JPH01255735A - Fluid-sealed type vibration isolating mount - Google Patents

Fluid-sealed type vibration isolating mount

Info

Publication number
JPH01255735A
JPH01255735A JP8245488A JP8245488A JPH01255735A JP H01255735 A JPH01255735 A JP H01255735A JP 8245488 A JP8245488 A JP 8245488A JP 8245488 A JP8245488 A JP 8245488A JP H01255735 A JPH01255735 A JP H01255735A
Authority
JP
Japan
Prior art keywords
fluid
partition plates
chamber
vibration
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8245488A
Other languages
Japanese (ja)
Inventor
Takanobu Minamino
高伸 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP8245488A priority Critical patent/JPH01255735A/en
Publication of JPH01255735A publication Critical patent/JPH01255735A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper

Abstract

PURPOSE:To enable a good vibration isolating effect to be produced over a wide frequency region by making sealed fluid flow between a first fluid chamber and a second fluid chamber through communicating holes and an intermediate chamber. CONSTITUTION:The space between a first supporting body 10 and a second supporting body 12 is elastically connected by a rubber elastic body 14. On both sides interposing a plurality of partition plates 38, a first and a second fluid chambers 42, 44 are formed. Between the partition plates 38, an intermediate chamber 48 of a prescribed volume is defined. When vibration is input between the first supporting body 10 and the second supporting body 12, based on the variation of internal pressure inside the first fluid chamber 42, the flow of sealed fluid is caused between the fluid chambers 42 and 44 through communicating holes 50 and an intermediate chamber 48. Thus, a good vibration isolating effect can be produced over a wide frequency region.

Description

【発明の詳細な説明】 (技術分野) 本発明は流体封入式防振マウントに係り、特に広い周波
数域に亘って優れた防振特性を発揮する流体封入式防振
マウントを、簡単な構造にて有利に実現せしめ得る技術
に関するものである。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a fluid-filled vibration-isolating mount, and in particular, a fluid-filled vibration-isolating mount that exhibits excellent vibration-isolating characteristics over a wide frequency range, with a simple structure. The present invention relates to technology that can be advantageously realized.

(従来技術) 従来から、振動伝達系を構成する二つの部材間に介装さ
れて、それらの部材を防振連結する防振連結体の一種と
して、特公昭48−36151号や特開昭55−107
142号、特開昭61−274131号公報等に開示さ
れている如く、互いに所定距離を隔てて配置された第一
の支持体と第二の支持体とを、それらの間に介装せしめ
られたゴム弾性体にて弾性的に連結して、連結体を構成
する一方、該連結体の内部に、所定の非圧縮性流体が封
入された流体収容室を形成すると共に、該流体収容室内
に仕切部材を設けて、該仕切部材を挟んだ両側に、振動
の入力に際して相対的な流体圧差が生ぜしめられる第一
及び第二の流体室を画成し、更にそれら第一及び第二の
流体室を相互に連通ずる連通流路を設けてなる構造の、
所謂流体封入式防振マウントが知られている。
(Prior Art) Conventionally, Japanese Patent Publication No. 48-36151 and Japanese Unexamined Patent Application Publication No. 1983-1988 have been used as a type of vibration-proof connecting body that is interposed between two members constituting a vibration transmission system and connects these members in a vibration-proof manner. -107
No. 142, JP-A No. 61-274131, etc., a first support body and a second support body are arranged at a predetermined distance from each other and are interposed between them. A connecting body is formed by elastically connecting with a rubber elastic body, and a fluid storage chamber in which a predetermined incompressible fluid is sealed is formed inside the connecting body. A partition member is provided, and first and second fluid chambers are defined on both sides of the partition member, in which a relative fluid pressure difference is generated when vibration is input, and the first and second fluid chambers are defined on both sides of the partition member. A structure with a communication channel that communicates the chambers with each other.
A so-called fluid-filled anti-vibration mount is known.

すなわち、このような防振マウントにあっては、振動の
入力に際して生ぜしめられる、第一及び第二の流体室間
での、連通流路を通じての流体の流動に基づく流動作用
乃至は液柱共振作用によって、該連通流路に設定された
所定の防振効果が発揮され得ることとなるのである。
In other words, in such a vibration-proof mount, the flow effect or liquid column resonance based on the flow of fluid through the communication channel between the first and second fluid chambers is caused when vibration is input. Due to this action, a predetermined vibration damping effect set in the communication channel can be exerted.

ところが、かかる構造の防振マウントでは、その連通流
路を通じて流動される流体の液柱共振作用に基づく防振
効果が、かかる流体流路に設定された液柱マスの共振点
付近の比較的狭い周波数域の入力振動に対して顕著に発
揮される一方、それよりも更に高周波数域の振動入力時
には、咳連通流路が実質的に閉塞状態となるために、マ
ウント動ばね定数の著しい上昇が惹起されて、却って防
振機能が低下するといった問題を有しでいたのである。
However, in a vibration isolation mount with such a structure, the vibration isolation effect based on the liquid column resonance of the fluid flowing through the communication channel is limited to a relatively narrow area near the resonance point of the liquid column mass set in the fluid channel. While this effect is noticeable in response to input vibrations in the frequency range, when vibrations are input in an even higher frequency range, the cough communication flow path becomes substantially obstructed, resulting in a significant increase in the mount dynamic spring constant. This caused the problem that the anti-vibration function actually deteriorated.

また、そのようなマウンrの高動ばね化に対処すべく、
流体室間において、上記主たる連通流路に対して並列的
に開運通流路を設けて、該開運通流路を通じて流動せし
められる流体の液柱共振作用にて、主連通流路が閉塞状
態となる高周波数域の振動入力時におけるマウント動ば
ね定数の低下を図るようにすることも考えられるが、そ
のようなものにあっては、主連通流路と開運通流路を独
立して設ける必要があることに加えて、低周波数域の振
動入力時における開運通流路を通じての流体の流動を阻
止すべく、例えば特開昭57−9340号公報等に示さ
れているように、かかる開運通流路内に可動板等を配す
る必要があるのであり、そのために構造が複雑となり製
造コストが高くなるきいった問題を内在していたのであ
る。
In addition, in order to cope with such a high movement spring of the mount r,
An open communication channel is provided between the fluid chambers in parallel to the main communication channel, and the main communication channel is brought into a closed state by the liquid column resonance of the fluid flowing through the open communication channel. It may be possible to reduce the mount dynamic spring constant when vibration is input in a high frequency range, but in such a case, it is necessary to provide separate main communication channels and open communication channels. In addition, in order to prevent the flow of fluid through the free passage when vibrations are input in the low frequency range, such a free passage is disclosed, for example, in Japanese Patent Application Laid-Open No. 57-9340. It is necessary to arrange a movable plate or the like within the flow path, which has the inherent problem of complicating the structure and increasing manufacturing costs.

(解決課題) ここにおいて、本発明は、上述の如き事情を背景として
為されたものであって、その解決課題とするところは、
高周波数域の振動入力時におけるマウント動ばねの著し
い上昇が解消され得て、内部に封入された流体の流動作
用乃至は液柱共振作用に基づく優れた防振効果が、広い
周波数域の入力振動に対して良好に発揮され得る流体封
入式防振マウントを、簡単な構造及び低コストにて堤供
することにある。
(Problem to be solved) Here, the present invention has been made against the background of the above-mentioned circumstances, and the problem to be solved is:
The remarkable rise of the mount moving spring when inputting vibrations in a high frequency range can be eliminated, and the excellent vibration damping effect based on the flow effect of the fluid sealed inside or the liquid column resonance effect can be achieved by inputting vibrations in a wide frequency range. To provide a fluid-filled vibration-proofing mount that can exhibit good performance against various conditions, with a simple structure and at low cost.

(解決手段) そして、そのような課題を解決すべく、本発明は、互い
に所定距離を隔てて配置された第一の支持体と第二の支
持体とを、それらの間に介装せしめられたゴム弾性体に
て弾性的に連結すると共に、それら第一の支持体と第二
の支持体との間に、内部に所定の非圧縮性流体が封入さ
れた流体収容室を形成する一方、かかる流体収容室内に
複数の剛性仕切板を互いに所定間隔を隔てて対向配置せ
しめて、該複数の仕切板を挟んだ両側において、振動の
入力に際して相対的な流体圧差が生ぜしめられる第一及
び第二の流体室を形成すると共に、それらの仕切板間に
おいて所定容積の中間室を画成せしめ、更に前記それぞ
れの仕切板に対して、かかる中間室を介して前記第一及
び第二の流体室を相互に連通せしめる連通孔を、該仕切
板の対向方向に少なくとも一部が互いに重複せしめられ
る形態にて形成してなる流体封入式防振マウントを、そ
の特徴とするものである。
(Solution Means) In order to solve such problems, the present invention includes a first support and a second support that are arranged at a predetermined distance from each other and are interposed between them. a fluid storage chamber having a predetermined incompressible fluid sealed therein is formed between the first support body and the second support body; A plurality of rigid partition plates are arranged facing each other at a predetermined interval in the fluid storage chamber, and first and second partition plates are arranged so that a relative fluid pressure difference is generated on both sides of the plurality of partition plates when vibration is input. a second fluid chamber, an intermediate chamber of a predetermined volume is defined between the partition plates, and the first and second fluid chambers are connected to each of the partition plates through the intermediate chamber. The fluid-filled vibration damping mount is characterized by a fluid-filled vibration damping mount in which communication holes are formed in opposing directions of the partition plates so that at least a portion thereof overlaps with each other.

(実施例) 以下、本発明を更に具体的に明らかにするために、本発
明の実施例について、図面を参照しつつ、詳細に説明す
ることとする。
(Examples) Hereinafter, in order to clarify the present invention more specifically, examples of the present invention will be described in detail with reference to the drawings.

先ず、第1図には、本発明を自動車用エンジンマウント
に適用したものの一興体例が示されている。かかる図に
おいて、10及び12は、それぞれ、第一及び第二の支
持体としての第一及び第二の支持金具であって、相互に
所定の距離を隔てて配置されている。また、これら第一
の支持体10と第二の支持体I2との間には、ゴム弾性
体14が介装されており、該ゴム弾性体14にて、かが
る第一の支持体10と第二、り支持体12とが、相互に
一体的に且つ弾性的に連結せしめられている。
First, FIG. 1 shows an example of an automobile engine mount to which the present invention is applied. In this figure, 10 and 12 are first and second support fittings as first and second supports, respectively, and are arranged at a predetermined distance from each other. Further, a rubber elastic body 14 is interposed between the first support body 10 and the second support body I2, and the first support body 10 is bent by the rubber elastic body 14. and the second support 12 are integrally and elastically connected to each other.

そして、本実施例におけるエンジンマウントにあっては
、かかる第一の支持体IO及び第二の支持体12が、そ
れぞれ、エンジンユニット側及び車体側に取り付けられ
ることにより、かかるエンジンユニットを車体に対して
防振支持するようになっているのである。
In the engine mount in this embodiment, the first support IO and the second support 12 are attached to the engine unit side and the vehicle body side, respectively, so that the engine unit is attached to the vehicle body. It is designed to provide anti-vibration support.

より詳細には、前記第一の支持金具10は、略円錐台形
状にて形成されており、その大径側端面の中央部におい
て、軸方向に突出する取付ボルト16を有しており、該
取付ポル)16にてエンジンユニット側に固定されるよ
うになっている。
More specifically, the first support fitting 10 is formed in a substantially truncated conical shape, and has a mounting bolt 16 protruding in the axial direction at the center of its large-diameter end surface. It is fixed to the engine unit side using the mounting pin 16.

また一方、前記第二の支持金具12は、それぞれ、軸方
向一端部において外フランジ状に拡がる取付部18を備
えた2つの筒金具20.22が、それぞれの取付部1日
、1日が互いに当接する状態で、互いに軸方向に同心的
に重ね合わせられて、溶着等によって一体化せしめられ
ることによって構成されており、かかる取付部18.1
8の重合部に設けられた複数の取付穴24内に挿通され
るボルト等によって、車体側に固定されるようになって
いる。
On the other hand, the second support fitting 12 has two cylindrical fittings 20 and 22 each having a mounting part 18 expanding in the shape of an outer flange at one end in the axial direction. The mounting portion 18.1 is constructed by being concentrically superimposed on each other in the axial direction while in contact with each other and integrated by welding or the like.
It is fixed to the vehicle body side by bolts or the like inserted into a plurality of mounting holes 24 provided at the overlapping portion of the parts 8 and 8.

そして、かかる第二の支持金具12は、上記第一の支持
金具10に対して、同心的に且つ軸方向に所定距離を隔
てて配置せしめられている。また、そこにおいてかかる
第二の支持金具12を構成する筒金具20.22のうち
、第一の支持金具10側に位置する方の筒金具20にあ
っては、その筒状部26が、軸方向外方に行くに従って
テーパ状に拡径されており、そして該筒状部26の内周
面が、前記第一の支持金具10の外周面に対して略平行
となり、それら両面が所定距離を隔てて対向するように
されている。
The second support fitting 12 is arranged concentrically with respect to the first support fitting 10 at a predetermined distance in the axial direction. Further, among the cylindrical metal fittings 20.22 constituting the second support metal fitting 12, in the cylindrical metal fitting 20 located on the first support metal fitting 10 side, the cylindrical portion 26 is The diameter of the cylindrical portion 26 is tapered outward, and the inner circumferential surface of the cylindrical portion 26 is approximately parallel to the outer circumferential surface of the first support fitting 10, with both surfaces separated by a predetermined distance. They are separated and facing each other.

さらに、それら第一の支持金具10の外周面と第二の支
持金具12を構成する筒金具20の内周面との対向面間
において、前記ゴム弾性体14が介装されている。この
ゴム弾性体14は、略円錐台形状を呈していると共に、
その内部には、大径側端面に開口する空所28を有して
おり、その小径側端面において第一の支持金具10の外
周面に、また大径側外周縁部において筒金具20の内周
面に、それぞれ加硫接着されることにより、第一及び第
二の支持金具10.12を互いに弾性連結せしめている
Further, the rubber elastic body 14 is interposed between the facing surfaces of the outer circumferential surface of the first supporting metal fitting 10 and the inner circumferential surface of the cylindrical metal fitting 20 constituting the second supporting metal fitting 12. This rubber elastic body 14 has a substantially truncated conical shape, and
The interior thereof has a cavity 28 that opens to the large diameter side end face, and the small diameter side end face is formed on the outer circumferential surface of the first support fitting 10, and the large diameter side outer circumferential edge is formed on the inner surface of the cylindrical metal fitting 20. The first and second support fittings 10.12 are elastically connected to each other by being vulcanized and bonded to the peripheral surfaces, respectively.

また一方、前記第二の支持金具12を構成する他方の筒
金具22にあっては、その筒状部30が、上記筒金具2
0における筒状部26の小径側内径よりも所定寸法大き
な内径にて形成され、且つその軸方向端部にはかしめ部
32が設けられている。
On the other hand, in the other cylindrical metal fitting 22 constituting the second support metal fitting 12, the cylindrical portion 30 is
It is formed with an inner diameter that is a predetermined dimension larger than the inner diameter on the small diameter side of the cylindrical portion 26 at 0, and a caulked portion 32 is provided at the end in the axial direction.

そして、かかる筒金具22の筒状部30内には、仕切部
材34及び弾性閉塞体36が、それぞれ、互いに重ね合
わせられた状態で嵌入せしめられている。ここにおいて
、かかる仕切部材34は、金属等の剛性材料によって形
成されて、全体として略円盤形状を呈している一方、弾
性閉塞体36は、所定のゴム材料によって、略厚肉円板
形状にて形成されている。そして、これら仕切部材34
及び弾性閉塞体36は、互いに重ね合わされた外周縁部
を、前記筒金具20の軸方向端面と筒金具22のかしめ
部32との間で軸方向に挟圧されることによって保持さ
れている。なお、かかる弾性閉塞体36の外周部分には
、円筒形状の金属スリーブ40が埋設されており、上記
筒金具20とかしめ部32との間での保持が、充分な挟
持力をもって為され得るようにされている。
A partition member 34 and an elastic closure body 36 are respectively fitted into the cylindrical portion 30 of the cylindrical metal fitting 22 in a state where they are overlapped with each other. Here, the partition member 34 is made of a rigid material such as metal and has an approximately disk shape as a whole, while the elastic closure body 36 is made of a predetermined rubber material and has an approximately thick disk shape. It is formed. And these partition members 34
The elastic closure body 36 is held by having the outer circumferential edges overlapped with each other compressed in the axial direction between the axial end surface of the cylindrical metal fitting 20 and the caulking portion 32 of the cylindrical metal fitting 22. A cylindrical metal sleeve 40 is embedded in the outer peripheral portion of the elastic closure 36, so that the cylindrical metal sleeve 20 and the caulking portion 32 can be held with sufficient clamping force. is being used.

すなわち、かかる弾性閉塞体36にて、筒金具22の開
口部が流体密に閉塞され、それによって該弾性閉塞体3
6と前記ゴム弾性体14との間に流体収容室が形成され
ているのであり、そしてまた、前記仕切部材34によっ
て、かかる流体収容室内が、マウント軸直角方向に仕切
られることによって、該仕切部材34を挟んで、ゴム弾
性体14側に第一の流体室42が、弾性閉塞体36側に
第二の流体室44が、それぞれ、画成されているのであ
る。そして、かかる第一の流体室42は、第一及び第二
の支持金具10.12間における振動の入力に際して、
ゴム弾性体140弾性変位に基づいて、その内圧が変化
せしめられる受圧室として、また第二の流体室44は、
弾性閉塞体36の変形が比較的容易とされて、その弾性
変形に基づいて、内圧変化が回避せしめられる平衡室と
して、それぞれ構成されているのである。
In other words, the opening of the cylindrical metal fitting 22 is fluid-tightly closed by the elastic closing body 36, whereby the elastic closing body 3
A fluid storage chamber is formed between 6 and the rubber elastic body 14, and the partition member 34 partitions the fluid storage chamber in a direction perpendicular to the mount axis. 34, a first fluid chamber 42 is defined on the rubber elastic body 14 side, and a second fluid chamber 44 is defined on the elastic closure body 36 side. When vibration is input between the first and second support fittings 10.12, the first fluid chamber 42
The second fluid chamber 44 serves as a pressure receiving chamber whose internal pressure is changed based on the elastic displacement of the rubber elastic body 140.
The elastic closure bodies 36 are relatively easy to deform, and are configured as equilibrium chambers in which changes in internal pressure are avoided based on the elastic deformation.

また一方、それら第一の流体室42と第二〇流体室44
とを仕切る仕切部材34にあっては、それぞれ、所定厚
さの剛性板にて形成された円板状の仕切板38.38が
、互いに同心的に重ね合わせられることによって構成さ
れている。また、それぞれの仕切板38の重合面上には
、外周縁部において軸方向に所定高さで突出する環状の
スペーサ部46が一体的に設けられており、該スペーサ
部46によって、二枚の仕切板38.38が、軸方向に
互いに所定距離を隔てて平行に対向配置せしめられ、以
てそれら側仕切板38.38間において、前記第一及び
第二の流体室42.44から独立した所定容積の中間室
48が画成されている。
On the other hand, the first fluid chamber 42 and the twenty fluid chamber 44
The partition member 34 that partitions the two is constructed by concentrically overlapping disk-shaped partition plates 38 and 38, each made of a rigid plate with a predetermined thickness. Further, on the overlapping surface of each partition plate 38, an annular spacer part 46 that protrudes at a predetermined height in the axial direction at the outer peripheral edge is integrally provided. Partition plates 38.38 are disposed parallel to each other at a predetermined distance in the axial direction, so that between the side partition plates 38.38, there is a space independent from the first and second fluid chambers 42.44. An intermediate chamber 48 of a predetermined volume is defined.

そしてまた、これらの仕切板3日、38にあっては、そ
れぞれ、中央部において、所定径の円孔形状を呈する連
通孔50が設けられており、上記中間室48内が、一方
の連通孔50を通じて、第一の流体室42内に、また他
方の連通孔50を通じて第二の流体室44内に、それぞ
れ連通せしめられている。なお、ここにおいて、第1図
から明らかなように、これら二つの連通孔50.50は
、同一軸心上に形成されており、仕切板38.38の対
向方向、即ち、本実施例においては、主たる振動入力方
向たるマウント軸方向において、略完全に重複する形態
にて形成されている。
Furthermore, each of these partition plates 38 is provided with a communicating hole 50 having a circular hole shape of a predetermined diameter in the center, and the inside of the intermediate chamber 48 is connected to one of the communicating holes. 50 into the first fluid chamber 42, and through the other communication hole 50 into the second fluid chamber 44, respectively. Here, as is clear from FIG. 1, these two communication holes 50.50 are formed on the same axis, and in the opposing direction of the partition plates 38.38, that is, in this embodiment. , are formed in a form that substantially completely overlaps in the mount axis direction which is the main vibration input direction.

従って、このような構造とされたエンジンマウントにあ
っては、第一の支持金具10と第二の支持金具12との
間に振動が入力された際、第一の流体室42内の内圧の
変動に基づいて、該第−の流体室42と第二の流体室4
4との間で、連通孔50、中間室48、連通孔50を通
じて、封入流体の流動が生ぜしめられることとなるので
ある。
Therefore, in the engine mount having such a structure, when vibration is input between the first support fitting 10 and the second support fitting 12, the internal pressure in the first fluid chamber 42 decreases. Based on the variation, the first fluid chamber 42 and the second fluid chamber 4
4, the sealed fluid flows through the communication hole 50, the intermediate chamber 48, and the communication hole 50.

そして、ここにおいて、本発明者らが実験及び検討を行
なったところ、このような構造とされたエンジンマウン
トにおける防振効果は、特に、従来の単一の連通流路系
を備えてなる構造のものに比して、極めて特徴的な周波
数特性を示すことが明らかとなったのであり、かかる知
見に基づいて、本発明が完成されるに至ったのである。
Here, the inventors conducted experiments and studies, and found that the vibration isolation effect of an engine mount with such a structure is particularly superior to that of a conventional structure with a single communication flow path system. It has become clear that this material exhibits extremely characteristic frequency characteristics compared to other materials, and based on this knowledge, the present invention has been completed.

具体的には、上述の如き構造のエンジンマウントにあっ
ては、第2図に示されている如き防振特性を示すことと
なり、この図から明らかなように、かかるエンジンマウ
ントにおいては、二つの液柱共振点と見なし得る点:f
l及びr2が認められるのである。
Specifically, an engine mount with the above-mentioned structure exhibits vibration isolation characteristics as shown in Figure 2, and as is clear from this figure, this engine mount has two Point that can be considered as liquid column resonance point: f
l and r2 are recognized.

そして、そのような現象について検討を加えたところ、
第3図に示されているように、各仕切板38に設けられ
た連通孔50の内径をり、該仕切板38の板厚をtとし
、また二つの仕切板38.38の外面間距離をlとする
と、第一の共振点:flにあっては、内径=D、長さ=
1の円形断面を有する連通流路を、第一及び第二の流体
室42.44を連通せしめる連通流路として考えたとき
の、液柱共振周波数に略一致することが、また一方、第
二の共振点:f2にあっては、内径=D、長さ:もの円
形断面を有する連通流路、即ち一方の仕切板38におけ
る連通孔50を、第一及び第二の流体室42.44を連
通せしめる連通流路として考えたときの、液柱共振周波
数に略−敗することが、明らかとなったのである。
After considering such phenomena, we found that
As shown in FIG. 3, the inner diameter of the communication hole 50 provided in each partition plate 38 is defined as t, the thickness of the partition plate 38 is defined as t, and the distance between the outer surfaces of the two partition plates 38 and 38 is If is l, then at the first resonance point: fl, inner diameter = D, length =
On the other hand, when the communication channel having a circular cross section of 1 is considered as a communication channel that communicates the first and second fluid chambers 42, 44, the resonance frequency of the liquid column is approximately equal to the resonance frequency of the second fluid chamber 42, 44. At the resonance point f2, the inner diameter is D, the length is a communication channel having a circular cross section, that is, the communication hole 50 in one partition plate 38, and the first and second fluid chambers 42 and 44. It has become clear that when considered as a communication flow path, the resonance frequency of the liquid column is almost the same.

それ故、本実施例におけるエンジンマウントにあっては
、上記第一及び第二の共振点:fl、[2を適当に設定
することによって、第一の共振点:r1付近の周波数域
の入力振動に対して、液柱共振作用に基づく所定の防振
効果が発揮され得ると共に、それよりも高周波数域の振
動入力時におけるマウント動ばねの上昇が、第二の共振
点二f2が存在することによって、その液柱共振作用に
て有効に抑えられ得るのであり、以て広い周波数域に亘
る入力振動に対して優れた防振効果が発揮され得ること
となるのである。なお、かかる第2図においては、第一
の流体室(42)と第二の流体室(44)とが、厚さ=
lの単一の板材にて構成された仕切部材(34)にて仕
切られ、且つ該仕切部材に対して、内径:Dの円形断面
を有する連通流路が設けられてなる、従来構造のエンジ
ンマウントにおける防振特性を、比較例として併せ示す
こととする。
Therefore, in the engine mount in this embodiment, by appropriately setting the first and second resonance points: fl, [2, the input vibration in the frequency range near the first resonance point: r1 is reduced. On the other hand, a predetermined vibration isolation effect based on the liquid column resonance action can be exhibited, and the rise of the mount moving spring when vibration is input in a higher frequency range is caused by the existence of a second resonance point 2f2. Therefore, the vibration can be effectively suppressed by the liquid column resonance effect, and an excellent vibration damping effect can be exhibited against input vibration over a wide frequency range. In addition, in FIG. 2, the first fluid chamber (42) and the second fluid chamber (44) have a thickness of
An engine with a conventional structure, in which the engine is partitioned by a partition member (34) made of a single plate material of l, and a communication flow path having a circular cross section with an inner diameter of D is provided to the partition member. The vibration isolation characteristics of the mount will also be shown as a comparative example.

さらに、このようなエンジンマウントにあっては、到達
通流路や或いは可動板等を設ける必要がなく、その構造
が極めて簡単であることから、上述の如き、優れた防振
性能が発揮され得るマウント装置を、良好な製作性乃至
は組付性をもって、且つ安価に提供することができると
いった利点をも有しているのである。
Furthermore, in such an engine mount, there is no need to provide a reaching channel or a movable plate, and the structure is extremely simple, so that the excellent vibration isolation performance as described above can be exhibited. It also has the advantage that the mounting device can be provided at low cost and with good manufacturability and ease of assembly.

ところで、上述の如き考察から明らかなように、第一の
共振周波数:flの設定は、連通孔50の内径=D及び
仕切板38.38の外面間距離:l(配設間隔:T)を
調節することによって、また第二の共振周波数:r2の
設定は、連通孔50の内径=D及び仕切板38の板厚:
tを調節することによって、行なうことが可能である。
By the way, as is clear from the above considerations, the setting of the first resonance frequency: fl is based on the inner diameter of the communication hole 50 = D and the distance between the outer surfaces of the partition plates 38 and 38: l (arrangement interval: T). By adjusting the second resonance frequency: r2, the inner diameter of the communication hole 50 = D and the thickness of the partition plate 38:
This can be done by adjusting t.

そして、例えば、本実施例においては、かかる第一の共
振周波数:flを、10〜30Hz程度に、また第二の
共振周波数:r2を、100〜200 Hz程度に、そ
れぞれ設定することによって、エンジンシェイクやバウ
ンス等の低周波数域の振動入力時に高減衰特性が、また
車両走行時におけるこもり音等の原因となる中乃至高周
波数域の振動入力時に低動ばね特性が、それぞれ有効に
発揮され得ることとなるのである。
For example, in this embodiment, by setting the first resonant frequency fl to approximately 10 to 30 Hz and the second resonant frequency r2 to approximately 100 to 200 Hz, the engine High damping characteristics can be effectively utilized when vibrations in the low frequency range such as shaking and bounce are input, and low dynamic spring characteristics can be effectively demonstrated when inputting vibrations in the medium to high frequency range that cause muffled noise when the vehicle is running. That's what happens.

以上、本発明の一実施例について詳述してきたが、これ
は文字通りの例示であって、本発明は、かかる具体例に
のみ限定して解釈されるものではない。
Although one embodiment of the present invention has been described in detail above, this is a literal illustration, and the present invention is not to be construed as being limited only to this specific example.

例えば、第一の共振周波数:flをより低周波数側に設
定するに際しては、仕切板38.38の配設間隔二Tを
大きくすることが有効であるが、かかる配設間隔を余り
大きくし過ぎると、その液柱共振効果が低下することと
なる。これは、中間室48内における両側連通孔50.
50間での流体の流れが乱流状態となるためと推察され
るが、そのような場合には、仕切板38を3枚或いはそ
れ以上設けて、隣り合う仕切板38.38間の配設間隔
を小さく、具体的には、仕切板38の板厚:tの6〜7
倍以下となるようにすることが望ましい。
For example, when setting the first resonance frequency: fl to a lower frequency side, it is effective to increase the arrangement interval 2T between the partition plates 38, 38, but such an arrangement interval should not be made too large. As a result, the liquid column resonance effect decreases. This is the communication hole 50 on both sides in the intermediate chamber 48.
It is presumed that this is because the fluid flow between the adjacent partition plates 38 and 38 becomes turbulent. The interval is small, specifically, the plate thickness of the partition plate 38: 6 to 7 of t.
It is desirable to make it less than double.

また、かかる第一の共振周波数:flをより低周波数側
に設定する別の手法とし7て、両側仕切板38.38に
おける連通孔50.50の形成位置を、仕切板38.3
8の対向方向に直角な方向にずらして、実質的な流路長
さを長くすることも考えられる。尤も、それら連通孔5
0.50のずれが余りに大きくなると、流体の流動抵抗
の増加等によって、その液柱共振効果が低下することと
なるために、充分な防振効果を得る上には、それら連通
孔50.50は、仕切板38.38の対向方向において
、少なくとも一部が重複している必要がある。
In addition, as another method 7 for setting the first resonance frequency: fl to a lower frequency side, the formation position of the communication hole 50.50 in the both side partition plates 38.38 is set to the partition plate 38.3.
It is also conceivable to shift the channel in a direction perpendicular to the opposing direction of the channels 8 to increase the actual length of the channel. Of course, those communication holes 5
If the deviation of 0.50 becomes too large, the liquid column resonance effect will decrease due to an increase in fluid flow resistance, etc. Therefore, in order to obtain a sufficient vibration damping effect, it is necessary to must overlap at least in part in the opposing direction of the partition plates 38 and 38.

さらに、前記実施例においては、仕切板38.38にお
ける板厚:を及び連通孔50の内径:Dが、それぞれ、
同一に設定されていたが、それらを異なる値に設定する
ことも可能である。尤も、そのような場合では、第二の
共振周波数:f2は、連通孔50.50のうち、何れか
低い液柱共振点が設定された側において発生することと
なる。
Furthermore, in the embodiment, the plate thickness of the partition plates 38 and 38 and the inner diameter of the communication hole 50 are as follows:
Although they were set to the same value, it is also possible to set them to different values. However, in such a case, the second resonance frequency: f2 will occur at the side of the communication hole 50, 50 where the lower liquid column resonance point is set.

加えて、前記実施例においては、本発明を自動車のエン
ジンマウントに対して適用したものの一例を示したが、
本発明は、その内部において、仕切板を隔てて、振動の
入力に際して相対的な内圧変動が生ぜしめられる第一及
び第二の流体室を画成せしめられ得る、円筒型マウント
や円筒型ブツシュ等の各種マウントに対しても、有利に
適用され得るものであることが理解されるべきである。
In addition, in the embodiment described above, an example was shown in which the present invention was applied to an automobile engine mount.
The present invention provides a cylindrical mount, a cylindrical bush, etc., which can define first and second fluid chambers in which relative internal pressure fluctuations are caused when vibration is input, with a partition plate separating them. It should be understood that the present invention may be advantageously applied to various types of mounts.

その他、−々列挙はしないが、本発明は当業者の知識に
基づいて、種々なる変更、修正、改良等を加えた態様に
おいて実施され得るものであり、またそのような実施態
様が、本発明の趣旨を逸脱しない限り、何れも本発明の
範囲内に含まれるものであることは、言うまでもないと
ころである。
In addition, although not listed, the present invention can be implemented in embodiments with various changes, modifications, improvements, etc., based on the knowledge of those skilled in the art, and such embodiments are not limited to the present invention. It goes without saying that any of these are included within the scope of the present invention as long as they do not depart from the spirit of the invention.

(発明の効果) 上述の説明から明らかなように、本発明に従う流体封入
式防振マウントにあっては、一つの連通流路系において
、互いに異なる二つの周波数域で、それぞれ液柱共振点
とみなし得る点が生ぜしめられ得ることから、広い周波
数域に亘って良好なる防振効果が発揮され得ると共に、
特に、従来の二つの連通流路系を備えたものに比して、
構造が簡単であり、その製造コストの低減が有利に達成
され得ることとなるのである。
(Effects of the Invention) As is clear from the above description, in the fluid-filled vibration damping mount according to the present invention, in one communicating flow path system, the liquid column resonance point and Since a point that can be considered can be generated, a good vibration isolation effect can be exhibited over a wide frequency range, and
In particular, compared to the conventional one with two communicating flow path systems,
The structure is simple and manufacturing costs can be advantageously reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を自動車用エンジンマウントに適用し
たものの一具体例を示す縦断面図である。 第2図は、かかる構造のエンジンマウントにおける防振
特性を説明するだめのグラフである。また、第3図は、
第1図に示されているエンジンマウントの要部を拡大し
て示す断面説明図である。 10:第一の支持金具 12:第二の支持金具14:ゴ
ム弾性体   34:仕切部材36:弾性閉塞体   
38:仕切板 42:第一の流体室  44:第二の流体室48:中間
室     50:連通孔 出願人  東海ゴム工業株式会社 鵠33
FIG. 1 is a longitudinal sectional view showing a specific example of an automobile engine mount to which the present invention is applied. FIG. 2 is a graph illustrating the anti-vibration characteristics of an engine mount having such a structure. Also, Figure 3 shows
FIG. 2 is an explanatory cross-sectional view showing an enlarged main part of the engine mount shown in FIG. 1; 10: First support fitting 12: Second support fitting 14: Rubber elastic body 34: Partition member 36: Elastic closure body
38: Partition plate 42: First fluid chamber 44: Second fluid chamber 48: Intermediate chamber 50: Communication hole Applicant Tokai Rubber Industries Co., Ltd. 33

Claims (1)

【特許請求の範囲】[Claims] 互いに所定距離を隔てて配置された第一の支持体と第二
の支持体とを、それらの間に介装せしめられたゴム弾性
体にて弾性的に連結すると共に、それら第一の支持体と
第二の支持体との間に、内部に所定の非圧縮性流体が封
入された流体収容室を形成する一方、かかる流体収容室
内に複数の剛性仕切板を互いに所定間隔を隔てて対向配
置せしめて、該複数の仕切板を挟んだ両側において、振
動の入力に際して相対的な流体圧差が生ぜしめられる第
一及び第二の流体室を形成すると共に、それらの仕切板
間において所定容積の中間室を画成せしめ、更に前記そ
れぞれの仕切板に対して、かかる中間室を介して前記第
一及び第二の流体室を相互に連通せしめる連通孔を、該
仕切板の対向方向に少なくとも一部が互いに重複せしめ
られる形態にて形成したことを特徴とする流体封入式防
振マウント。
A first support body and a second support body arranged at a predetermined distance from each other are elastically connected by a rubber elastic body interposed between them, and the first support body A fluid storage chamber in which a predetermined incompressible fluid is sealed is formed between the first support member and the second support, and a plurality of rigid partition plates are arranged facing each other at predetermined intervals in the fluid storage chamber. At least, first and second fluid chambers are formed on both sides of the plurality of partition plates, in which a relative fluid pressure difference is generated when vibration is input, and an intermediate portion of a predetermined volume is formed between the partition plates. defining a chamber, and further providing at least a portion of a communication hole in the opposing direction of the partition plate for each of the partition plates to allow the first and second fluid chambers to communicate with each other via the intermediate chamber. A fluid-filled anti-vibration mount characterized in that the mounts are formed in such a manner that they overlap each other.
JP8245488A 1988-04-04 1988-04-04 Fluid-sealed type vibration isolating mount Pending JPH01255735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8245488A JPH01255735A (en) 1988-04-04 1988-04-04 Fluid-sealed type vibration isolating mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8245488A JPH01255735A (en) 1988-04-04 1988-04-04 Fluid-sealed type vibration isolating mount

Publications (1)

Publication Number Publication Date
JPH01255735A true JPH01255735A (en) 1989-10-12

Family

ID=13774965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8245488A Pending JPH01255735A (en) 1988-04-04 1988-04-04 Fluid-sealed type vibration isolating mount

Country Status (1)

Country Link
JP (1) JPH01255735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177971A (en) * 2005-12-28 2007-07-12 Bridgestone Corp Vibration damper
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177971A (en) * 2005-12-28 2007-07-12 Bridgestone Corp Vibration damper
JP4666632B2 (en) * 2005-12-28 2011-04-06 株式会社ブリヂストン Vibration isolator
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation

Similar Documents

Publication Publication Date Title
US4997168A (en) Fluid-filled elastic mount
JPH0989037A (en) Mount device and manufacture thereof
JP2505503Y2 (en) Fluid-filled mounting device
JPH06307491A (en) Liquid enclosed type vibration proofing mount
US5887844A (en) Fluid-sealed vibration isolating device
JPH0369013B2 (en)
JP2002327788A (en) Vibrationproof device sealed with fluid
JPH11148531A (en) Fluid encapsulation type cylindrical mount
JP3039102B2 (en) Fluid-filled mounting device
US4880215A (en) Fluid-filled elastic mounting structure
JPH01238730A (en) Fluid seal type mount device
JP3198603B2 (en) Fluid-filled mounting device
JPS61274130A (en) Fluid charged type vibration insulator assembly
JP3281487B2 (en) Fluid-filled cylindrical mounting device
JPH01255735A (en) Fluid-sealed type vibration isolating mount
JPH02129426A (en) Fluid enclosed type mount device
JP2000274480A (en) Fluid sealed vibration isolating device
JPH0524837Y2 (en)
JPS63275827A (en) Vibrationproofing method using liquid sealing mounting device
JP2827841B2 (en) Fluid-filled anti-vibration assembly
JPH0545810B2 (en)
JPS63203940A (en) Fluid-filled type mount device
JPH02159438A (en) Fluid-sealing type cylindrical mount
JPH04203631A (en) Fluid-sealed type mount device
JPH0389043A (en) Fluid-filled vibration isolating mount