JPH01252521A - Production of activated sodium carbonate - Google Patents

Production of activated sodium carbonate

Info

Publication number
JPH01252521A
JPH01252521A JP24755788A JP24755788A JPH01252521A JP H01252521 A JPH01252521 A JP H01252521A JP 24755788 A JP24755788 A JP 24755788A JP 24755788 A JP24755788 A JP 24755788A JP H01252521 A JPH01252521 A JP H01252521A
Authority
JP
Japan
Prior art keywords
sodium carbonate
drying
solid
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24755788A
Other languages
Japanese (ja)
Inventor
Karel Mocek
カレル モチェク
Emerich Erdoes
エメリフ エルドス
Erich Lippert
エリフ リペルト
Dario Beruto
ダリオ ベルート
Yan Cermark
ヤン チェルマーク
Vaclav Vesely
バーツラブ ベゼリー
Miloslav Hartman
ミロスラブ ハルトマン
Jiri Wald
イジー バルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Czech Academy of Sciences CAS
Original Assignee
Czech Academy of Sciences CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Czech Academy of Sciences CAS filed Critical Czech Academy of Sciences CAS
Publication of JPH01252521A publication Critical patent/JPH01252521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Detergent Compositions (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE: To obtain sodium carbonate having high reactivity with the removal of sulfur dioxide from waste gases by subjecting a solid sodium carbonate decahydrate to gradual dehydration to a lower hydrate at a specific temp.
CONSTITUTION: The sodium carbonate having the reactivity with the sulfur dioxide by a degree of gas refining higher than 90% and a degree of utilization of sodium carbonate higher than 90% is formed by using the following method: The starting material contg. the solid sodium carbonate decahydrate of a compsn. Na2CO3.1OH2O (10H2O is water of crystallization) is gradually dehydrated in a drying stage for this material in order to obtain the sodium carbonate having the content of the water of crystallization corresponding to a compsn. Na2CO3.nH2O (n is 0 to 1) to the content of the water of crystallization corresponding to a compsn. Na2CO3.nH2O (n is 0 to 5) (the drying is progressed under the conditions under which the temp. of the solid is kept at ≤25°C). The material is first dried at the temp. of the solid of 10 to 31.9°C until the compsn. corresponding to Na2CO3.5H2O is attained in the drying stage described above and in the second stage following to the first stage, the drying is preferably executed the 33 to 150°C.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 本発明は、廃ガスから二酸化硫黄の除去のために使用さ
れる活性炭酸ナトリウムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for the production of activated sodium carbonate used for the removal of sulfur dioxide from waste gases.

活性炭酸ナトリウムの1つの製造方法(炭酸水素ナトリ
ウム、 Na12COsから出発する)は、既知である
。炭酸水素ナトリウムは、アメリカ特許第410574
4号に記載されているように、水蒸気の分圧及び温度に
より定義されている条件下でガスの流れ下で熱分解にゆ
だねられる。この方法で製造された無水活性炭酸ナトリ
ウムは、二酸化硫黄に対するひじょうに高い反応性によ
り区別され、そしてこれは95%よりも高いガス精製度
により示され、それによって活性炭酸ナトリウムの吸着
能力は、平均90%以上である。
One method for producing active sodium carbonate (starting from sodium bicarbonate, Na12COs) is known. Sodium bicarbonate is disclosed in U.S. Patent No. 410574.
No. 4, it is subjected to pyrolysis under a flow of gas under conditions defined by the partial pressure of water vapor and temperature. The anhydrous activated sodium carbonate produced in this way is distinguished by a very high reactivity toward sulfur dioxide, and this is indicated by a degree of gas purification higher than 95%, whereby the adsorption capacity of the activated sodium carbonate is on average 90% % or more.

炭酸ナトリウムからの活性炭酸ナトリウムの製造方法の
欠点は、出発材料の比較的入手不可能性及びその価格で
ある。
A disadvantage of the process for producing active sodium carbonate from sodium carbonate is the relative unavailability of the starting materials and their cost.

炭酸ナトリウムの種々の製造方法は、たとえばTron
a (ナトリウムセスキカーボネート)として天然のナ
トリウム物質の予備物、さらにまた採掘された炭酸ナト
リウムIO水和物も使用する。これらの原料は、収焼及
び続く精製により焼成ソーダにほとんど加工される。こ
の欠点は焼成ソーダの低い吸着能力である。
Various methods for producing sodium carbonate include, for example, Tron
As (sodium sesquicarbonate) natural reserves of sodium substances are used, and also mined sodium carbonate IO hydrate. These raw materials are mostly processed into calcined soda by combustion and subsequent refining. The drawback is the low adsorption capacity of calcined soda.

従って、本発明の目的は、炭酸ナトリウム10水和物+
 NatCO,・10H20に基づく、安価に入手でき
る天然に存在する物質からの活性炭酸ナトリウムの製造
の技術的問題の解決にある。
Therefore, the object of the present invention is to provide sodium carbonate decahydrate +
It consists in solving the technical problem of the production of activated sodium carbonate from inexpensively available naturally occurring substances, based on NatCO, .10H20.

本発明の目的は、90%よりも高いガス精製度及び90
%よりも高い炭酸ナトリウムの利用度による、二酸化硫
黄に対する反応性を有する炭酸ナトリウムの製造方法で
あって、組成物Na2CO,・n1120(式中、nは
0〜1である)に対応する結晶水の含有量〜組成物Na
2CO:+ ・n1lzo(式中、nは0〜5である)
に対応する結晶水の含有量を有する炭酸ナトリウムを得
るために、組成物NazCOi・1011□0(10o
、oは結晶水を表す)の固体炭酸ナトリウム10水和物
を含んで成る出発材料の乾燥工程(ここで、該乾燥は、
前記固体の温度が32℃以下に維持される条件下で進行
する)における徐々の脱水を特徴とする。
The object of the present invention is to achieve a gas purification degree higher than 90% and a
A process for producing sodium carbonate with reactivity toward sulfur dioxide, with utilization of sodium carbonate higher than % of water of crystallization corresponding to the composition Na2CO,·n1120, where n is from 0 to 1. Content of ~composition Na
2CO:+ ・n1lzo (in the formula, n is 0 to 5)
In order to obtain sodium carbonate with a content of water of crystallization corresponding to
, o represents water of crystallization) of a starting material comprising solid sodium carbonate decahydrate, where the drying comprises:
It is characterized by gradual dehydration (proceeding under conditions where the temperature of the solid is maintained below 32°C).

温度限界32℃は、炭酸ナトリウム10水和物自体の結
晶水におけるその融点を表す。本発明に基づく開示事実
の1つは、指摘された32℃の限界以下の温度条件下で
のそのlO永和物の低級水和物への徐々の転換による結
晶水部分の減少である。
The temperature limit of 32° C. represents the melting point of sodium carbonate decahydrate itself in its water of crystallization. One of the disclosed facts based on the present invention is the reduction of the water of crystallization fraction due to the gradual conversion of its IO permanent hydrate to lower hydrates under temperature conditions below the indicated limit of 32°C.

この方法によれば、約10rrf/gの比表面積及び約
0.4g/adの嵩密度を有する活性炭酸ナトリウム又
はそのl水和物を得ることが可能である。この方法で製
造された固体物質は、二酸化硫黄に対する高い反応性に
よって特徴づけられ、それによって、関与する物質の理
論量の転換は、90%よりも高い。
According to this method it is possible to obtain activated sodium carbonate or its hydrate having a specific surface area of about 10 rrf/g and a bulk density of about 0.4 g/ad. The solid materials produced in this way are characterized by high reactivity towards sulfur dioxide, whereby the conversion of the theoretical amount of the substances involved is higher than 90%.

反対に、10水和物の結晶化におけるその融点(32℃
)以上の脱水によれば、元の結晶構造の完全な分解が生
じる。この方法で形成された固相は、最少の孔の存在、
’in(/g以下の表面積及び二酸化硫黄に対して実質
的に不活性である焼結物質である。
On the contrary, in the crystallization of the decahydrate its melting point (32 °C
) The above dehydration results in complete decomposition of the original crystal structure. The solid phase formed in this way is characterized by the presence of minimal pores,
'in(/g) or less and is a sintered material that is substantially inert to sulfur dioxide.

本発明の初期目的の追加の改良点は、炭酸ナトリウムl
O永和物のその融点以下の温度での脱水の上記条件が、
5水和物(NatCO3・51120)に対応する組成
物に少なくとも分解されて維持される必要性であり、そ
れによって、この後、制限なしに乾燥保存温度を高め、
そして従って、乾燥工程の速度を早め、そしてこの場合
、多孔性構造の分解を避けることが可能である発見であ
る。この方法によって製造された活性炭酸ナトリウム又
はその1水和物は、その上記物性及び同じ化学的活性を
示す。
An additional improvement of the initial object of the present invention is that sodium carbonate l
The above conditions for dehydration of O permanent at a temperature below its melting point are
It is necessary to maintain at least decomposed into the composition corresponding to the pentahydrate (NatCO3.51120), thereby increasing the drying storage temperature without restriction after this,
And thus it is a discovery that it is possible to speed up the drying process and in this case avoid decomposition of the porous structure. Activated sodium carbonate or its monohydrate produced by this method exhibits its above-mentioned physical properties and the same chemical activity.

従って、まず第1に、5水和物、NatCO2・5 H
2Oに対応する組成物に達するまで10℃〜31 、9
 ℃の範囲の温度で及び続く第2段階においては、33
℃〜150℃の温度範囲で都合良く乾燥段階を行うこと
が可能である。
Therefore, first of all, the pentahydrate, NatCO2.5H
10°C until reaching a composition corresponding to 2O31,9
at a temperature in the range of 33 °C and in a subsequent second stage.
It is possible to carry out the drying step conveniently at a temperature range of 150°C to 150°C.

10℃の乾燥温度の下限は、脱水工程が適切な時間内で
なお進行している間、乾燥工程の運動条件により決定さ
れる。
The lower limit of the drying temperature of 10°C is determined by the kinetic conditions of the drying process while the dehydration process is still proceeding within a suitable time.

乾燥の第2段階における150℃の上限温度は、燃焼工
程の間、発生される煙道ガスの通常の温度に対して決定
される。これらのガスは、都合良く、この目的のために
使用され得る。
The upper temperature limit of 150° C. in the second stage of drying is determined for the normal temperature of the flue gases generated during the combustion process. These gases can be conveniently used for this purpose.

乾燥工程は、減圧条件又は真空下で、空気中において、
流動層中において、及び不活性ガスの流れ(この含水量
は3.2体積%よりも低い)中において行われ得る。こ
の製造方法においては、続く煙道ガスの脱硫反応のため
に特定の精力的な要求を伴わないで加熱された炭酸ナト
リウムを都合良く使用することが可能である。乾燥工程
の間、乾燥媒体の温度を高めることが可能である。
The drying step is performed in air under reduced pressure conditions or vacuum,
It can be carried out in a fluidized bed and in a stream of inert gas, the water content of which is lower than 3.2% by volume. In this production process it is possible to advantageously use heated sodium carbonate without any particular energetic requirements for the subsequent flue gas desulphurization reaction. During the drying process it is possible to increase the temperature of the drying medium.

上記に示された活性炭酸ナトリウムの製造方法はまた、
たとえば微粉末の形での焼成ソーダと水とを1 : 1
.7又はそれ以上の質量比で混合することによって、低
い活性の炭酸ナトリウムの再活性化のためにも使用され
得、それによって形成されたパルプ状混合物は続いて、
本発明に従って乾燥せしめられる。
The method for producing activated sodium carbonate shown above also includes:
For example, calcined soda in the form of fine powder and water in a ratio of 1:1
.. It can also be used for the reactivation of low activity sodium carbonate by mixing in a mass ratio of 7 or more, and the pulpy mixture thereby formed is subsequently
Dry according to the invention.

次の例は、本発明の活性炭酸ナトリウムの製造方法並び
に本発明に従って調製された物質の適用法及び効果をよ
り詳しく記載する。
The following examples describe in more detail the method for producing the activated sodium carbonate of the invention as well as the application and effect of the materials prepared according to the invention.

肛 0.25〜0.33mo+の粒子サイズの炭酸ナトリウ
ム10水和物を、24℃の実験温度で1時間、2Paよ
りも低い圧力で真空下において脱水した。この方法で形
成された炭酸ナトリウムA水和物(NazCO3・y2
11□0)を、次の組成のガス混合物:二酸化硫黄0.
2体積%、水蒸気2体積χ及び窒素(残り)と150℃
で反応器中において接触せしめた。100d/分の合計
ガス流速で及び炭酸ナトリウムに対する供給された二酸
化硫黄の単位理論比に関して、二酸化硫黄からのガスの
平均精製度は、98%よりも高く、それによって固体の
最終転換度は約99%である。
Sodium carbonate decahydrate with a particle size of 0.25-0.33 mo+ was dehydrated under vacuum at a pressure below 2 Pa for 1 hour at an experimental temperature of 24°C. Sodium carbonate A hydrate (NazCO3・y2
11□0) into a gas mixture of the following composition: sulfur dioxide 0.
2 volume %, water vapor 2 volume χ and nitrogen (remainder) at 150°C
in the reactor. At a total gas flow rate of 100 d/min and for a unit stoichiometric ratio of fed sulfur dioxide to sodium carbonate, the average degree of purification of the gas from sulfur dioxide is higher than 98%, whereby the final degree of solid conversion is approximately 99%. %.

0.25〜0.33mmの粒子サイズの炭酸ナトリウム
10水和物を、24℃の温度で24時間、薄層にさらす
工程に提供した。その実験を終えた後、化学的分析によ
れば、組成物+ N a z COs・1.211□0
が見出された。この1水和物を、次の組成のガス混合物
:二酸化硫黄0.2体積%、水蒸気2体積χ及び窒素(
残り)と152”Cで反応器中において接触せしめた。
Sodium carbonate decahydrate with a particle size of 0.25-0.33 mm was submitted to a thin layer exposure process for 24 hours at a temperature of 24<0>C. After finishing the experiment, chemical analysis showed that the composition + N a z COs 1.211□0
was discovered. This monohydrate is mixed with a gas mixture having the following composition: 0.2% by volume of sulfur dioxide, 2 volumes of water vapor x and nitrogen (
(remaining) in a reactor at 152"C.

32分後、炭酸ナトリウムに対する供給された二酸化硫
黄の単位理論比に対応する100Inf/分の合計ガス
流速に関して、二酸化硫黄からのガスの平均精製度は9
4%であり、それによって固体の最終転換度は96%で
あった。
After 32 minutes, for a total gas flow rate of 100 Inf/min, corresponding to a unit stoichiometric ratio of fed sulfur dioxide to sodium carbonate, the average degree of purification of the gas from sulfur dioxide is 9
4%, whereby the final conversion of solids was 96%.

貫1 0.25〜0.33+++mの粒子サイズの炭酸ナトリ
ウム10水和物を、湿分2体積%を含む空気により30
℃の温度で流動層中で脱水した。反応器のフリー断面中
の空気の線速度は、0.44m/秒であった。1時間の
乾燥の後、2水和物、 Na2CO3・2H20が形成
された。2時間の乾燥の後、その工程を終え、そして固
相を分析した。脱水の最終生成物は、■水和物、 Na
、CO,・11tOであった。この1水和物を、次の組
成の混合物二二酸化硫黄0.077体積%、水蒸気2体
積2及び窒素(残り)と151℃で反応器中において接
触せしめた。50d/分の合計ガス流速で及び炭酸ナト
リウムに対する供給された二酸化硫黄の単位理論比に関
して、二酸化硫黄からのガスの平均精製度は92%より
も高く、それによって固体の最終転換度は93%であっ
た。
Sodium carbonate decahydrate with a particle size of 0.25 to 0.33+++ m is heated to 30% by air containing 2% moisture by volume.
Dehydration was carried out in a fluidized bed at a temperature of °C. The linear velocity of the air in the free section of the reactor was 0.44 m/sec. After 1 hour of drying, a dihydrate, Na2CO3.2H20, was formed. After 2 hours of drying, the process was terminated and the solid phase was analyzed. The final product of dehydration is ■hydrate, Na
, CO, ·11tO. This monohydrate was contacted in a reactor at 151° C. with a mixture of the following composition: 0.077% by volume of sulfur dioxide, 2 volumes of steam, and the balance nitrogen. At a total gas flow rate of 50 d/min and for a unit stoichiometric ratio of fed sulfur dioxide to sodium carbonate, the average degree of purification of the gas from sulfur dioxide is higher than 92%, whereby the final conversion of solids is 93%. there were.

炭玉 0.25〜0.33mmの粒子サイズの炭酸ナトリウム
10水和物(質117g)を、20℃で流動層中におい
て脱水した。 0.32体積%の初期湿分含有率の空気
の流速は、0.18nf/時であった。フリー断面中の
空気の線速度は0.44m/秒であった。流動状態での
30分の乾燥の後、組成物、 Na、CO3・511□
0が生成された。この生成物を、15分間隔で130℃
まで温度を上げることによって固定された層反応器中に
おける窒素流中でさらに乾燥せしめた。平均加熱速度は
、7℃/分であった。乾燥による最終生成物は、無水炭
酸ナトリウムであった。固体炭酸ナトリウム1水和物に
対する水蒸気の平衡圧は、110℃で大気圧に等しい。
Sodium carbonate decahydrate (117 g) having a particle size of 0.25 to 0.33 mm was dehydrated in a fluidized bed at 20°C. The air flow rate with an initial moisture content of 0.32% by volume was 0.18 nf/hr. The linear velocity of air in the free section was 0.44 m/sec. After 30 minutes of drying in the fluid state, the composition, Na, CO3.511□
0 was generated. The product was heated to 130 °C for 15 minute intervals.
Further drying was carried out in a nitrogen stream in a fixed bed reactor by raising the temperature to . The average heating rate was 7°C/min. The final product upon drying was anhydrous sodium carbonate. The equilibrium pressure of water vapor on solid sodium carbonate monohydrate is equal to atmospheric pressure at 110°C.

■炙 0.25〜0.33mmの粒子サイズの炭酸ナトリウム
1゜水和物(質量17g)を、30℃で流動層中におい
て脱水した。2体積%の初期湿分含有率の空気の流速は
、0 、26m/秒であった。流動層中における60分
の乾燥の後、組成物、 NazCO:+・411□0が
生成された。この後、流動ガス温度を40℃まで高めた
(2) Sodium carbonate 1° hydrate (mass 17 g) having a particle size of 0.25 to 0.33 mm was dehydrated in a fluidized bed at 30°C. The flow velocity of the air with an initial moisture content of 2% by volume was 0.26 m/s. After 60 minutes of drying in a fluidized bed, the composition NazCO:+411□0 was produced. After this, the fluidizing gas temperature was increased to 40°C.

この温度での30分間の乾燥の後、炭酸ナトリウム1水
和物(Na2CO8lH11lzo)が得られた。
After drying for 30 minutes at this temperature, sodium carbonate monohydrate (Na2CO8lH11lzo) was obtained.

炭旦 例4に従って調製された乾燥生成物を、次の組成のガス
混合物:二酸化硫黄880ppm (約0.087体積
χ)、水蒸気2体積χ及び窒素(残り)と151℃で反
応器中において接触せしめた。50d/分の合計ガス流
速で及び炭酸ナトリウムに対する供給された二酸化硫黄
の単位理論比に関して、二酸化硫黄からのガスの平均精
製度は、92%よりも高く、それによって固体の最終転
換度は94.7%であった。
The dry product prepared according to Tantan Example 4 was contacted in a reactor at 151° C. with a gas mixture of the following composition: 880 ppm sulfur dioxide (approximately 0.087 volume χ), 2 volumes χ of water vapor, and nitrogen (remainder). I forced it. At a total gas flow rate of 50 d/min and for a unit stoichiometric ratio of fed sulfur dioxide to sodium carbonate, the average degree of purification of the gas from sulfur dioxide is higher than 92%, whereby the final conversion of solids is 94. It was 7%.

本発明に従って生成された反応性炭酸ナトリウムの脱硫
化効果を示すために、比較測定を行い、そしてこの結果
は、第1図に示される。第1図は、炭酸ナトリウムの層
のための二酸化硫黄の漏出曲線を示す。
In order to demonstrate the desulfurization effect of the reactive sodium carbonate produced according to the invention, comparative measurements were carried out and the results are shown in FIG. FIG. 1 shows the sulfur dioxide leakage curve for a layer of sodium carbonate.

−W−は、前記層の理論量の程度を示し、そしてまた、
長さのない時間の意味及びNSR(標準化された理論比
)の逆値を表し;旦は、脱硫効果を示す。
-W- indicates the degree of stoichiometry of said layer, and also
Represents the meaning of time without length and the inverse value of NSR (normalized stoichiometric ratio); time indicates the desulfurization effect.

曲線又及びユは、低い反応性の炭酸ナトリウムのサンプ
ル(このためには曲線上が妥当である)から調製された
活性炭酸ナトリウムを用いる場合の漏出曲線の領域を囲
む。それらの曲線は、同一の反応条件:150″Cの温
度;次の組成のガス混合物:二酸化硫黄0.2体積%、
水蒸気2体積χ及び窒素(残り’):  0.25〜0
.33mmの粒子サイズで得られた。低い反応性の炭酸
ナトリウムのサンプルに関しては、その最終転換度は7
.7%であり、ところが高い反応性の炭酸ナトリウムの
サンプルに関しては、その固体の転換度は90〜93%
で達成された。
The curves or and yencircle the area of the leakage curve when using activated sodium carbonate prepared from a sample of low reactivity sodium carbonate (for which the top of the curve is appropriate). The curves were plotted under identical reaction conditions: a temperature of 150″C; a gas mixture with the following composition: 0.2% by volume of sulfur dioxide;
Water vapor 2 volume χ and nitrogen (remainder'): 0.25~0
.. A particle size of 33 mm was obtained. For the low reactivity sodium carbonate sample, its final degree of conversion is 7
.. 7%, whereas for the highly reactive sodium carbonate sample, the solids conversion was 90-93%.
was achieved in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、炭酸ナトリウムの層のための二酸化硫黄の漏
出曲線を示す。
FIG. 1 shows the sulfur dioxide leakage curve for a layer of sodium carbonate.

Claims (1)

【特許請求の範囲】 1、90%よりも高いガス精製度及び90%よりも高い
炭酸ナトリウムの利用度による、二酸化硫黄に対する反
応性を有する炭酸ナトリウムの製造方法であって、組成
物Na_2CO_3・nH_2O(式中、nは0〜1で
ある)に対応する結晶水の含有量〜組成物Na_2CO
_3・nH_2O(式中、nは0〜5である)に対応す
る結晶水の含有量を有する炭酸ナトリウムを得るために
、組成物Na_2CO_3・10H_2O(10H_2
Oは結晶水を表す)の固体炭酸ナトリウム10水和物を
含んで成る出発材料の乾燥工程(ここで、該乾燥は、前
記固体の温度が32℃以下に維持される条件下で進行す
る)における徐々の脱水を特徴とする方法。 2、前記乾燥工程が、まず第1に、Na_2CO_3・
5H_2O(5水和物)に対応する組成物に達するまで
10℃〜31.9℃までの範囲内の固体の温度で及び続
く第2段階においては、33℃〜150℃の温度範囲で
行われることを特徴とする請求項1記載の方法。 3、前記乾燥工程がガスの流れ(この含水量は3.2体
積%よりも低い)により行われることを特徴とする請求
項1記載の方法。 4、前記乾燥工程が流動層下で行われることを特徴とす
る請求項1記載の方法。 5、前記乾燥の温度が徐々に高められることを特徴とす
る請求項1記載の方法。
Claims: 1. A process for the production of sodium carbonate having reactivity toward sulfur dioxide, with a degree of gas purification higher than 90% and a sodium carbonate utilization higher than 90%, comprising the composition Na_2CO_3·nH_2O. (wherein n is 0 to 1) content of crystal water corresponding to ~composition Na_2CO
In order to obtain sodium carbonate with a content of water of crystallization corresponding to _3·nH_2O (where n is 0 to 5), the composition Na_2CO_3·10H_2O (10H_2
a step of drying a starting material comprising solid sodium carbonate decahydrate (O represents water of crystallization), wherein said drying proceeds under conditions in which the temperature of said solid is maintained below 32°C. A method characterized by gradual dehydration in. 2. In the drying process, first of all, Na_2CO_3.
at a temperature of the solid in the range from 10 °C to 31.9 °C until reaching a composition corresponding to 5H_2O (pentahydrate) and in a subsequent second stage at a temperature range from 33 °C to 150 °C. 2. A method according to claim 1, characterized in that: 3. Process according to claim 1, characterized in that the drying step is carried out with a gas flow, the water content of which is lower than 3.2% by volume. 4. The method according to claim 1, wherein the drying step is carried out under a fluidized bed. 5. The method according to claim 1, characterized in that the drying temperature is gradually increased.
JP24755788A 1988-02-17 1988-10-03 Production of activated sodium carbonate Pending JPH01252521A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CS984-88 1988-02-17
CS88984A CS266617B1 (en) 1988-02-17 1988-02-17 Method of sodium carbonate's higher hydrates drying

Publications (1)

Publication Number Publication Date
JPH01252521A true JPH01252521A (en) 1989-10-09

Family

ID=5343089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24755788A Pending JPH01252521A (en) 1988-02-17 1988-10-03 Production of activated sodium carbonate

Country Status (6)

Country Link
JP (1) JPH01252521A (en)
CN (1) CN1016600B (en)
CS (1) CS266617B1 (en)
IT (1) IT1227255B (en)
SU (1) SU1720484A3 (en)
YU (1) YU181788A (en)

Also Published As

Publication number Publication date
CS98488A1 (en) 1989-04-14
SU1720484A3 (en) 1992-03-15
IT8822142A0 (en) 1988-09-30
CN1016600B (en) 1992-05-13
CS266617B1 (en) 1990-01-12
IT1227255B (en) 1991-03-28
CN1035272A (en) 1989-09-06
YU181788A (en) 1990-02-28

Similar Documents

Publication Publication Date Title
US4485189A (en) Catalyst for the desulfurization of industrial waste gases and process for its preparation
JP4002054B2 (en) Pressure swing adsorption method for carbon dioxide adsorption
US4272498A (en) Process for comminuting and activating limestone by reaction with CO2
CN112295400B (en) Preparation method of activated red mud composite calcium-based dry desulfurizing agent and desulfurizing agent
JPS5843221A (en) Treatment of final product obtained from desulfurization of flue gas
US4314980A (en) Preparation of reactive beta-dicalcium silicate
US3629153A (en) Process for preparing alkalized alumina
JPH01252521A (en) Production of activated sodium carbonate
Al-Shawabkeh et al. Comparative reactivity of Ca (OH) 2-derived oxides for SO2 capture
JPH09183618A (en) Production of gypsum
JPH02113904A (en) Preparation of hydrated cured body of lime-gypsum ash type
JPH07487B2 (en) Highly activated quicklime production equipment
JPH02188422A (en) Preparation of sodium cyanide
DK162596B (en) PROCEDURE FOR THE PREPARATION OF Elemental Sulfur
US4225572A (en) Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion
JP2006102561A (en) Carbon dioxide absorption material and carbon dioxide reaction device
EP0343673A1 (en) Method of production of extra light soda
JPH01219013A (en) Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas
USRE19733E (en) Process for the production of
Withum et al. Treatment of hydrated lime with methanol for in-duct desulfurization sorbent improvement
JP2002113361A (en) Absorbing agent for desulfurization and method of manufacturing desulfurizing agent
SE466103B (en) SEAT FOR PREPARATION OF ACTIVE SODIUM CARBONATE
JP3431064B2 (en) Method for producing neutralized gypsum powder
JP7474275B2 (en) Method for producing CO2 immobilization material and CO2 immobilization product
RU2745486C1 (en) Method for producing high-temperature co2 sorbents