為されたもので
、その目的とするところは、マツチング液を用いなくて
も、被測定物を透過した透過波面の形状を正確に測定す
ることのできる被測定物の透過波面の形状測定方法及び
その方法に用いる装置を提供することにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and its purpose is to obtain the shape of a transmitted wavefront transmitted through an object to be measured without using a matching liquid. An object of the present invention is to provide a method for measuring the shape of a transmitted wavefront of an object to be measured, which can be accurately measured, and an apparatus used in the method.

見班例盪双 (問題点を解決するための手段) 本発明に係る被測定物の透過波面の形状測定方法の特徴
は。
Example 2 (Means for solving problems) The characteristics of the method for measuring the shape of a transmitted wavefront of a measured object according to the present invention are as follows.

第1反射面で反射された反射波面と第2反射面で反射さ
れた反射波面とにより形成される干渉パターンに基づき
、被測定物が光路に進入されていない状態での波面形状
を含んだ光路長分布W□(xty)と、前記被測定物が
前記光路に進入された状態で前記第1反射面で反射され
た反射波面と前記第2反射面で反射された反射波面とに
より形成される干渉パターンに基づき、前記被測定物の
存在による波面形状変化を含んだ光路長分布W、(x。
Based on the interference pattern formed by the reflected wavefront reflected by the first reflective surface and the reflected wavefront reflected by the second reflective surface, the optical path includes the wavefront shape in a state where the object to be measured does not enter the optical path. It is formed by a length distribution W□(xty), a reflected wavefront reflected by the first reflecting surface and a reflected wavefront reflected by the second reflecting surface when the object to be measured enters the optical path. Based on the interference pattern, the optical path length distribution W, (x) includes a wavefront shape change due to the presence of the object to be measured.

y)と、前記第1反射面で反射された反射波面と前記被
測定物の一方の側面で反射された反射波面とにより形成
される干渉パターンに基づき、前記被i11’l定物の
一方の側面による波面形状変化を含んだ光路長分布W)
(Xt y)と、前記第2反射面で反射された反射波面
と前記被測定物の他方の側面で反射された反射波面とに
より形成される干渉パターンに基づき、前記被測定物の
他方の側面による波面形状変化を含んだ光路長分布W、
(x、y)とを求め、 前記各光路長分布に基づき下記の演算を行なって前記被
測定物を透過した透過波面の形状H(x。
y) and the interference pattern formed by the reflected wavefront reflected by the first reflecting surface and the reflected wavefront reflected by one side surface of the object to be measured, Optical path length distribution including wavefront shape change due to side surface W)
(Xt y), the other side surface of the object to be measured based on the interference pattern formed by the reflected wavefront reflected by the second reflecting surface and the reflected wavefront reflected by the other side surface of the object to be measured. The optical path length distribution W including the wavefront shape change due to
(x, y), and perform the following calculations based on each of the optical path length distributions to determine the shape H(x) of the transmitted wavefront transmitted through the object to be measured.

y)を求めるところにある。y).

H(x、y)=Wt(xty)   wx(xty) 
  (n   1)(Wi(xty)+W4(x−y)
   W1(x,y)〕但し、nは前記被測定物の屈折
率である。
H(x, y) = Wt(xty) wx(xty)
(n 1)(Wi(xty)+W4(x-y)
W1 (x, y)] where n is the refractive index of the object to be measured.

本発明に係る被測定物の透過波面の形状測定方法に用い
る装置の特徴は、 第1干渉計と第2干渉計と、該第1及び第2干渉計を制
御して干渉パターンに基づき被測定物を透過した透過波
面の形状を求める演算制御部とを有し。
The features of the device used in the method for measuring the shape of a transmitted wavefront of a measured object according to the present invention include a first interferometer, a second interferometer, and a device to be measured based on an interference pattern by controlling the first and second interferometers. It has an arithmetic control unit that determines the shape of a transmitted wavefront that has passed through an object.

前記第1干渉計には、第1反射面を有して前記被測定物
の一方の側面に対向する第1反射部材が設けられ、 前記第2干渉計には、第2反射面を有して前記被測定物
の他方の側面に対向する第2反射部材が設けられ、 前記第1反射部材と第2反射部材とは、互いに対向して
その対向間に前記被測定物が介在される干渉光路を構成
し、 前記演算制御部は、前記第1干渉計の側から光を出射さ
せて前記第1反射面で反射された反射波面と前記第2反
射面で反射された反射波面とにより形成される干渉パタ
ーンに基づき前記被測定物が光路に進入されていない状
態での波面形状を含んだ光路長分布Wユ(x、y)と、
前記被測定物が前記光路に進入された状態で前記第1干
渉計の側から光を出射させて前記第1反射面で反射され
た反射波面と前記第2反射面で反射された反射波面とに
より形成される干渉パターンに基づき前記被測定物の存
在による波面形状変化を含んだ光路長分布V/、(x、
y)と、前記第2反射部材を前記光路から退避させた状
態で前記第1干渉計の側から光を出射させて前記第1反
射面で反射された反射波面と前記被測定物の一方の側面
で反射された反射波面とにより形成される干渉パターン
に基づき前記被測定物の一方の側面による波面形状変化
を含んだ光路長分布W、(x、y)と、前記第1反射部
材を前記光路から退避させた状態で前記第2干渉計の側
から光を出射させて前記第2反射面で反射された反射波
面と前記被測定物の他方の側面で反射された反射波面と
により形成される干渉パターンに基づき前記被測定物の
他方の側面による波面形状変化を含んだ光路長分布W4
(Xsy)とを求め、前記各光路長分布に基づき下記の
演算を行なって前記被測定物を透過した透過波面の形状
H(x、y)を求めるところにある。
The first interferometer is provided with a first reflecting member having a first reflecting surface and facing one side of the object to be measured, and the second interferometer is provided with a first reflecting member having a second reflecting surface. and a second reflecting member facing the other side of the object to be measured, the first reflecting member and the second reflecting member facing each other and interposing the object to be measured between them. The arithmetic and control unit configures an optical path, and the calculation control unit causes light to be emitted from the first interferometer and is formed by a reflected wavefront that is reflected by the first reflective surface and a reflected wavefront that is reflected by the second reflective surface. an optical path length distribution W(x, y) including a wavefront shape in a state in which the object to be measured is not entered into the optical path, based on the interference pattern generated by the optical path;
With the object to be measured entering the optical path, light is emitted from the first interferometer side, and a reflected wavefront reflected by the first reflecting surface and a reflected wavefront reflected by the second reflecting surface. Based on the interference pattern formed by the optical path length distribution V/, (x,
y), with the second reflecting member retracted from the optical path, light is emitted from the first interferometer side, and the reflected wavefront reflected by the first reflecting surface and one of the objects to be measured are An optical path length distribution W, (x, y) including a wavefront shape change due to one side surface of the object to be measured based on an interference pattern formed by the reflected wavefront reflected from the side surface, and the first reflecting member Light is emitted from the second interferometer side in a state of being retracted from the optical path, and is formed by a reflected wavefront reflected by the second reflecting surface and a reflected wavefront reflected by the other side of the object to be measured. An optical path length distribution W4 that includes a wavefront shape change due to the other side surface of the object to be measured based on the interference pattern
(Xsy) is determined, and the following calculation is performed based on the respective optical path length distributions to determine the shape H(x, y) of the transmitted wavefront transmitted through the object to be measured.

H(xty)=% (xty)−Wl (x、y)−(
n−t)(Wl (xvy)+W4 (xty)−wx
 (xty)〕但し、nは前記被測定物の屈折率である
H (xty) = % (xty) - Wl (x, y) - (
n-t)(Wl (xvy)+W4 (xty)-wx
(xty)] where n is the refractive index of the object to be measured.

(実施例) 以下に1本発明に係る被測定物の透過波面の形状測定方
法及びその方法に用いる装置の実施例を図面を参照しつ
つ説明する・ 第1図〜第5図は本発明に係る被測定物の透過波面の形
状測定方法の第1実施例を説明するための説明図であっ
て、この第1実施例による被測定物の透過波面の形状測
定方法にはフィゾータイプの干渉計を用いる。なお、こ
の第1図〜第5図において従来例と同−構成要素には同
一符号が付されている。
(Example) Hereinafter, an example of a method for measuring the shape of a transmitted wavefront of a measured object according to the present invention and an apparatus used in the method will be explained with reference to the drawings. FIG. 2 is an explanatory diagram for explaining a first embodiment of a method for measuring the shape of a transmitted wavefront of a measured object according to the first embodiment, and the method for measuring the shape of a transmitted wavefront of a measured object according to the first embodiment uses a Fizeau type interferometer. Use. Note that in FIGS. 1 to 5, the same components as in the conventional example are given the same reference numerals.

まず、第1図に示すように、第1反射部材2と第2反射
部材4とを相対的に僅かに傾けた状態で対向させて配置
し、第1反射面1で反射された反射波面と第2反射面3
で反射された反射波面とにより形成される干渉パターン
fi(Xs y)に基づき、被測定物6が光路に進入さ
れていない状態での波面形状を含んだ光路長分布W工(
x、y)を求める。ここで、従来例と同様に第1反射面
1.第2反射面3の幾何学的な面形状をそれぞれ5n(
xsy)、52(X、りとすると、干渉パターンfAx
+ y)は下記0式によって与えられる。
First, as shown in FIG. 1, the first reflecting member 2 and the second reflecting member 4 are arranged facing each other in a relatively slightly inclined state. Second reflective surface 3
Based on the interference pattern fi(Xs y) formed by the reflected wavefront reflected by the optical path length distribution W(
x, y). Here, as in the conventional example, the first reflecting surface 1. The geometric surface shape of the second reflective surface 3 is 5n(
xsy), 52(X, ri), the interference pattern fAx
+y) is given by the following formula 0.

f、(x、 y)=Si(xsy) + SR(XIy
) +(A、xs13.y+Ct)   +++++■
なお、(Ax+By+C:)の項は干渉縞を出すために
反射面1と反射面2とを相対的に傾けたことを意味する
成分で、係数A、B、Cは最小自乗法によって平面近似
を行なうことによって求めることができる。また、面形
状52(−x、y)のX軸成分には負の符号が付されて
いるが、これは、第5図(a)に示すように第2反射面
3の向きの符号を第1反射面1と逆向きにとっているか
らである。
f, (x, y) = Si(xsy) + SR(XIy
) +(A, xs13.y+Ct) ++++++■
Note that the term (Ax+By+C:) is a component that means that reflective surface 1 and reflective surface 2 are tilted relative to each other in order to produce interference fringes, and the coefficients A, B, and C are approximated by plane approximation using the method of least squares. You can seek it by doing. Furthermore, the X-axis component of the surface shape 52 (-x, y) is given a negative sign, but this does not correspond to the sign of the orientation of the second reflective surface 3, as shown in FIG. 5(a). This is because it is oriented in the opposite direction to the first reflective surface 1.

よって、■式から(A、x+Bly+C,)の成分を除
去すれば屈折率分布Wl(XI y)を求めることがで
き、 屈折率分布W1(x、y)は、Wl (X + 
3’ )” f x (Xs y) (A1xs B1
y+C1)      ・・=・・■という式によって
与えられる。
Therefore, by removing the component (A,
3')" f x (Xs y) (A1xs B1
y+C1)...=...■ It is given by the formula.

次に、第2図に示すように被測定物6が光路に進入され
た状態での第1反射面1で反射された反射波面と第2反
射面3で反射された反射波面とにより形成される干渉パ
ターンL(XI y)に基づき、被測定物6の存在によ
る波面形状変化を含んだ光路長分布W、(x、y)を求
める。
Next, as shown in FIG. 2, a wavefront is formed by a reflected wavefront reflected by the first reflecting surface 1 and a reflected wavefront reflected by the second reflecting surface 3 when the object to be measured 6 enters the optical path. Based on the interference pattern L(XI y), an optical path length distribution W, (x, y) including a change in wavefront shape due to the presence of the object to be measured 6 is determined.

二二で、第1反射面1に近い側の被測定物6の側面6a
の形状を83(XIY)、第2反射面3に近い側の被測
定物6の側面6bの形状を84 (x、y)、被測定物
6を透過した透過波面の形状をH(x、y)、被測定物
6の屈折率をnとすると、 したがって、屈折率分布W=(x、y)は、W2(x、
 y)=L(XI 3’)(A4X+82y+CJ  
      ”””■によって求められる。
22, the side surface 6a of the object to be measured 6 on the side closer to the first reflective surface 1
The shape of the side surface 6b of the object to be measured 6 on the side closer to the second reflecting surface 3 is 84 (x, y), and the shape of the transmitted wavefront transmitted through the object to be measured 6 is H(x, y), and the refractive index of the object to be measured 6 is n. Therefore, the refractive index distribution W=(x, y) is W2(x,
y)=L(XI 3')(A4X+82y+CJ
Required by “””■.

ここで、面形状S3(XIY)のX軸成分には負の符号
が付されているが、これは、第5図(b)に示すように
側面6aの向きを第1反射面1と逆向きに符号をとって
いるからである。
Here, the X-axis component of the surface shape S3 (XIY) is given a negative sign, but this is because the direction of the side surface 6a is opposite to that of the first reflective surface 1, as shown in FIG. 5(b). This is because the sign is taken for the direction.

更に、第3図に示すように、第1反射面1で反射された
反射波面と被測定物6の一方の側面6aで反射された反
射波面とにより形成される干渉パターンに基づき、被測
定物6の一方の側面6aによる波面形状変化を含んだ光
路長分布W3(x、y)を求める。干渉パターンをL(
XI y)とすると、fi(xt y)=st(xty
)+si(XIY)+(A3XIB3y+C3)   
−・・・■よって、屈折率分布W3(XI y)は、W
l(XI !>=f3CXt y)−(A3XIB3y
+C3)       、、、・、・■によって求めら
れる。なお、符号のとりかたは第5図(c)に示す通り
である。
Furthermore, as shown in FIG. An optical path length distribution W3 (x, y) including a wavefront shape change due to one side surface 6a of 6 is determined. The interference pattern is L(
XI y), then fi(xt y)=st(xty
)+si(XIY)+(A3XIB3y+C3)
-...■ Therefore, the refractive index distribution W3 (XI y) is W
l(XI !>=f3CXt y)-(A3XIB3y
+C3) , , , , ・■. Note that the symbols are used as shown in FIG. 5(c).

そして、最後に、第4図に示すように、第2反射面3で
反射された反射波面と被測定物6の他方の側面6bで反
射された反射波面とにより形成される干渉パターンに基
づき、被測定物6の他方の側面6bによる波面形状変化
を含んだ光路長分布W4(xty)とを求める。干渉パ
ターンをf4(x、・y)とすると、 f*(xs y)=St(xsy)+5J−xsy)+
(A4xsB、y+CJ   −@1よって、光路長分
布W4(x, y)は、W4(Ke y)=f4(xt
 y)−(A、xsB4y+C4)      +++
+++■ここで、■式と0式とを用いて。
Finally, as shown in FIG. 4, based on the interference pattern formed by the reflected wavefront reflected by the second reflecting surface 3 and the reflected wavefront reflected by the other side surface 6b of the object to be measured 6, An optical path length distribution W4 (xty) including a change in wavefront shape due to the other side surface 6b of the object to be measured 6 is determined. If the interference pattern is f4(x,・y), then f*(xs y)=St(xsy)+5J-xsy)+
(A4xsB,y+CJ -@1 Therefore, the optical path length distribution W4(x, y) is W4(Key y)=f4(xt
y) - (A, xsB4y+C4) +++
+++■Here, use the ■formula and the 0 formula.

W、(x、y)−Wユ(xsy)を求めると、W、(x
、 y)−Wl(XI y)=1(x, y)−fx(
Xs y)   −■この0式は、■式と0式とを用い
て。
When we calculate W, (x, y) - Wyu(xsy), we get W, (x
, y)-Wl(XI y)=1(x, y)-fx(
Xs y) -■ This 0 formula uses the ■ formula and the 0 formula.

f、(x t y )−f> (x t y)=H(x
ty)+ (n−D (Sl (−xty)+ 84 
(x、y)〕−@と整理できる。
f, (x ty)-f> (x ty)=H(x
ty)+ (n-D (Sl (-xty)+ 84
It can be organized as (x, y)]-@.

一方、0式の干渉パターンL(XI y)Lこ[相]式
の右辺の項を代入すると、 W4(x, y)=st(xty)+s4(−xty)
よって、 W4(xt y)=82(xty)+54(xty) 
 ++++++ 0この[相]式と0式とを用いて、W
3(Xty)とW4(−x、y)との和を求めると、 この0式に0式を適用すると、 ところで、0式、■式により。
On the other hand, by substituting the term on the right side of the interference pattern L(XI y)L[phase] of equation 0, we get W4(x, y)=st(xty)+s4(-xty)
Therefore, W4(xty)=82(xty)+54(xty)
++++++ 0Using this [phase] formula and the 0 formula, W
If we calculate the sum of 3(Xty) and W4(-x, y), then by applying the 0 formula to this 0 formula, By the way, according to the 0 formula and the ■ formula.

W□(X + y )= Sよ(ス+y)+5t(−1
y)であるから、[相]式は、 S3(Xlい+34(Xty)=%(Xsい+W4(−
x、 y)−Wi(XI y)−@式に変形できる。
W □ (X + y) = Syo (S + y) + 5t (-1
y), the [phase] formula is S3(X+34(Xty)=%(Xs+W4(-
x, y)-Wi(XI y)-@formula.

この0式を[相]式に代入すると、最終的に、被測定物
6を透過した透過波面の形状H(xt y)を表す下記
の式が求まる。
By substituting this 0 equation into the [phase] equation, the following equation representing the shape H(xt y) of the transmitted wavefront transmitted through the object to be measured 6 is finally obtained.

II (xty) =W2 (xty) −Wx (x
ty) −(n−1) (Wz (xty) +W4 
(xty) −Wl (x、y)〕第6図〜第9図は、
本発明に係る測定方法の第2実施例を示す図であって、
干渉計としてトワイマングリーンタイプのものを用いた
ものである。
II (xty) =W2 (xty) -Wx (x
ty) −(n-1) (Wz (xty) +W4
(xty) -Wl (x, y)] Figures 6 to 9 are
FIG. 2 is a diagram showing a second embodiment of the measurement method according to the present invention,
A Twyman Green type interferometer was used.

このトワイマングリーンタイプの干渉計の場合にも、第
1実施例と同様に、まず、第6図に示すように、被測定
物6が光路に存在しない状態での干渉パターンfi(x
ty)を求め、次に、第7図に示すように、被測定物6
をビームスプリッタ19と第2反射部材4との間の光路
に挿入して被測定物6が光路に存在する状態での干渉パ
ターンL(Xty)を求め、その次に、第8図に示すよ
うに第1反射面1と被測定物6の一方の側面6aとの干
渉パターンf3(XI y)を求め、最後に、第9図に
示すように、第2反射面3と被測定物6の他方の側面6
bとの干渉パターンf*(xt、y)を求めるという手
順を踏むことにより、被測定物6を透過した透過波面の
形状を求めることができる。
In the case of this Twyman Green type interferometer, as in the first embodiment, first, as shown in FIG. 6, the interference pattern fi(x
ty), and then, as shown in FIG.
is inserted into the optical path between the beam splitter 19 and the second reflecting member 4 to obtain the interference pattern L (Xty) with the object to be measured 6 present in the optical path, and then as shown in FIG. The interference pattern f3 (XI y) between the first reflecting surface 1 and one side surface 6a of the object to be measured 6 is determined, and finally, as shown in FIG. other side 6
By following the steps of determining the interference pattern f*(xt, y) with b, the shape of the transmitted wavefront transmitted through the object to be measured 6 can be determined.

第1O図、第11図は本発明に係る被測定物の透過波面
の形状測定方法に用いる装置の実施例を示す図であって
、この装置は、第10図に示すように、第1干渉計20
と第2干渉計21と、この第1干渉計20、第2干渉計
21を制御して干渉パターンに基づき被測定物6を透過
した透過波面の形状を求める演算制御部22とを有して
いる。第1干渉計20には。
1O and 11 are diagrams showing an embodiment of an apparatus used in the method for measuring the shape of a transmitted wavefront of a measured object according to the present invention, and as shown in FIG. Total 20
and a second interferometer 21, and an arithmetic control unit 22 that controls the first interferometer 20 and the second interferometer 21 to determine the shape of the transmitted wavefront transmitted through the object to be measured 6 based on the interference pattern. There is. In the first interferometer 20.

第1反射面1を有して被測定物6の一方の側面6aに対
向する第1反射部材2が設けられ、第2干渉計21には
、第2反射面3を有して被測定物6の他方の側面6aに
対向する第2反射部材4が設けられている。第1反射部
材2と第2反射部材4とは、互いに対向してその対向間
に被測定物6が介在される干渉光路Mを構成している。
A first reflecting member 2 having a first reflecting surface 1 and facing one side surface 6a of the object to be measured 6 is provided, and the second interferometer 21 is provided with a first reflecting member 2 having a second reflecting surface 3 and facing one side surface 6a of the object to be measured 6. A second reflecting member 4 facing the other side surface 6a of the reflecting member 6 is provided. The first reflecting member 2 and the second reflecting member 4 face each other and constitute an interference optical path M in which the object to be measured 6 is interposed between the opposing members.

演算制御部22は、マイクロコンピュータ23.メモリ
24、操作部251表示部26から概略構成されている
。マイクロコンピュータ23は、第1干渉計20の側か
ら光を出射させて第1反射面1で反射された反射波面と
第2反射面3で反射された反射波面とにより形成される
干渉パターンに基づき被測定物が光路Mに進入されてい
ない状態での波面形状を含んだ光路長分布Wユ(x、y
)と、被測定物6が光路Mに進入された状態で第1干渉
計20の側から光を出射させて第1反射面1で反射され
た反射波面と第2反射面3で反射された反射波面とによ
り形成される干渉パターンに基づき被測定物6の存在に
よる波面形状変化を含んだ光路長分布W2(x、y)と
、第2反射部材4を光路Mから退避させた状態で第1干
渉計20の側から光を出射させて第1反射面1で反射さ
れた反射波面と被測定物6の一方の側面6aで反射され
た反射波面とにより形成される干渉パターンに基づき被
測定物6の一方の側面6aによる波面形状変化を含んだ
光路長分布W3(XI y)と、第1反射部材2を光路
Mから退避させた状態で第2干渉計21の側から光を出
射させて第2反射面3で反射された反射波面と被8!り
宝物6の他方の側面6bで反射された反射波面とにより
形成される干渉パターンに基づき被測定物6の他方の側
面6bによる波面形状変化を含んだ光路長分布W4(x
, y)とを求め、各光路長分布に基づき演算を行なっ
て被測定物6を透過した透過波面の形状H(xpy)を
求める機能を有する。メモリ524は演算制御プログラ
ムを記憶しており、マイクロコンピュータ23は操作部
25の指令に基づいてその演算制御プログラムを実行す
る。その測定結果は干渉パターンと共に、表示部26に
表示される。
The arithmetic control section 22 includes a microcomputer 23. It is roughly composed of a memory 24, an operation section 251, and a display section 26. The microcomputer 23 emits light from the first interferometer 20 side and uses an interference pattern formed by a reflected wavefront reflected by the first reflecting surface 1 and a reflected wavefront reflected by the second reflecting surface 3. The optical path length distribution W (x, y
), light is emitted from the first interferometer 20 side with the object to be measured 6 entered into the optical path M, and a reflected wavefront reflected by the first reflecting surface 1 and a reflected wavefront reflected by the second reflecting surface 3 are generated. The optical path length distribution W2 (x, y) including the wavefront shape change due to the presence of the object to be measured 6 is based on the interference pattern formed by the reflected wavefront, and the optical path length distribution W2 (x, y) is 1. Light is emitted from the side of the interferometer 20, and the measured object is measured based on an interference pattern formed by a reflected wavefront reflected by the first reflecting surface 1 and a reflected wavefront reflected by one side surface 6a of the object to be measured 6. The optical path length distribution W3 (XI y) including the wavefront shape change due to one side surface 6a of the object 6, and the light emitted from the second interferometer 21 side with the first reflecting member 2 retracted from the optical path M. The reflected wavefront reflected by the second reflecting surface 3 and the surface 8! The optical path length distribution W4 (x
. The memory 524 stores an arithmetic control program, and the microcomputer 23 executes the arithmetic control program based on commands from the operation unit 25. The measurement results are displayed on the display section 26 together with the interference pattern.

なお、27はA/D変換器である。Note that 27 is an A/D converter.

次に、第11図に示すフローチャートを参照しつつ測定
手順を説明する。
Next, the measurement procedure will be explained with reference to the flowchart shown in FIG.

まず、図示を略す可動台に被測定物6をセットする(S
l)、次に、操作部25の操作により被測定物6を光路
Mから離脱させる(S2)、次に、操作部25の操作に
より干渉計20のレーザー光g12を駆動する(S3)
、次に、撮像面17aに形成された干渉パターンの光電
変換信号をデジタル変換してデータとして読み込む(S
4)。マイクロコンピュータ23により表示用の干渉パ
ターンfx(ス+y)を作製する(S5)。
First, the object to be measured 6 is set on a movable table (not shown) (S
l), Next, the object to be measured 6 is removed from the optical path M by operating the operating section 25 (S2). Next, the laser beam g12 of the interferometer 20 is driven by operating the operating section 25 (S3).
Next, the photoelectric conversion signal of the interference pattern formed on the imaging surface 17a is digitally converted and read as data (S
4). An interference pattern fx (s+y) for display is produced by the microcomputer 23 (S5).

次に、第1、第2反射面1.3の傾斜に基づく補正演算
Aix+B、y十G、を行なう(S6)、その後、光路
長分布wz(xty)=ri(xty)  A1x十B
、y十C1を求める演算を行なう(37)。
Next, a correction calculation Aix+B, y+G based on the inclination of the first and second reflective surfaces 1.3 is performed (S6), and then the optical path length distribution wz(xty)=ri(xty) A1x+B
, y0C1 is calculated (37).

操作部25を操作して可動台を駆動すると、被測定物6
が光路Mに挿入される(S8)。操作部25の操作によ
り干渉計20のレーザー光源12を駆動する(S9)、
ステップS4と同様にデータを読み込む(SIO)。
When the operating unit 25 is operated to drive the movable base, the object to be measured 6
is inserted into the optical path M (S8). driving the laser light source 12 of the interferometer 20 by operating the operation unit 25 (S9);
Data is read in the same way as step S4 (SIO).

そして、同様に、干渉パターンf、(ス+y)の作製(
S11)、傾斜補正演算A、x+B、y+C,、光路長
分布w2(xty)= f z(Xsy)  A2X+
 B2y+ c、を求める演算を行なう(S12.51
3)。
Similarly, the interference pattern f, (s+y) is created (
S11), tilt correction calculation A, x+B, y+C,, optical path length distribution w2 (xty) = f z (Xsy) A2X+
Perform calculation to obtain B2y+c (S12.51
3).

次に、操作部25を操作して可動台を駆動すると、第2
反射部材4が光路Mから退避される(514)。
Next, when the operating unit 25 is operated to drive the movable base, the second
The reflecting member 4 is retracted from the optical path M (514).

そして、操作部25の操作により干渉計zOのレーザー
光源12を駆動する(515)。ステップSIOと同様
にデータを読み込む(S16)。そして、同様にして、
干渉パターンf3 (xty)の作@ (S17) 、
傾斜補正演算A、x+ B3y+ C,、光路長分布W
3 (X+y) :l: f 3 (xty)−A、x
+B、y+C,を求める演算を行なう(518,519
)。
Then, the laser light source 12 of the interferometer zO is driven by operating the operating unit 25 (515). Data is read in the same way as step SIO (S16). And in the same way,
Creation of interference pattern f3 (xty) @ (S17),
Tilt correction calculation A, x+ B3y+ C, optical path length distribution W
3 (X+y) :l: f 3 (xty)-A, x
+B, y+C, are calculated (518, 519
).

そして、最終手順として、操作部25を操作して可動台
を駆動すると、第1反射部材2が光路Mから退避される
(520)、そして、操作部25の操作により干渉計2
1のレーザー光源12を駆動する(S21)。
Then, as a final step, when the operating section 25 is operated to drive the movable base, the first reflecting member 2 is retracted from the optical path M (520).
The first laser light source 12 is driven (S21).

次に、ステップS16と同様にデータを読み込む(S2
2)、そして、同様にして、干渉パターンf 4 (X
sy)の作製(S23)、傾斜補正演算A4X+B4y
+C4−光路長分布w4(xty)=t’4(xty)
  A4X+B4V+CIを求める演算を行なう(82
3,524)。
Next, data is read in the same way as step S16 (S2
2), and similarly, the interference pattern f 4 (X
sy) (S23), slope correction calculation A4X+B4y
+C4-optical path length distribution w4(xty) = t'4(xty)
Perform calculation to obtain A4X+B4V+CI (82
3,524).

これらの測定終了後、マイクロコンピュータ23は下記
の演算を行なう(S25)。
After completing these measurements, the microcomputer 23 performs the following calculations (S25).

H(X+y) =% (xsy) −Wt (xty)
 −(n−1) (’iMx (xty) +W4 (
xty) −Wx (xty)〕そして、測定終了か否
かを判断し、別の被測定物の測定を行なう必要がある場
合には、ステップSlに移行して続けてその測定を行な
う。
H(X+y) =% (xsy) -Wt (xty)
-(n-1) ('iMx (xty) +W4 (
xty) -Wx (xty)] Then, it is determined whether the measurement has ended or not, and if it is necessary to measure another object to be measured, the process moves to step Sl to continue that measurement.

この本発明に係る被測定物の透過波面の形状測定方法に
用いる装置によれば、被測定物の透過波面の形状H1l
l定に伴う面倒な手順を簡単な操作で行なう事ができる
という効果を奏する。
According to the apparatus used in the method for measuring the shape of the transmitted wavefront of the object to be measured according to the present invention, the shape H1l of the transmitted wavefront of the object to be measured is
This has the effect that the troublesome procedures involved in setting can be performed with a simple operation.

λ胛食肱末 本発明に係る被測定物の透過波面の形状測定方法によれ
ば、以上説明したように、マツチング液を用いなくとも
、被測定物を透過した透過波面の形状を測定でき、その
透過波面の形状測定を正確形状を測定でき、その透過波
面の形状測定を正確に行なうことができるという効果を
奏する。
According to the method for measuring the shape of the transmitted wavefront of the object to be measured according to the present invention, as explained above, the shape of the transmitted wavefront that has passed through the object to be measured can be measured without using a matching liquid. The shape of the transmitted wavefront can be accurately measured, and the shape of the transmitted wavefront can be accurately measured.

また、本発明に係る被測定物の透過波面の形状測定方法
に用いる装置によれば、被測定物の透過波面の形状測定
に伴う面倒な手順を簡単な操作で行なう事ができるとい
う効果を奏する。
Further, according to the apparatus used in the method for measuring the shape of the transmitted wavefront of the object to be measured according to the present invention, the troublesome procedure associated with measuring the shape of the transmitted wavefront of the object to be measured can be performed with a simple operation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明に係る被測定物の透過波面の形
状測定方法の第1実施例を示す図であって、第1図〜第
4図はその測定手順を説明するための説明図、第5図は
透過波面の形状の座標軸を説明するための説明図、第6
図〜第9図は本発明に係る被測定物の透過波面の形状測
定方法の第2実施例を説明するための説明図、第1O図
は本発明に係る被測定物の透過波面の形状測定方法に用
いる装置の概略構成図、第11図は第10図に示す装置
を用いて被測定物の透過波面の形状測定を行なう際の測
定手順を示すフローチャート、第12図、第13図は従
来の被測定物の透過波面の形状測定方法の説明図である
。 1・・・第1反射面、  2・・・第1反射部材3・・
・第2反射面、  4・・・第2反射部材6・・・被測
定物 、  6a、6b・・・側面12・・・レーザー
光源、 17・・・撮像素子20°°“第1干渉計、2
1・・・第2干渉計22・・・演算制御部、  M・・
・光路第 1 区 第7図
1 to 5 are diagrams showing a first embodiment of a method for measuring the shape of a transmitted wavefront of a measured object according to the present invention, and FIGS. 1 to 4 are diagrams for explaining the measurement procedure. Explanatory diagram, Figure 5 is an explanatory diagram for explaining the coordinate axes of the shape of the transmitted wavefront, and Figure 6 is an explanatory diagram for explaining the coordinate axes of the shape of the transmitted wavefront.
9 to 9 are explanatory diagrams for explaining the second embodiment of the method for measuring the shape of the transmitted wavefront of the object to be measured according to the present invention, and FIG. FIG. 11 is a flowchart showing the measurement procedure when measuring the shape of the transmitted wavefront of the object to be measured using the device shown in FIG. 10, and FIGS. 12 and 13 are conventional FIG. 2 is an explanatory diagram of a method for measuring the shape of a transmitted wavefront of an object to be measured. 1... First reflecting surface, 2... First reflecting member 3...
・Second reflecting surface, 4... Second reflecting member 6... Measured object, 6a, 6b... Side surface 12... Laser light source, 17... Imaging element 20°° "First interferometer ,2
1... Second interferometer 22... Arithmetic control unit, M...
・Light path 1st ward diagram 7

Claims (2)

【特許請求の範囲】[Claims] (1)第1反射面で反射された反射波面と第2反射面で
反射された反射波面とにより形成される干渉パターンに
基づき、被測定物が光路に進入されていない状態での波
面形状を含んだ光路長分布W_1(x,y)と、前記被
測定物が前記光路に進入された状態で前記第1反射面で
反射された反射波面と前記第2反射面で反射された反射
波面とにより形成される干渉パターンに基づき、前記被
測定物の存在による波面形状変化を含んだ光路長分布W
_2(x,y)と、前記第1反射面で反射された反射波
面と前記被測定物の一方の側面で反射された反射波面と
により形成される干渉パターンに基づき、前記被測定物
の一方の側面による波面形状変化を含んだ光路長分布W
_3(x,y)と、前記第2反射面で反射された反射波
面と前記被測定物の他方の側面で反射された反射波面と
により形成される干渉パターンに基づき、前記被測定物
の他方の側面による波面形状変化を含んだ光路長分布W
_4(x,y)とを求め、 前記各光路長分布に基づき下記の演算を行なって前記被
測定物を透過した透過波面の形状H(x,y)を求める
ことを特徴とする被測定物の透過波面の形状測定方法。 H(x,y)=W_2(x,y)−W_1(x,y)−
(n−1)〔W_3(x,y)+W_4(x,y)−W
_1(x,y)〕但し、nは前記被測定物の屈折率であ
る。
(1) Based on the interference pattern formed by the reflected wavefront reflected by the first reflecting surface and the reflected wavefront reflected by the second reflecting surface, the shape of the wavefront in a state where the object to be measured is not entered into the optical path is determined. the optical path length distribution W_1 (x, y) including the reflected wavefront reflected by the first reflecting surface and the reflected wavefront reflected by the second reflecting surface in a state in which the object to be measured enters the optical path. Based on the interference pattern formed by
_2(x,y), one side of the object to be measured based on an interference pattern formed by a reflected wavefront reflected by the first reflecting surface and a reflected wavefront reflected by one side of the object to be measured. Optical path length distribution W including wavefront shape changes due to side surfaces of
_3 (x, y), the other side of the object to be measured based on the interference pattern formed by the reflected wavefront reflected by the second reflecting surface and the reflected wavefront reflected by the other side of the object to be measured. Optical path length distribution W including wavefront shape changes due to side surfaces of
_4(x, y), and performs the following calculation based on each of the optical path length distributions to determine the shape H(x, y) of a transmitted wavefront transmitted through the object to be measured. A method for measuring the shape of the transmitted wavefront. H(x,y)=W_2(x,y)−W_1(x,y)−
(n-1) [W_3(x,y)+W_4(x,y)-W
_1 (x, y)] where n is the refractive index of the object to be measured.
(2)第1干渉計と第2干渉計と、該第1及び第2干渉
計を制御して干渉パターンに基づき被測定物を透過した
透過波面の形状を求める演算制御部とを有し、 前記第1干渉計には、第1反射面を有して前記被測定物
の一方の側面に対向する第1反射部材が設けられ、 前記第2干渉計には、第2反射面を有して前記被測定物
の他方の側面に対向する第2反射部材が設けられ、 前記第1反射部材と第2反射部材とは、互いに対向して
その対向間に前記被測定物が介在される干渉光路を構成
し、 前記演算制御部は、前記第1干渉計の側から光を出射さ
せて前記第1反射面で反射された反射波面と前記第2反
射面で反射された反射波面とにより形成される干渉パタ
ーンに基づき前記被測定物が光路に進入されていない状
態での波面形状を含んだ光路長分布W_1(x,y)と
、前記被測定物が前記光路に進入された状態で前記第1
干渉計の側から光を出射させて前記第1反射面で反射さ
れた反射波面と前記第2反射面で反射された反射波面と
により形成される干渉パターンに基づき前記被測定物の
存在による波面形状変化を含んだ光路長分布W_2(x
,y)と、前記第2反射部材を前記光路から退避させた
状態で前記第1干渉計の側から光を出射させて前記第1
反射面で反射された反射波面と前記被測定物の一方の側
面で反射された反射波面とにより形成される干渉パター
ンに基づき前記被測定物の一方の側面による波面形状変
化を含んだ光路長分布W_3(x,y)と、前記第1反
射部材を前記光路から退避させた状態で前記第2干渉計
の側から光を出射させて前記第2反射面で反射された反
射波面と前記被測定物の他方の側面で反射された反射波
面とにより形成される干渉パターンに基づき前記被測定
物の他方の側面による波面形状変化を含んだ光路長分布
W_4(x,y)とを求め、前記各光路長分布に基づき
下記の演算を行なって前記被測定物を透過した透過波面
の形状H(x,y)を求めることを特徴とする被測定物
の透過波面の形状測定方法に用いる装置。 H(x,y)=W_2(x,y)−W_1(x,y)−
(n−1)〔W_3(x,y)+W_4(x,y)−W
_1(x,y)〕但し、nは前記被測定物の屈折率であ
る。
(2) comprising a first interferometer, a second interferometer, and an arithmetic control unit that controls the first and second interferometers to determine the shape of a transmitted wavefront transmitted through the object based on the interference pattern; The first interferometer is provided with a first reflecting member having a first reflecting surface and facing one side of the object to be measured, and the second interferometer is provided with a first reflecting member having a second reflecting surface. and a second reflecting member facing the other side of the object to be measured, the first reflecting member and the second reflecting member facing each other and interposing the object to be measured between them. The arithmetic and control unit configures an optical path, and the calculation control unit causes light to be emitted from the first interferometer and is formed by a reflected wavefront that is reflected by the first reflective surface and a reflected wavefront that is reflected by the second reflective surface. Based on the interference pattern obtained by 1st
A wavefront due to the presence of the object to be measured based on an interference pattern formed by a reflected wavefront reflected by the first reflecting surface and a reflected wavefront reflected by the second reflecting surface after light is emitted from the interferometer side. Optical path length distribution W_2(x
, y), the light is emitted from the first interferometer side with the second reflecting member retracted from the optical path, and the first
an optical path length distribution that includes a wavefront shape change due to one side of the object to be measured based on an interference pattern formed by a reflected wavefront reflected by the reflective surface and a reflected wavefront reflected by one side of the object to be measured; W_3(x, y), a reflected wavefront that is reflected by the second reflective surface by emitting light from the second interferometer side with the first reflecting member retracted from the optical path, and the measured object. Based on the interference pattern formed by the reflected wavefront reflected from the other side of the object, an optical path length distribution W_4 (x, y) including a change in wavefront shape due to the other side of the object to be measured is determined, and each of the above-mentioned An apparatus used in a method for measuring the shape of a transmitted wavefront of a measured object, characterized in that the shape H(x, y) of a transmitted wavefront transmitted through the measured object is determined by performing the following calculation based on the optical path length distribution. H(x,y)=W_2(x,y)−W_1(x,y)−
(n-1) [W_3(x,y)+W_4(x,y)-W
_1 (x, y)] where n is the refractive index of the object to be measured.
JP31172487A 1987-12-09 1987-12-09 Method for measuring shape of transmitted wavefront of device under test and apparatus used for the method Expired - Fee Related JP2698362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31172487A JP2698362B2 (en) 1987-12-09 1987-12-09 Method for measuring shape of transmitted wavefront of device under test and apparatus used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31172487A JP2698362B2 (en) 1987-12-09 1987-12-09 Method for measuring shape of transmitted wavefront of device under test and apparatus used for the method

Publications (2)

Publication Number Publication Date
JPH01257229A true JPH01257229A (en) 1989-10-13
JP2698362B2 JP2698362B2 (en) 1998-01-19

Family

ID=18020709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31172487A Expired - Fee Related JP2698362B2 (en) 1987-12-09 1987-12-09 Method for measuring shape of transmitted wavefront of device under test and apparatus used for the method

Country Status (1)

Country Link
JP (1) JP2698362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016902A1 (en) * 2000-08-22 2002-02-28 Essilor International Method and apparatus for transmission measurement of the geometric structure of an optical component
JP2006162453A (en) * 2004-12-08 2006-06-22 Canon Inc Measuring method and instrument, exposure device, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016902A1 (en) * 2000-08-22 2002-02-28 Essilor International Method and apparatus for transmission measurement of the geometric structure of an optical component
FR2813391A1 (en) * 2000-08-22 2002-03-01 Essilor Int METHOD AND APPARATUS FOR TRANSMISSION MEASUREMENT OF THE GEOMETRIC STRUCTURE OF AN OPTICAL COMPONENT
US6909498B2 (en) 2000-08-22 2005-06-21 Essilor International Method and apparatus for measuring the geometrical structure of an optical component in transmission
JP2006162453A (en) * 2004-12-08 2006-06-22 Canon Inc Measuring method and instrument, exposure device, and device manufacturing method

Also Published As

Publication number Publication date
JP2698362B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US8947673B2 (en) Estimating thickness based on number of peaks between two peaks in scanning white light interferometry
JP2002206918A (en) Clearance measuring method, device thereof, shape measuring method, device thereof, and manufacturing method of liquid crystal device
JPH021501A (en) Laser interference length measuring machine and positioning method using the same machine
JP3287517B2 (en) Measurement method and apparatus using interference fringes
US5739906A (en) Interferometric thickness variation test method for windows and silicon wafers using a diverging wavefront
US4072422A (en) Apparatus for interferometrically measuring the physical properties of test object
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
JPH03225259A (en) Method for measuring refractive index distribution and transmitted wave front and measuring instrument used for the method
JPH01257229A (en) Measuring method of shape of transmission wavefront of substance to be measured and apparatus used for the same
JP3230536B2 (en) Optical performance measuring method and apparatus
US6819438B2 (en) Technique for fabricating high quality optical components
JP3327998B2 (en) Shape measuring method and device
JPH073323B2 (en) Interfering device
Slangen et al. Computer-aided interferometric measurements of drift and phase shifter calibration for digital speckle pattern interferometry
KR0173509B1 (en) Optical phase-shifting interferometry and method for inspecting precision surface using it
JPH08122026A (en) Measuring method for very small difference in level
JP3086013B2 (en) Optical performance measuring method and apparatus
JPH0357905A (en) Non-contact measuring apparatus of surface shape
JPH0727526A (en) Surface shape inspecting device
JP2003106934A (en) Device and method for measuring optical path length, device and method for measuring thickness, and device and method for measuring inclined component of refractive index distribution
JP2672738B2 (en) Refractive index measuring method and apparatus
JPH11287612A (en) Interferometer
JP4187124B2 (en) Interferometer device using fringe scan
JP2000258292A (en) Method and apparatus for measuring refractive index distribution
JPS61213704A (en) Apparatus for measuring shape of wave front

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees