JPH0125288B2 - - Google Patents

Info

Publication number
JPH0125288B2
JPH0125288B2 JP14994680A JP14994680A JPH0125288B2 JP H0125288 B2 JPH0125288 B2 JP H0125288B2 JP 14994680 A JP14994680 A JP 14994680A JP 14994680 A JP14994680 A JP 14994680A JP H0125288 B2 JPH0125288 B2 JP H0125288B2
Authority
JP
Japan
Prior art keywords
oil
oil passage
cable
end side
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14994680A
Other languages
Japanese (ja)
Other versions
JPS5774909A (en
Inventor
Kazuya Akashi
Shotaro Yoshida
Shuji Fukazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP14994680A priority Critical patent/JPS5774909A/en
Publication of JPS5774909A publication Critical patent/JPS5774909A/en
Publication of JPH0125288B2 publication Critical patent/JPH0125288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Description

【発明の詳細な説明】 本発明は、単心OFケーブル内の絶縁油を、導
体の内部油通路から、絶縁体の中を半径方向に流
して冷却する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling insulating oil in a single-core OF cable by flowing it radially through the insulation from internal oil passages in the conductor.

従来技術を、「第1図」について述べる。 The prior art will be described with reference to "Fig. 1".

10はケーブルの全体、12はその導体、14
は内部油通路、16は絶縁体、18は外部油通
路。冷却された油はポンプ20によつて内部油通
路14内に送り込まれ、矢印21のように終端側
101に向つて流れ、その間に導体12を冷却す
る。それと同時に、油は矢印22のように、絶縁
体16内を半径方向に流れて、外部油通路18に
出る。この絶縁体16内の油の流れによつて、絶
縁体16の見掛の熱抵抗が小さくなり、また絶縁
体16内に発生する誘導体損失による熱が持ち去
られる。
10 is the entire cable, 12 is its conductor, 14
1 is an internal oil passage, 16 is an insulator, and 18 is an external oil passage. The cooled oil is pumped into the internal oil passage 14 by the pump 20 and flows towards the end side 101 as indicated by the arrow 21, cooling the conductor 12 in the meantime. At the same time, oil flows radially within the insulator 16 and out of the external oil passage 18, as indicated by arrow 22. This flow of oil within the insulator 16 reduces the apparent thermal resistance of the insulator 16, and also carries away heat due to dielectric loss occurring within the insulator 16.

外部油通路18に出た油は、矢印23のように
流れ、始端側102からケーブル10外に取り出
され、冷却器24を通り再びケーブル10の内部
油通路14内に送り込まれる。
The oil discharged to the external oil passage 18 flows as indicated by an arrow 23, is taken out of the cable 10 from the starting end side 102, passes through the cooler 24, and is sent into the internal oil passage 14 of the cable 10 again.

従来技術の問題点を述べる。 Problems with the conventional technology will be described.

「第2図」のAは、内部油通路14内の油の温
度分布、Bは外部油通路18内の油の温度分布を
示す。
A in FIG. 2 shows the temperature distribution of oil in the internal oil passage 14, and B shows the temperature distribution of oil in the external oil passage 18.

内部油通路14内の任意の位置に、極めて接近
した2点a,bをとる(第1図)。また、a,b
の外側に当たるc,dを外部油通路18内にもと
り、これらの油の温度について考えてみる。
Two points a and b, which are very close to each other, are placed at arbitrary positions within the internal oil passage 14 (Fig. 1). Also, a, b
Let us consider the temperature of these oils by taking c and d, which are on the outside, inside the external oil passage 18.

aからbに行く間に、導体12の熱を吸収して
油の温度は上がる。その温度の上がつた油が、絶
縁体16内を通つて外部油通路18のdに出、c
に引き返す。
While going from a to b, the oil absorbs heat from the conductor 12 and the temperature of the oil rises. The heated oil passes through the insulator 16 and exits to the external oil passage 18 d, and c
turn back to

一方aから絶縁体16を通つて直接cに出る油
もあるが、こちらの方が、b,dを通つてcに戻
る油よりも温度が低い。そのため、dからcに戻
る油は冷されて温度が下がる。(反対にaからc
に出た油は、dから戻つて来る油によつて温めら
れ、そのために、外部油通路18内の油温の方が
内部油通路14内より高い)。
On the other hand, some oil exits directly from a to c through the insulator 16, but this oil has a lower temperature than the oil that returns to c through b and d. Therefore, the oil returning from d to c is cooled and its temperature drops. (on the contrary, from a to c
The oil coming out from d is warmed by the oil returning from d, so the oil temperature in the external oil passage 18 is higher than in the internal oil passage 14).

以上のことがケーブル10の全長にわたつて行
なわれる。その結果、T0の温度で内部油通路1
4内に入つた油は、終端側101ではT4まで上
昇するが、始端側102に戻るときは、T1にま
で下がる。すなわち、内部油通路14に入つた油
が終端側101まで行く間にT4―T0に相当する
熱をケーブル10から奪うが、外部油通路18内
を始端側102に戻るとき、T4―T1に相当する
熱をケーブル10内および外部に放出し、結局
T1―T0に相当する熱だけしか、ケーブル10外
に持ち去らないことになる。
The above is performed over the entire length of the cable 10. As a result, at a temperature of T 0 the internal oil passage 1
4 rises to T 4 on the terminal end side 101, but drops to T 1 when returning to the starting end side 102. That is, while the oil entering the internal oil passage 14 travels to the terminal end side 101, heat corresponding to T 4 -T 0 is removed from the cable 10, but when the oil returns inside the external oil passage 18 to the starting end side 102, T 4 -T 0 is removed from the cable 10. Heat equivalent to T 1 is released into the cable 10 and outside, and eventually
Only the heat corresponding to T 1 - T 0 is carried away outside the cable 10.

そこで、以上の問題の解決策として、下記の技
術が提案されている。それを第3図について説明
すると、次のとおりである。
Therefore, the following technology has been proposed as a solution to the above problem. This can be explained with reference to FIG. 3 as follows.

外部油通路18内の油を、上記とは反対に、終
端側101に向つて矢印25のように流す。終端
側101まで行つた油は、たとえばリターンパイ
プ26などによつて始端側102に戻され、循環
する。
The oil in the external oil passage 18 is caused to flow toward the terminal end side 101 in the direction of the arrow 25, contrary to the above. The oil that has reached the terminal end side 101 is returned to the starting end side 102 by, for example, the return pipe 26, and is circulated.

このようにした場合の内部油通路14内の温度
の分布を、「第2図」のCに、外部油通路18内
のものをDに示した。
The temperature distribution in the internal oil passage 14 in this case is shown in C of FIG. 2, and the temperature distribution in the external oil passage 18 is shown in D.

上記同様に、内部油通路14および外部油通路
18内の極めて接近した任意の点e,f,g,h
における油の温度について考える。
Similarly to the above, arbitrary points e, f, g, h in the internal oil passage 14 and the external oil passage 18 that are very close to each other
Consider the temperature of the oil at .

eからfに行く間に、導体12の熱を吸収して
油の温度が上がる。fから絶縁体16内を通つて
外部油通路18のhに出た油は、先に(終端側1
01に)進む。したがつて、eから直接gに出る
油により冷やされることがない(またeからgに
出る油を温めることもない。そのため従来とは反
対に外部油通路18内の油温の方が、内部油通路
14内より低い)。
While going from e to f, the temperature of the oil increases by absorbing the heat of the conductor 12. The oil flowing from f through the insulator 16 to h of the external oil passage 18 first (end side 1
Go to 01). Therefore, the oil in the external oil passage 18 is not cooled by the oil that directly exits from e (and the oil that exits from e is not heated). (lower than inside the oil passage 14).

外部油通路18内の油は、温度を次第に上げな
がら出口(終端側101)に向つて進み、T2
なつてケーブル10から出る。したがつてT2
T0に相当する熱がケーブル10から持ち去られ、
油による冷却効果は、第1図の場合より大きくな
る。
The oil in the external oil passage 18 advances toward the outlet (terminus side 101) while gradually increasing its temperature, becomes T2 , and exits the cable 10. Therefore T 2 -
Heat corresponding to T 0 is carried away from the cable 10,
The cooling effect of oil is greater than in the case of FIG.

しかし、第3図の場合は、ケーブルの始端側で
外部油通路18内の油圧は最大になる。
However, in the case of FIG. 3, the oil pressure in the external oil passage 18 is at its maximum at the starting end of the cable.

そのため、内部油通路14に送込む油の圧を上
げると、ケーブルシースに過大な圧がかかる危険
がある。
Therefore, if the pressure of the oil sent into the internal oil passage 14 is increased, there is a risk that excessive pressure will be applied to the cable sheath.

本発明は、以上述べた種々の問題に解決を与え
るものである。
The present invention provides solutions to the various problems mentioned above.

実施例(第4図) 外部油通路18の所々に油止め32を設ける。
なお、第4図においては、ケーブル線路を3等分
する2箇所に油止め32を設けたように、模型的
に示しているが、油止め32の数は2個に限るも
のではない。
Embodiment (FIG. 4) Oil stoppers 32 are provided at various locations in the external oil passage 18.
Although FIG. 4 schematically shows oil stops 32 provided at two locations dividing the cable line into three equal parts, the number of oil stops 32 is not limited to two.

油止め32の始端側寄りの所で、外部油通路1
8とリターンパイプ26とをパイプ34でつな
ぐ。
At a location near the starting end of the oil stopper 32, the external oil passage 1
8 and the return pipe 26 are connected by a pipe 34.

以上のようにすると、内部油通路14から外部
油通路18に出た油は、上記第3図の場合同様に
終端側に向つて流れるが、油止め32の手前でリ
ターンパイプ26に出て、ケーブル始端側に戻
る。
In the above manner, the oil flowing from the internal oil passage 14 to the external oil passage 18 flows toward the terminal end as in the case of FIG. Return to the starting end of the cable.

発明の効果 (1) 内部油通路14に送込む油の圧を上げること
ができる。
Effects of the invention (1) The pressure of oil sent to the internal oil passage 14 can be increased.

すなわち、外部油通路18が複数箇所におい
てリターンパイプ26と通じているので、ケー
ブルシース、特に始端側のケーブルシースに過
大な圧力がかかることがなくなるからである。
That is, since the external oil passage 18 communicates with the return pipe 26 at a plurality of locations, excessive pressure is not applied to the cable sheath, especially the cable sheath on the starting end side.

(2) 内部油通路14の油圧を上げることにより、
冷却区間を長くすることができる。
(2) By increasing the oil pressure in the internal oil passage 14,
The cooling section can be made longer.

(3) また油の流量を多くすることができる。(3) Also, the flow rate of oil can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第3図は異なる従来技術の説明図、第
2図は第1図および第3図の場合の内部油通路1
4および外部油通路18内の油の温度分布図、第
4図は本発明の実施例の説明図。 10…ケーブル、101…終端側、102…始
端側、12…導体、14…内部油通路、16…絶
縁体、18…外部油通路、26…リターンパイ
プ。
Figures 1 and 3 are explanatory diagrams of different conventional techniques, and Figure 2 is the internal oil passage 1 in the case of Figures 1 and 3.
4 and an oil temperature distribution diagram in the external oil passage 18, FIG. 4 is an explanatory diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 10... Cable, 101... Terminal end side, 102... Start end side, 12... Conductor, 14... Internal oil passage, 16... Insulator, 18... External oil passage, 26... Return pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 ケーブル10の内部油通路14内に冷却した
絶縁油が送り込まれ、その油が終端側101に向
つて流れると共に、絶縁体16内を半径方向に流
れて外部油通路18に出、外部油通路18に出た
油が終端側101に向つて流れ、終端側101に
おいてケーブル10の外に取り出され、リターン
パイプ26によつて終端側102に戻され、冷却
されて再びケーブル10の内部油通路14内に送
り込まれるOFケーブルの冷却方法において、外
部油通路18の複数箇所に油止め32を設け、そ
の始端側寄りの所で、外部油通路18をリターン
パイプ26につなぐことを特徴とする、OFケー
ブルの冷却方法。
1 Cooled insulating oil is fed into the internal oil passage 14 of the cable 10, and the oil flows toward the terminal end side 101, flows in the radial direction within the insulator 16, exits to the external oil passage 18, and flows into the external oil passage 18. 18 flows toward the terminal end side 101, is taken out of the cable 10 at the terminal end side 101, is returned to the terminal end side 102 by the return pipe 26, is cooled, and returns to the internal oil passage 14 of the cable 10. The method for cooling OF cables sent into the OF cable is characterized in that oil stoppers 32 are provided at a plurality of locations in the external oil passage 18, and the external oil passage 18 is connected to the return pipe 26 at a location near the starting end thereof. Cable cooling methods.
JP14994680A 1980-10-24 1980-10-24 Method of cooling of cable Granted JPS5774909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14994680A JPS5774909A (en) 1980-10-24 1980-10-24 Method of cooling of cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14994680A JPS5774909A (en) 1980-10-24 1980-10-24 Method of cooling of cable

Publications (2)

Publication Number Publication Date
JPS5774909A JPS5774909A (en) 1982-05-11
JPH0125288B2 true JPH0125288B2 (en) 1989-05-17

Family

ID=15486027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14994680A Granted JPS5774909A (en) 1980-10-24 1980-10-24 Method of cooling of cable

Country Status (1)

Country Link
JP (1) JPS5774909A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592507A (en) * 1979-01-06 1980-07-14 Fujikura Ltd Method of cooling power cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592507A (en) * 1979-01-06 1980-07-14 Fujikura Ltd Method of cooling power cable

Also Published As

Publication number Publication date
JPS5774909A (en) 1982-05-11

Similar Documents

Publication Publication Date Title
JPH0125288B2 (en)
JPH02299108A (en) Superconducting cable
JP3678465B2 (en) Superconducting power cable
JPS5914313A (en) Method of cooling of cable
JP3566835B2 (en) Superconducting cable
JP2784160B2 (en) Superconducting power cable
JPS6219050Y2 (en)
JPS5845259B2 (en) How to cool power cables
JPS6346645B2 (en)
US3548072A (en) Device and method for reducing overheating in oil-filled electric cables
JPS58195420A (en) Method of cooling power cable
JPH0864041A (en) Superconducting cable
JPS61167311A (en) Connection of internally cooled cable
JPH1093277A (en) Cooling medium
JPS5915250B2 (en) Cable forced cooling line
JPS5851365B2 (en) Radial flow cooling method for internally cooled cable lines
JP2829529B2 (en) Cave and underground cable cooling system
SU624300A1 (en) Electric heater for media contained in cylindrical space
JPS62126812A (en) Plumber of paper insulated power cable
JPS5889717A (en) Method of cooling power cable
JPS6093711A (en) Device for filling grease in cable
SU1060891A1 (en) Microrefrigerator
JPH0423494B2 (en)
JPH08308060A (en) Lead-sleeve method for of cable
JPS6281919A (en) Cooling method for power cable