JPH01252749A - Zinc-based alloy - Google Patents

Zinc-based alloy

Info

Publication number
JPH01252749A
JPH01252749A JP16051988A JP16051988A JPH01252749A JP H01252749 A JPH01252749 A JP H01252749A JP 16051988 A JP16051988 A JP 16051988A JP 16051988 A JP16051988 A JP 16051988A JP H01252749 A JPH01252749 A JP H01252749A
Authority
JP
Japan
Prior art keywords
alloy
zinc
based alloy
mold
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16051988A
Other languages
Japanese (ja)
Inventor
Mikio Kaneko
三樹男 金子
Shigemasa Kawai
河合 重征
Seiichi Enomoto
榎本 聖一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP16051988A priority Critical patent/JPH01252749A/en
Publication of JPH01252749A publication Critical patent/JPH01252749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the mechanical strength and tensile elongation rupture of the title alloy and to provide it with excellent mechanical workability by adding trace amounts of Mg and Ti to a Zn-based alloy contg. specific amounts of Al and Cu. CONSTITUTION:The compsn. of a Zn-based alloy is constituted of, by weight, 10-15% Al, >10-15% Cu, 0.01-<0.05% Mg, 0.01-3% Ti and the balance consisting of Zn with inevitable impurities. A trace amount of Ti to be added forms a stable compound with Cu to deposit into grain boundaries, by which the grain boundaries of the alloy are fined and its mechanical strength and surface hardness are improved. It furthermore forms a slip plane at the time of applying stress to provide the alloy with ductility. Mg deposits into the crystal boundaries to show the effect of preventing intergranular corrosion. At the time of using the alloy as a mold for the molding of plastics, there is no apprehension of generating cracks on the surface and the precision of the mold is not reduced even if molding operation is repeated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、王としてプラスチックの成形に用いられる金
型として好適に使用される亜鉛基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a zinc-based alloy that is suitably used as a mold for molding plastics.

(従来の技術) 近年、OA機器等の各種機器のハクジング、部品等がプ
ラスチック化されるとともに、機器の性能を向上させる
べくモデルチェンジが頻繁に行われている。
(Prior Art) In recent years, various types of equipment such as office automation equipment (OA equipment) have been made of plastic for their parts and parts, and model changes have been made frequently to improve the performance of the equipment.

それに伴って、グラスチック製品の成形サイクルの短縮
が計られ、多品種少量生産が実施されている。
Along with this trend, molding cycles for plastic products are being shortened and high-mix low-volume production is being implemented.

このことから、プラスチックの成形用金型には、従来の
材料に代わって、鋳造・加工が容易で、短期間に製作が
可能な新しい材料が求められている。
For this reason, new materials are required for plastic molds that can be easily cast and processed, and can be manufactured in a short period of time, in place of conventional materials.

従来、グラスチックの成形用金型、特番こ射出成形用金
型には、寸法精度、成形シ1ット数の面から、鋳鉄、鋳
鋼等の金属が用いられてきた。
Conventionally, metals such as cast iron and cast steel have been used for plastic molding molds and special injection molding molds in terms of dimensional accuracy and number of molding seats.

これらの金属は、1a械的強度は優れるものの、鋳造・
加工が困難であり、鋳造温度が高いため、鋳造に大規模
な設備を必要とする。
Although these metals have excellent 1a mechanical strength, they cannot be cast or
It is difficult to process and requires large-scale equipment for casting because the casting temperature is high.

又、鋳造は砂型でなされるため、鋳造品の表面が粗くな
り、そのために、表面研磨に多大の工数が必要となる。
Further, since casting is performed in a sand mold, the surface of the cast product becomes rough, and therefore a large number of man-hours are required for surface polishing.

しかも、精密な金型を製作するためには、切削、放電加
工等の機械加工に多大の時間を必要とする。
Moreover, in order to manufacture a precise mold, a large amount of time is required for machining such as cutting and electrical discharge machining.

従って、納期、コストの面から多品種少量生産の要求に
合わなくなってきている。
Therefore, in terms of delivery time and cost, it has become difficult to meet the demands for high-mix, low-volume production.

そこで、鋳鉄、鋳鋼に代わって、銅合金が使用されてい
るが、銅合金は鋳造温度が高いため。
Therefore, copper alloys are used instead of cast iron and cast steel, but copper alloys have a high casting temperature.

#造には酸化防止等の設備や処理を要し、又、その鋳造
温度が1000℃を越えるため、#型には石膏が使用で
きず、セラミックモールドが用いられる。
#-shaping requires equipment and treatment to prevent oxidation, and the casting temperature exceeds 1000°C, so plaster cannot be used for the #-type, and ceramic molds are used.

セラミックモールドは高価であるうえに、鋳型の製作が
困難である。
Ceramic molds are expensive and difficult to manufacture.

しかも銅合金は、鋳鉄や鋳鋼と同様に長時間の放電加工
を必要とするため、多品種少量生産用金型の要求には合
わな(なってきている。
Moreover, like cast iron and cast steel, copper alloys require long electrical discharge machining, so they are not meeting the requirements for molds for high-mix, low-volume production.

このような欠点を解決するために、鋳造温度が低く、鋳
造・加工が容易なプラスチック成形用金型材料として、
亜鉛基合金が提案されている。
In order to solve these drawbacks, we developed a mold material for plastic molding that has a low casting temperature and is easy to cast and process.
Zinc-based alloys have been proposed.

この亜鉛基合金の多くは、グイキャスト用亜鉛合金(Z
DC−1)をペースとしており、例えば、特公昭48−
20%7号公報には、アルミニクム%JR%マグネシク
ム、ベリリクム、チタニウム及び残部亜鉛からなる耐圧
用亜鉛基合金が、又、特公昭51−5342号公報には
、アルミニウム、銅、マグネシウム、ペリリクム、チタ
ニウム、銀及び残部亜鉛からなる耐摩耗性亜鉛基合金が
それぞれ開示されている。
Many of these zinc-based alloys are zinc alloys for gui casting (Z
DC-1), for example, the special public
20% No. 7 discloses a pressure-resistant zinc-based alloy consisting of aluminum% JR% magnesium, berylicum, titanium, and the balance zinc, and Japanese Patent Publication No. 51-5342 discloses a pressure-resistant zinc-based alloy consisting of aluminum, copper, magnesium, perilicum, and titanium. , silver and a balance zinc-based alloy are disclosed, respectively.

(発明が解決しようとする問題点) しかしながら、上記亜鉛基合金はいずれもペリリクムを
添加することにより、表面硬度は向上するものの、脆性
が発現してもろくなり、更に、ペリリクムが作業環境を
悪化させる等の問題点があった。
(Problems to be Solved by the Invention) However, although the surface hardness of all of the above zinc-based alloys improves by adding perilicum, they develop brittleness and become brittle, and furthermore, perilicum worsens the working environment. There were problems such as.

又、上記亜鉛基合金は、機械的強度が不十分であるため
、この金型を用いて成形作業を重ねるにつれて、金型の
精度が低下し、成形品にいわゆるばりが発生する恐れが
あったり、延性がなく加工時や成形時に割れを生じ易い
等の欠点があり、そのために試作用金型程度にしか用い
ることができない。
In addition, since the zinc-based alloy described above has insufficient mechanical strength, as molding operations are repeated using this mold, the accuracy of the mold decreases and there is a risk that so-called burrs may occur in the molded product. However, it has drawbacks such as lack of ductility and easy cracking during processing and molding, and therefore can only be used for prototype molds.

点 (問題を解決するための手段)・ 本発明は上記従来の間MAを解決するために成されたも
のであり、アルミニウム及び銅を含有する亜鉛基合金に
、更に微量のマグネシウムとチタニウムを添加すること
により、機械的強度及び引張破断伸びを向上させるとと
もに、機械加工性に優れた金型用合金を提供することを
主旨とする。
Points (Means for solving the problem) - The present invention was made to solve the above-mentioned conventional MA problem, and it involves adding trace amounts of magnesium and titanium to a zinc-based alloy containing aluminum and copper. The purpose of this invention is to improve mechanical strength and tensile elongation at break, and to provide an alloy for molds with excellent machinability.

本発明の亜鉛基合金は、アルミニタム10〜15重量%
、銅10%を越えて151!量%以下、マグネシウムα
01重量%以上でα05重量%未満、チタニウム(Lo
t〜3重量%を含有し、成分が亜鉛もしくは亜鉛と不可
避的不純物よりなることにより、上記目的が達成される
The zinc-based alloy of the present invention has an aluminum content of 10 to 15% by weight.
, over 10% copper, 151! % or less, magnesium α
01% by weight or more and less than 05% by weight, titanium (Lo
The above object is achieved by containing zinc or zinc and unavoidable impurities.

本発明において添加される微量のチタニウムは、銅と安
定な化合物を生成して結晶粒界に析出し、本合金の結晶
粒径を微細化させ、機械的強度や表面硬度を向上させる
ほか、応力負荷時にすべり面となり、延性を付与するこ
とができるO その添加量は(LOI〜3重量%に限定されるが、過少
の場合は効果がなく、過多の場合は表面硬度は増加する
が、脆性が増し、機械的強度及び伸びが低下する。
The small amount of titanium added in the present invention forms a stable compound with copper and precipitates at the grain boundaries, making the crystal grain size of the alloy finer, improving mechanical strength and surface hardness, and improving stress resistance. O can form a slip surface during loading and impart ductility.The amount of O added is limited to (LOI ~ 3% by weight, but too little will have no effect, and too much will increase surface hardness but cause brittleness. increases, mechanical strength and elongation decrease.

マグネシウムは、結晶粒界夢ζ析出し、特に粒界腐食の
防止に効果を有することが知られており、その添加は粒
間腐食の抑制に必須であり、α01重量%でa、05重
量%未満添加される。
Magnesium is known to be effective in preventing grain boundary precipitation, especially intergranular corrosion, and its addition is essential for suppressing intergranular corrosion. Added less than

過少の場合は効果がなく、過多の場合は合金の強度が低
下し、脆性が増す。
If it is too small, there will be no effect, and if it is too large, the strength of the alloy will decrease and brittleness will increase.

アルミニウムの添加量は10〜15重量%である。過少
の場合は機械的強度や硬度が不足し、過多の場合は凝固
開始点が上昇し、相分離しやす(なりひけ巣の原因とな
る。
The amount of aluminum added is 10 to 15% by weight. If it is too small, the mechanical strength and hardness will be insufficient, and if it is too large, the solidification starting point will rise and phase separation will occur easily (causing shrinkage cavities).

銅の添加量は、10%を越えて15重量%以下である。The amount of copper added is more than 10% and less than 15% by weight.

過少の場合は機械的強度や表面硬度が不足し、過多の場
合は硬度は増大するものの、脆性が発現し、延性の付与
が困jllIどなる。
If it is too small, the mechanical strength and surface hardness will be insufficient, and if it is too large, the hardness will increase, but brittleness will develop, making it difficult to impart ductility.

尚、ここで不可避的不純物とは、通常グイキャスト用亜
鉛合金として使用される最純亜鉛地金を原料としても、
なお精錬の過程で混入を避けがだい元素、並びに鋳造等
の過程で、外部から混入の可能性のあるすべての元素を
指し、具体的にはJIS−H2BO3一種で規定される
ように、重量百分率でPb11007以下、Feα10
以下、Cdα005以下、Snα005以下を指す。
Incidentally, unavoidable impurities here refer to unavoidable impurities, even if the purest zinc ingot, which is normally used as a zinc alloy for Gui casting, is used as a raw material.
It refers to elements that must be avoided during the refining process and all elements that may be mixed in from the outside during the casting process, etc. Specifically, as specified in JIS-H2BO3 type, weight percentage Pb11007 or less, Feα10
Hereinafter, Cdα005 or less and Snα005 or less are referred to.

(実施例) 以下に本発明の実施例について述べる。(Example) Examples of the present invention will be described below.

実施例1〜9、比較例1〜σ。Examples 1 to 9, Comparative Example 1 to σ.

所定量の亜鉛、アルミニタム、銅、マグネシクム、チク
ニクムの各成分を十分1こ溶解して、均一な組成となし
、表1に示す組成を有する合金を作製した。
Predetermined amounts of each component of zinc, aluminum, copper, magnesium, and chikunicum were sufficiently dissolved to obtain a uniform composition, thereby producing an alloy having the composition shown in Table 1.

この合金からJIS−H5301参考図Aに示される引
張試験片(1)及び参考図Bに示される硬さ試験片(2
)を作成した。
From this alloy, a tensile test piece (1) shown in JIS-H5301 reference diagram A and a hardness test piece (2) shown in reference diagram B
)It was created.

この試験片(1)の鋳造直後(鋳造後30時間以内)の
引張強度(Kit/j )及び引張破断伸び(%)をJ
IS−Z2241に従って測定した。
The tensile strength (Kit/j) and tensile elongation at break (%) of this test piece (1) immediately after casting (within 30 hours after casting) were determined by J
Measured according to IS-Z2241.

又、試験片(2)のグリンネル硬度(HB)をJIS−
Z2243に従って測定した。
In addition, the Grinnell hardness (HB) of the test piece (2) was determined by JIS-
Measured according to Z2243.

以上の測定結果を表2r−示した。The above measurement results are shown in Table 2r.

表 1 (単位:重量%) 表 2 □=テ 以上の結果より、前記特定の組成を有するAI−Cu 
−M g −Z n系亜鉛基合金において、チタニクム
の添加効果が0.01〜3重量%の範囲で明白である。
Table 1 (Unit: Weight %) Table 2 □ = Te From the above results, AI-Cu with the above specific composition
-M g -Z In the n-based zinc-based alloy, the effect of adding titanium is obvious in the range of 0.01 to 3% by weight.

(発明の効果) 本発明の亜鉛基合金は、上記の構成の通り。(Effect of the invention) The zinc-based alloy of the present invention has the above structure.

チタエクムの添加とアルミニタム、銅及びマグネレクム
の混合比を厳しく制御することにより、機械的強度及び
表面硬度に優れるとともに、亜鉛基合金の欠点である割
れ易さを改善することができる。
By strictly controlling the addition of Titaecum and the mixing ratio of aluminum, copper, and MagneRecum, it is possible to achieve excellent mechanical strength and surface hardness, and to improve the ease of cracking, which is a drawback of zinc-based alloys.

又、本亜鉛基合金は鋳造温度が低く、鋳造・加工が容易
である。
Furthermore, this zinc-based alloy has a low casting temperature and is easy to cast and process.

従って、本合金をプラスチックの成形用金型として使用
した場合、表面にクラックの発生するおそれがなく、又
、成形作業を重ねても、金型の精度が低下しないのて、
ブラスチッ9It形用金型の材料として非常に有用であ
る。
Therefore, when this alloy is used as a plastic mold, there is no risk of cracks occurring on the surface, and the precision of the mold will not deteriorate even after repeated molding operations.
It is very useful as a material for molds for BLASTIC 9It type.

Claims (1)

【特許請求の範囲】[Claims] 1、重量百分率で、アルミニウム10〜15%、銅10
%を越えて15%以下、マグネシウム0.01%以上で
0.05%未満、チタニウム0.01〜3%を含有し、
残分が亜鉛もしくは亜鉛と不可避的不純物からなること
を特徴とする亜鉛基合金。
1. Weight percentage: 10-15% aluminum, 10% copper
% to 15%, magnesium 0.01% to less than 0.05%, titanium 0.01 to 3%,
A zinc-based alloy characterized in that the remainder consists of zinc or zinc and inevitable impurities.
JP16051988A 1987-12-09 1988-06-28 Zinc-based alloy Pending JPH01252749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16051988A JPH01252749A (en) 1987-12-09 1988-06-28 Zinc-based alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31134687 1987-12-09
JP62-311346 1987-12-09
JP16051988A JPH01252749A (en) 1987-12-09 1988-06-28 Zinc-based alloy

Publications (1)

Publication Number Publication Date
JPH01252749A true JPH01252749A (en) 1989-10-09

Family

ID=26487003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16051988A Pending JPH01252749A (en) 1987-12-09 1988-06-28 Zinc-based alloy

Country Status (1)

Country Link
JP (1) JPH01252749A (en)

Similar Documents

Publication Publication Date Title
KR102597784B1 (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
KR101274089B1 (en) High strength aluminum alloys for die casting
JPH01252749A (en) Zinc-based alloy
CN111118356A (en) Aluminum alloy material, aluminum alloy molded part, preparation method of aluminum alloy molded part and terminal equipment
JPH01234539A (en) Zinc-based alloy
JPH01165740A (en) Zinc-based alloy
JPH01147036A (en) High strength zinc-based alloy
JPH01234538A (en) Zinc-based alloy
JPH01246338A (en) Zinc-based alloy
KR20000059365A (en) Cu-Zn-Al, Sr, Ti, B alloys for EDM(Energy Discharge Machine) wire and its manufacturing method
JPS63219542A (en) Manganese-containing zinc based alloy
JPH01247541A (en) Zinc-base alloy
JPS6338551A (en) Zinc alloy containing rare earth element
JPH01246335A (en) Zinc-base alloy of low aging characteristic
JPH0320426A (en) Copper alloy for die
JPH01255633A (en) Low aging zinc-based alloy
JPS63203740A (en) Zinc-base alloy
JPS63203741A (en) Titanium-containing zinc-based alloy
JPH01230742A (en) Zinc-based alloy
JPH01142045A (en) Zinc-base alloy having low aging characteristic
JPH01246336A (en) Zinc-base alloy of low aging characteristic
JPH01159342A (en) Zinc-based alloy
US3132939A (en) Nickel brass having a relatively low liquidus temperature
JPS6338549A (en) Zinc alloy
JPH01147035A (en) Alloy having low aging characteristics