JPH01252693A - Coke quality control method for coke oven - Google Patents

Coke quality control method for coke oven

Info

Publication number
JPH01252693A
JPH01252693A JP8040188A JP8040188A JPH01252693A JP H01252693 A JPH01252693 A JP H01252693A JP 8040188 A JP8040188 A JP 8040188A JP 8040188 A JP8040188 A JP 8040188A JP H01252693 A JPH01252693 A JP H01252693A
Authority
JP
Japan
Prior art keywords
coke
quality
conditions
raw material
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8040188A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kashiwabara
義之 柏原
Yoshiyuki Matoba
的場 祥行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8040188A priority Critical patent/JPH01252693A/en
Publication of JPH01252693A publication Critical patent/JPH01252693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To stabilize coke quality, by designing a model for predicting coke quality from the properties of charging coal and other particular factors and accurately regulating charge coal formulation and oven temp. in the operation of a coke oven. CONSTITUTION:In the operation of a coke oven, a model for predicting coke quality (such as DI, CSR, ASH and S) after carbonization is designed from the properties (such as properties of simple coal, mixing conditions, water content, expansion coefficient, and volatile content) of charging coal and as four factors, i.e., thermal property values (such as specific heat and heat conductivity), charging conditions (such as bulk density of charging coal), carbonizing conditions (such as oven temp. and carbonizing time) and oven body conditions (such as oven width and brick thickness and thermal properties of a heat transfer wall), and the regulation of charge coal formulation during take-off of charge coal and the regulation of oven temp. during carbonization are accurately performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] この発明は、品質の安定したコークスを得るために、コ
ークス品質が目標値となるように制御するコークス炉の
コークス品質制御方法に関する。 (従来の技術] 一般に、製銑原料となるコークスの品質は、高炉操業に
おいて大きな影響を与える。このため、コークス品質を
所定の値に調整することは極めて重要である。また、コ
ークス品質のバラツキを低減することにより、目標品質
をスペックに近づけることが可能となり、原料および熱
量の原単位を向上できる。 コークス品質を安定に保持するためには、原料配合調整
と炉温管理が重要であるが。従来は原料配合調整と炉温
管理は別々に行なわれている。 コークス炉の原料配合調整は、装入炭の性状のみから]
−クス品質を推定し、その品質を一定化すべく行なわれ
る。 また、炉温管理は、火消を自動検知できる指標で定義し
く例えば特願昭55−133495号)、装炭から火消
までの時間(火落時間)が一定になるよう特開昭57−
159877号公報に記載の燃焼制御方法等により炉温
を制御している。このような方法によれば、火落時間の
バラツキを抑え、目標火落時間をより長く設定でき、炉
温低下による乾留熱量低減が可能となる。 [発明が解決しようとする課題] コークス品質の安定化のために実施されている従来の原
料配合調整方法では、コークス品質の推定に装入条件や
乾留条件が考慮されていないため、負荷率(乾留時間)
や炉温等の操業条件が大幅に変えられた時調整すること
が非常に困難である。 それ故、コークス品質を測定し、その結果をフィードバ
ックしてコークス原料の切出し比率を再調整せざるをえ
なかった。 しかしながら、コークス品質を測定したコークスの原料
装入条件および乾留条件は、調節時点でコークス炉に供
給しようとしているコークス原料の装入条件や乾留条件
とは、コークス炉への搬送系、乾留、測定の時間遅れの
ために、一致しないことが多く、制御精度向上に限界が
あった。 また、制御したいコークス品質も操作量である振替銘柄
も複数あり、試行錯誤的に操作量を決定することは、極
めて困難である。 一方、炉温管理は、前記したように装入炭から火消まで
の時間が一定になるように炉温を調整することにより、
火落時間のバラツキを抑え、目標火落時間を長く設定で
きる結果、乾留熱量低減がはかられる。火落時間のバラ
ツキを低減することは、間接的にはコークス品質のバラ
ツキを低減することにつながるが、結果として品質が如
何程になるかは、全く関与しておらない。 この発明は従来の技術のこのような問題点に毘みなされ
たものであり、その目的とするところは原料切出し時に
原料配合調整、乾留時に炉温調整を精度よ〈実施するこ
とにより、品質の安定したコークスを製造し得る方法を
提案しようとするものである。 (課題を解決するための手段1 この発明は、装入炭の性状(単味炭性状、配合条件、水
分、揮発分、膨張率等)と熱物性値(比熱、熱伝導率な
ど)、装入条件(装入炭嵩密度等)、乾留条件(炉温、
乾留時間等)、炉体条件(炉幅、伝熱壁煉瓦厚み・熱物
性等)の4つの要素から、乾留後のコークス品質(DI
、C8R。 ASH,S等)を推定するモデルを用い、原料切出し時
に原料配合調整、乾留時に炉温調整を行なうことにより
、コークス品質を一定化する方法であり、 また、各種コークス原料を各別に貯留する原料槽を複数
備えたコークス炉において、前記コークス品質推定モデ
ルにより、各コークス原料配合変更後におけるコークス
成品の品質予測値とその目標値との差の絶対値に所定の
重み係数を乗じた値の各品質についての加算値と、各原
料槽について配合変更後の切出し重量比率と各原料槽に
つき予め定められている基準切出し重量比率との差の絶
対値に所定の重み係数を乗じた値の全原料槽についての
加算値との和を最小にすべく、各原料槽毎の切出し重量
比率を操作し、原料配合調整を行なう方法であり、 また、前記コークス品質の推定モデルにより、炉温変更
後におけるコークス成品の品質を予測した値とその目標
値との差の絶対値に所定の重み係数を乗じた値の各品質
についての加算値と、変更後の炉温と予め定められてい
る基準炉温との差の絶対値に所定の重み係数を乗じた値
との和を最小とすべく、炉温を操作する方法を要旨とす
るものである。 (作  用1 この発明において、例えばコークスの品質DI(強度)
を推定するモデルとしては、特開昭60−174951
号公報に記載のコークス強度推定方法が知られている。 この方法は成型炭部と粉炭部のコークス強度を推定した
後、両者のコークス化時の重量割合に応じて加重平均し
て求める方法である。しかしながら、実際には、下記(
1)式で表わされるドリフト補償量δiを導入し、これ
をモデル推定値Y剛に付加した下記(2)式によりyt
の予測値Yiを算出する方法がとられる。 へ   ・(−) J=(h   +gp((Yot”’−YMi(0))
−(Yo*(−’Y y i’″″))) 十g r 
(Yo;(0)Yui(0)−δ1鵠す・・・・・・(
1] Yi ” YMi+δ、            ・・
・・・・(2)ただし、YI: コークス品質(DI、
 C5R,ASH。 S等) δi(−用前回算出されたδ1 gi  : コークス品質iについての積分ゲインg、
:コークス品質iについての比例ゲインYoi”): 
Yiの最新測定値 YMl(0):Yo1(0)に対応するYlのモデル推
定値 Yo、(−) 、 Yo、(0)の前回のYiの測定値
YMt(−):Yol(−)に対応するYlのモデル推
定値 ところで、コークス品質の安定化が要求される反面、原
料在庫・原料供給の面から望ましい各種原料の切出し重
量比率が、コークス炉の操業安定性の面から望ましい炉
温か存在する。そこで、これら複数の要求を両立させる
ために、切出し重量比率および炉温にも目標値的な基準
値を設けてζこの基準値およびコークス品質の目標値を
共にある程度満足するような制御方法をとるのが実用上
有益であるとの観点から、本発明がなされた。 この発明の原料配合調整方法を式で説明すると、下記(
3)式で表わされるKを最小とすべきF、を公知の目標
計画法により算出し、このF、にしたがい、切出し重量
比率を操作することとなる。 K=ΣWyIXIYt−Yll+2′wpjXIFHF
jl  −(3)】 ただし、WYi:  コークス品質Y、に割付けた重み
係数 Yi:Y、の目標値 Wp4:j番原料槽に割付けた重み係数F4  :  
j番原料槽について操作せんとする切出し重量比率 1、:j番原料槽について定めた基準 切出し重量比率 なお、コークス品質YIに割付けた重み係数WYiは各
コークス品質の安定化度合によって決められる。また、
j番原料槽に割付けた重み係数W、jも基準値からのず
れが許容される度合によって決定される。 次にこの発明の炉温調整方法を式で説明すると、下記(
4)式で表わされるLを最小とすべき下を公知の目標計
画法により算出し、このTにしたがい炉温を操作するこ
ととなる。 L=ΣWYi X l Yi  YI l + WT 
X l T−〒1 −(4まただし、WT:炉温の重み
係数 T 二基率炉温 また、炉温の重み係数wTも基準値からのずれが許容さ
れる度合によって決められる。 実際には、上記炉温を目標炉温にして、コークス炉の燃
焼を制御する。 第1図はこの発明のコークス品質の制御システムを示す
模式図である。 すなわち、原料炭櫂から切出す装入炭の性状(単味炭性
状、配合条件、水分等)と熱物性値、装入条件(装入炭
嵩密度等)、乾留条件(炉温。 乾留時間等)、炉体条件(炉幅、伝熱壁煉瓦厚み等)を
品質予測制御モデルおよび乾留熱量制御モデルに入力し
、乾留後のコークス品質を予測し、この予測値に基づい
て原料炭槽の配合調整を行なうとともに、炉温調整を行
なう。 その際、各コークス原料配合変更後における品質予測値
と目標値との差の絶対値にコークス品質に割付けた重み
係数を乗じた値の各品質についての加算値と、配合変更
後の切出し重量比率と各原料槽につき予め定められてい
る基準切出し重量比率との差の絶対値に所定の重み係数
を乗じた値の全原料槽についての加算値との和が最小と
なるように、各原料槽の切出し重量比率を操作するので
ある。 また、炉温調整は、炉温変更後におけるコークス成品の
品質予測値とその目標値との差の絶対値に炉温の重み係
数を乗じた値の加算値と、変更後の炉温と予め定められ
ている基準炉温との差の絶対値に炉温の重み係数を乗じ
た値との和が最小となるように炉温を操作するのである
。 (実 施 例] 第1表は実機にこの発明法を適用した際のコークス品質
のばらつき(σ)低減効果を、従来実績と比較して示し
たものである。 第1表より明らかなごとく、この発明法によりコークス
品質のばらつきを低減できることがわかる。 第  1   表
(Industrial Application Field) The present invention relates to a coke quality control method for a coke oven that controls coke quality to a target value in order to obtain coke of stable quality. (Prior Art) Generally, iron making The quality of coke, the raw material, has a major impact on blast furnace operation. Therefore, it is extremely important to adjust coke quality to a predetermined value. In addition, by reducing variations in coke quality, target quality can be achieved. It is now possible to get closer to the specifications, improving the basic unit of raw material and heat consumption. In order to maintain stable coke quality, it is important to adjust the raw material mixture and control the furnace temperature. Management is carried out separately. The coke oven raw material mix adjustment is based only on the properties of the charged coal]
- This is done in order to estimate the quality of the text and make the quality constant. Further, furnace temperature management is defined by an index that can automatically detect fire extinguishment (for example, Japanese Patent Application No. 133495/1982), and the time from coal loading to fire extinguishment (fire extinguishing time) is defined as a constant.
The furnace temperature is controlled by the combustion control method described in Japanese Patent No. 159877. According to such a method, it is possible to suppress variations in the fire-off time, set a longer target fire-off time, and reduce the amount of heat of carbonization by lowering the furnace temperature. [Problems to be solved by the invention] In the conventional raw material blend adjustment method implemented to stabilize coke quality, charging conditions and carbonization conditions are not taken into consideration when estimating coke quality. carbonization time)
It is very difficult to make adjustments when operating conditions such as heat and furnace temperature are changed significantly. Therefore, it was necessary to measure coke quality and feed back the results to readjust the cutting ratio of coke raw materials. However, the coke raw material charging conditions and carbonization conditions for which the coke quality was measured are different from the coke raw material charging conditions and carbonization conditions that are to be supplied to the coke oven at the time of adjustment. Because of the time delay, they often do not match, which limits the ability to improve control accuracy. In addition, there are multiple transfer brands whose coke quality to be controlled is also a manipulated variable, and it is extremely difficult to determine the manipulated variable by trial and error. On the other hand, as mentioned above, furnace temperature management is achieved by adjusting the furnace temperature so that the time from charging coal to extinguishing the fire is constant.
As a result of suppressing variations in fire-off time and being able to set a longer target fire-off time, the amount of heat of carbonization can be reduced. Reducing the variation in fire-off time indirectly leads to reducing the variation in coke quality, but it has no effect on the resulting quality. This invention has been developed in light of these problems in the conventional technology, and its purpose is to improve quality by accurately adjusting the raw material blend during raw material cutting and adjusting the furnace temperature during carbonization. The purpose of this paper is to propose a method for producing stable coke. (Means for Solving the Problems 1) This invention solves the following problems: charging conditions (charging coal bulk density, etc.), carbonization conditions (furnace temperature,
The coke quality after carbonization (DI
, C8R. This method uses a model to estimate coke (ASH, S, etc.), adjusts the raw material mix during raw material cutting, and adjusts the furnace temperature during carbonization, thereby making coke quality constant. In a coke oven equipped with multiple tanks, the coke quality estimation model calculates each value obtained by multiplying the absolute value of the difference between the predicted quality value of the coke product after each coke raw material composition change and its target value by a predetermined weighting coefficient. All raw materials with a value obtained by multiplying the added value for quality and the absolute value of the difference between the cut-out weight ratio after the composition change for each raw material tank and the standard cut-out weight ratio determined in advance for each raw material tank by a predetermined weighting coefficient. In order to minimize the sum with the added value for the tank, the cut weight ratio for each raw material tank is manipulated and the raw material mixture is adjusted.In addition, the above coke quality estimation model is used to calculate the The added value for each quality of the value obtained by multiplying the absolute value of the difference between the predicted value of the quality of the coke product and its target value by a predetermined weighting coefficient, the changed furnace temperature and the predetermined reference furnace temperature. The gist is a method of manipulating the furnace temperature in order to minimize the sum of the absolute value of the difference between the two values multiplied by a predetermined weighting coefficient. (Function 1 In this invention, for example, the quality DI (strength) of coke
As a model for estimating
A coke strength estimation method described in the above publication is known. This method is a method in which the coke strength of the briquette coal part and the pulverized coal part is estimated, and then the weighted average is calculated according to the weight ratio of both parts at the time of coking. However, in reality, the following (
Introducing the drift compensation amount δi expressed by equation 1), and adding this to the model estimated value Y stiffness, yt is calculated using equation (2) below.
A method is used to calculate the predicted value Yi. to ・(-) J=(h +gp((Yot"'-YMi(0))
-(Yo*(-'Y y i'″))) 10g r
(Yo; (0) Yui (0) - δ1 question... (
1] Yi ”YMi+δ, ・・
...(2) However, YI: Coke quality (DI,
C5R, ASH. S, etc.) δi (-previously calculated δ1 gi: integral gain g for coke quality i,
: Proportional gain Yoi for coke quality i):
Latest measured value of Yi YMl(0): Model estimated value of Yl corresponding to Yo1(0) Yo, (-), Previous measured value of Yi of Yo, (0) YMt(-): Yol(-) Corresponding model estimate of Yl By the way, while stabilization of coke quality is required, the cut-out weight ratio of various raw materials is desirable from the viewpoint of raw material inventory and raw material supply, and the existence of a furnace temperature that is desirable from the viewpoint of operational stability of the coke oven. do. Therefore, in order to satisfy these multiple demands, a standard value is set for the cutting weight ratio and furnace temperature, and a control method is adopted that satisfies both this standard value and the target value for coke quality to some extent. The present invention was made from the viewpoint that it is practically useful. The raw material blend adjustment method of this invention can be explained using the following formula (
3) F, which should minimize K expressed by the formula, is calculated by a known target planning method, and the cut-out weight ratio is manipulated according to this F. K=ΣWyIXIYt-Yll+2'wpjXIFHF
jl - (3)] However, WYi: Weighting coefficient Yi assigned to coke quality Y: Target value of Y, Wp4: Weighting coefficient F4 assigned to the jth raw material tank:
The cut-off weight ratio to be operated for the j-th raw material tank is 1: the standard cut-out weight ratio determined for the j-th raw material tank.The weighting coefficient WYi assigned to the coke quality YI is determined by the degree of stabilization of each coke quality. Also,
The weighting coefficient W, j assigned to the j-th raw material tank is also determined by the degree to which deviation from the reference value is allowed. Next, the furnace temperature adjustment method of this invention is explained using the following formula (
4) The value under which L expressed by the formula should be minimized is calculated using a known target programming method, and the furnace temperature is controlled according to this T. L=ΣWYi X l Yi YI l + WT
X l T-〒1-(4 squares, WT: Furnace temperature weighting coefficient T Two-unit rate Furnace temperature Also, the furnace temperature weighting coefficient wT is also determined by the degree to which deviation from the reference value is allowed. In practice The combustion in the coke oven is controlled by setting the above-mentioned furnace temperature to the target furnace temperature. Fig. 1 is a schematic diagram showing the coke quality control system of the present invention. That is, charging coal cut from a coking coal paddle properties (single coal properties, blending conditions, moisture content, etc.), thermophysical properties, charging conditions (burden coal bulk density, etc.), carbonization conditions (furnace temperature, carbonization time, etc.), furnace body conditions (furnace width, (hot wall brick thickness, etc.) are input into the quality prediction control model and carbonization heat control model to predict the coke quality after carbonization, and based on this predicted value, adjust the mixture of the coking coal tank and adjust the furnace temperature. At that time, the added value for each quality of the value obtained by multiplying the absolute value of the difference between the predicted quality value and the target value after each coke raw material composition change by the weighting coefficient assigned to the coke quality, and the cut weight after the composition change. Each raw material is divided so that the sum of the sum of the absolute value of the difference between the ratio and the standard cut weight ratio predetermined for each raw material tank, multiplied by a predetermined weighting coefficient, for all raw material tanks is minimized. The furnace temperature is adjusted by adjusting the absolute value of the difference between the expected quality of the coke product after changing the furnace temperature and its target value, multiplied by the weighting coefficient of the furnace temperature. The furnace temperature is manipulated so that the sum of the added value and the value obtained by multiplying the absolute value of the difference between the changed furnace temperature and the predetermined reference furnace temperature by the weighting coefficient of the furnace temperature is minimized. (Example) Table 1 shows the effect of reducing variation in coke quality (σ) when this invention method is applied to an actual machine in comparison with the conventional results.As is clear from Table 1. , it can be seen that this invented method can reduce the variation in coke quality. Table 1

【発明の効果】【Effect of the invention】

この発明は上記のごとく、装入炭の性状と熱物性値、装
入条件、乾留条件、炉体条件から乾留後のコークス品質
を精度よく推定するモデルを用いて、原料切出し時に原
料配合を、乾留時に炉温を調整することによりコークス
品質を一定化する方法でおり、極めて簡単に操作量を決
定することができる上、コークス品質のばらつきを低減
ですることができ、高炉操業の安定化が期待できる。 また、コークス品質のばらつき低減効果により、目標品
質をスペックに近づけることが可能となり、原料および
熱量の原単位を向上できる。
As described above, this invention uses a model that accurately estimates the quality of coke after carbonization from the properties and thermophysical properties of charging coal, charging conditions, carbonization conditions, and furnace body conditions to determine the raw material composition at the time of raw material cutting. This method stabilizes the quality of coke by adjusting the furnace temperature during carbonization, and it is extremely easy to determine the amount of operation, and it also reduces variations in coke quality and stabilizes blast furnace operation. You can expect it. Furthermore, the effect of reducing variations in coke quality makes it possible to bring target quality closer to specifications, and improve raw material and heat consumption consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のコークス品質の制御システムを示す
模式図である。
FIG. 1 is a schematic diagram showing a coke quality control system of the present invention.

Claims (1)

【特許請求の範囲】 1 装入炭の性状(単味炭性状、配合条件、水分、膨脹率等
)と熱物性値、装入条件、乾留条件、炉体条件の4つの
要素から、乾留後のコークス品質(DI、CSR、AS
H、S等)を推定するモデルを用い、原料切出し時に原
料配合調整、乾留時に炉温調整を行なうことにより、コ
ークス品質を一定化することを特徴とするコークス炉の
コークス品質制御方法。 2  各種コークス原料を各別に貯留する原料槽を複数備えた
コークス炉において、装入炭の性状と熱物性値、装入条
件、乾留条件、炉体条件の4つの要素から、乾留後のコ
ークス品質を推定するモデルにより、各コークス原料配
合変更後におけるコークス成品の品質を予測した値とそ
の目標値との差の絶対値に所定の重み係数を乗じた値の
各品質についての加算値と、各原料槽について配合変更
後の切出し重量比率と各原料槽につき予め定められてい
る基準切出し重量比率との差の絶対値に所定の重み係数
を乗じた値の全原料槽についての加算値との和を最小に
すべく、各原料槽毎の切出し重量比率を操作し、原料配
合調整を行なうことを特徴とするコークス炉のコークス
品質制御方法。 3  装入炭性状(水分、膨脹率等)や装入条件(嵩密度等)
が、乾留中または乾留前に測定されるコークス炉におい
て、これらの値を用い、装入炭の性状と熱物性値、装入
条件、乾留条件、炉体条件の4つの要素から乾留後のコ
ークス品質を推定するモデルにより、炉温変更後におけ
るコークス成品の品質を予測した値とその目標値との差
の絶対値に所定の重み係数を乗じた値の各品質について
の加算値と、変更後の炉温と予め定められている基準炉
温との差の絶対値に所定の重み係数を乗じた値との和を
最小とすべく、炉温を操作することを特徴とするコーク
ス炉のコークス品質制御方法。
[Claims] 1. From the four elements of charging coal properties (single coal properties, blending conditions, moisture, expansion rate, etc.), thermophysical property values, charging conditions, carbonization conditions, and furnace body conditions, after carbonization coke quality (DI, CSR, AS
A method for controlling coke quality in a coke oven, characterized in that coke quality is made constant by using a model for estimating (H, S, etc.), adjusting the raw material mixture when cutting raw materials, and adjusting furnace temperature during carbonization. 2. In a coke oven equipped with multiple raw material tanks that store various coke raw materials separately, the coke quality after carbonization is determined based on four factors: the properties and thermophysical properties of the charging coal, charging conditions, carbonization conditions, and furnace body conditions. A model that estimates the quality of coke products after each coke raw material composition change is calculated by adding the sum of the absolute value of the difference between the predicted quality of coke products and its target value multiplied by a predetermined weighting coefficient, and the sum of the values for each quality. The sum of the absolute value of the difference between the cut-out weight ratio after changing the composition for the raw material tank and the standard cut-out weight ratio predetermined for each raw material tank, multiplied by a predetermined weighting coefficient, and the added value for all raw material tanks. 1. A coke quality control method for a coke oven, which comprises controlling the cut weight ratio of each raw material tank and adjusting the raw material composition in order to minimize the amount of coke produced. 3 Charging coal properties (moisture, expansion rate, etc.) and charging conditions (bulk density, etc.)
However, in coke ovens where measurements are taken during or before carbonization, these values are used to determine the coke value after carbonization based on the four elements of charging coal properties, thermophysical properties, charging conditions, carbonization conditions, and furnace body conditions. The added value for each quality of the value obtained by multiplying the absolute value of the difference between the predicted value of the quality of the coke product after changing the furnace temperature and its target value by a predetermined weighting coefficient using the quality estimation model, and the value after the change. A coke oven characterized in that the oven temperature is manipulated to minimize the sum of the absolute value of the difference between the oven temperature and a predetermined reference oven temperature multiplied by a predetermined weighting coefficient. Quality control method.
JP8040188A 1988-03-31 1988-03-31 Coke quality control method for coke oven Pending JPH01252693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040188A JPH01252693A (en) 1988-03-31 1988-03-31 Coke quality control method for coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040188A JPH01252693A (en) 1988-03-31 1988-03-31 Coke quality control method for coke oven

Publications (1)

Publication Number Publication Date
JPH01252693A true JPH01252693A (en) 1989-10-09

Family

ID=13717268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040188A Pending JPH01252693A (en) 1988-03-31 1988-03-31 Coke quality control method for coke oven

Country Status (1)

Country Link
JP (1) JPH01252693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488083A (en) * 1990-07-31 1992-03-19 Nippon Steel Corp Control system for optimal operating schedule on coke stock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488083A (en) * 1990-07-31 1992-03-19 Nippon Steel Corp Control system for optimal operating schedule on coke stock

Similar Documents

Publication Publication Date Title
CN105546572B (en) A kind of vertical annealing furnace burning zone automatic temperature control system and its method
CN106636606B (en) A kind of method for controlling furnace temperature of heating furnace based on simulation model
JPH01252693A (en) Coke quality control method for coke oven
CN107429915A (en) For method, control and the adjusting means of controllably running the industrial furnace particularly heated to regenerative and heatable industrial furnace
CA1144511A (en) Method of operating a coke-oven battery
US3022056A (en) Combustion controls for metallurgical heating furnaces
JPS6316173B2 (en)
JPH02252797A (en) Method for controlling coke quality in coke oven
JP6729349B2 (en) Grinding plant oxygen concentration control device, grinding plant oxygen concentration control method, and program
SU1544857A1 (en) Method of stabilizing the temperature of stone materials at the outlet of drying drum
JP4105794B2 (en) Coke coking coal blending method
JPH0697090B2 (en) Quality control method in calorie control device
JP2004027076A (en) Method for operating coke oven
JP2619044B2 (en) Temperature control device
JPH02208393A (en) Technique for operation of coke oven
SU767480A2 (en) Method for automatically controlling drying process
JP2947678B2 (en) Burner combustion control system
SU1030397A1 (en) Device for automatically controlling heating of coking ovens
SU972207A1 (en) Method for automatically controlling thermal conditions of rotary kilns
SU395465A1 (en) METHOD OF MANAGING THE PROCESS PROCESS
JPH0260929B2 (en)
JPS6055576B2 (en) Method for adjusting the amount of fuel supplied to the shaft section in flash-smelting furnace operation
JPH0147687B2 (en)
KR101142495B1 (en) burning method for coke oven
RU2293936C2 (en) Metallurgical raw material firing process control method in fluidized-bed furnace and method for arresting such furnace