JPH01219013A - Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas - Google Patents

Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas

Info

Publication number
JPH01219013A
JPH01219013A JP4550588A JP4550588A JPH01219013A JP H01219013 A JPH01219013 A JP H01219013A JP 4550588 A JP4550588 A JP 4550588A JP 4550588 A JP4550588 A JP 4550588A JP H01219013 A JPH01219013 A JP H01219013A
Authority
JP
Japan
Prior art keywords
catalyst
gas
copper
zeolite
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4550588A
Other languages
Japanese (ja)
Inventor
Satoyuki Inui
智行 乾
Yoshiaki Ishigaki
石垣 喜章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP4550588A priority Critical patent/JPH01219013A/en
Publication of JPH01219013A publication Critical patent/JPH01219013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject catalyst having high activity even after repetitive use and efficiently converting O2 in CO gas to CO2, by mixing water-soluble copper (II) salt with raw material mixture for synthetic zeolite and by calcining the crystal obtd. by crystallization reaction. CONSTITUTION:The crystal is obtd. by adding water-soluble copper (II) salt [e.g., Cu(NO3)2.6H2O] to Na2O-Al2O3-SiO2-H2O synthetic zeolite raw material mixture having, in molar ratio, SiO2/Al2O3=0.5-25, Na2O/SiO2=0.5-1.4 and H2O/Na2O=5-20, so as to control Cu/Al2O3 molar ratio to 0.3-0.7, and by bringing about the crystallization reaction at 50-100 deg.C. Then, the crystal is calcined at 500-650 deg.C to obtain the catalyst contg. copper highly dispersed in the crystal. After activating the catalyst by bringing into contact with CO gas contg. several % O2 at a high temp., O2 in the CO gas is converted to CO2 by bringing the catalyst into contact with the CO gas contg. O2 at <=50 deg.C under an ordinary pressure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、結晶内に銅が高度に分散した微細構造を有す
る銅含有ゼオライト、その製造法、該ゼオライトからな
るCOガス中の02の除去用触媒、および該触媒を用い
たCOガス中の02の除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a copper-containing zeolite having a fine structure in which copper is highly dispersed within the crystals, a method for producing the same, and a catalyst for removing 02 from CO gas made of the zeolite. , and a method for removing 02 from CO gas using the catalyst.

従来の技術 高純度COガスの製造に際しては、COガス中に微量な
いし少量台まれている62を除去することが要求される
ことが多い、たとえば、転炉ガスから高純度のCOガス
を分離回収する場合、COガス中に含まれる数百pp■
程度の02を除去することが必要となる。
Conventional technology When producing high-purity CO gas, it is often required to remove trace amounts of 62 contained in the CO gas. For example, separating and recovering high-purity CO gas from converter gas. In this case, several hundred ppm contained in CO gas
It becomes necessary to remove degree 02.

COガス中の02は、COと02との接触反応を行って
02をCO2に変換させることにより除去できる。接触
反応によるCOガス中の02の除去が工業的に成り立つ
かどうかは、触媒の性能にかかっていると言って過言で
はない。
02 in CO gas can be removed by performing a catalytic reaction between CO and 02 to convert 02 into CO2. It is no exaggeration to say that whether the removal of 02 from CO gas by catalytic reaction is industrially viable depends on the performance of the catalyst.

この目的の触媒として、本発明者はすでにCu−Cr2
O3系触媒を提案している。(日本化学会筒50年会予
稿集、I 、655 (1985)参照) 発明が解決しようとする課題 COガス中の02の除去触媒としては、繰り返し使用し
ても高変換率(02→C02)が得られるのみならず、
常温常圧で使用できることが工業化に際しては強く要求
される。
As a catalyst for this purpose, the inventor has already discovered Cu-Cr2
We are proposing an O3-based catalyst. (Refer to Proceedings of the 50th Annual Meeting of the Chemical Society of Japan, I, 655 (1985)) Problems to be Solved by the Invention As a catalyst for removing 02 from CO gas, it has a high conversion rate (02→C02) even when used repeatedly. Not only can you obtain
It is strongly required for industrialization that it can be used at room temperature and pressure.

しかるに、COガス中の02の除去触媒としての上述の
Cu−Cr2O3系触媒は、本発明者らの提案にかかる
ものであるが、02を含むCOガスと触媒との接触反応
を60℃程度の中温域で行わなければならないため、工
業的にはなお改良の余地がある。
However, although the above-mentioned Cu-Cr2O3-based catalyst as a catalyst for removing 02 from CO gas is proposed by the present inventors, the catalytic reaction between CO gas containing 02 and the catalyst is carried out at about 60°C. Since the process must be carried out in a medium temperature range, there is still room for improvement from an industrial perspective.

そこで本発明者らは、COガス中の02の除去触媒とし
て、■市販のゼオライト担体へ銅塩を含浸させる方法、
■市販のゼオライトにイオン交換法により銅を担持させ
る方法、■ゼオライトと粉末CuOとを混合する方法、
により銅含有ゼオライト触媒を得、その触媒性能を調べ
たが、■の触媒にあっては、銅担持の際にゼオライトの
活性点を被覆するので、触媒活性が低くなること、■の
触媒にあっては、銅含有量が低いため触媒活性が低いこ
と、■の触媒にあっては、基本的には銅含有ゼオライト
とは言い難い上、触媒活性も低いこと、などの問題があ
った。
Therefore, the present inventors proposed a method for impregnating a commercially available zeolite carrier with a copper salt as a catalyst for removing 02 from CO gas;
■Method of supporting copper on commercially available zeolite by ion exchange method, ■Method of mixing zeolite and powdered CuO,
A copper-containing zeolite catalyst was obtained and its catalytic performance was investigated. However, in the case of the catalyst (2), the active sites of the zeolite are covered when copper is supported, resulting in a lower catalytic activity. There were problems such as low catalytic activity due to the low copper content, and catalyst (2) which could not basically be called a copper-containing zeolite and also had low catalytic activity.

本発明は、このような状況に鑑み、繰り返し使用しても
活性が高く、かつ常温常圧でも効率的にCOガス中の0
2をCO2に変換できる銅含有ゼオライト触媒を得るべ
く鋭意研究を重ねた結果到達したものである。
In view of these circumstances, the present invention has high activity even after repeated use, and efficiently removes 0 from CO gas even at room temperature and pressure.
This was achieved as a result of intensive research to obtain a copper-containing zeolite catalyst that can convert 2 to CO2.

課題を解決するための手段 本発明の銅含有ゼオライ目i、ゼオライト合成の結晶化
工程において結晶内に銅が取り込まれ、結晶内に銅が高
度に分散した微細構造を有するものである二 本発明の銅含有ゼオライトは、合成ゼオライトの原料混
合物に水溶性銅(n)塩を混合して結晶化反応を進行さ
せ、ついで生成した結晶を焼成することを特徴とするも
のである。
Means for Solving the Problems Copper-containing zeolites of the present invention, copper is incorporated into the crystals during the crystallization step of zeolite synthesis, and the present invention has a microstructure in which copper is highly dispersed within the crystals. The copper-containing zeolite is characterized in that a water-soluble copper (n) salt is mixed into a raw material mixture of synthetic zeolite to allow a crystallization reaction to proceed, and then the produced crystals are fired.

本発明のCOガス中の02の除去用触媒は、上記の銅含
有ゼオライトからなるものである。
The catalyst for removing 02 from CO gas of the present invention is made of the above copper-containing zeolite.

本発明のCOガス中の02の除去方法は、02を含むC
Oガスを触媒と接触させてそこに含まれる02をCO2
に変換するに際し、上記の銅含有ゼオライト触媒を用い
ることを特徴とするものである。
The method for removing 02 from CO gas of the present invention is a method for removing 02 from CO gas.
Bringing O gas into contact with a catalyst converts the O2 contained therein into CO2
It is characterized by using the above-mentioned copper-containing zeolite catalyst.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

合成ゼオライトは、周知のように、アルカリ、アルミナ
、シリカ、水の各成分を原料とし、該原料混合物を水熱
合成に供して結晶化し、ついで生成した結晶を焼成する
ことにより製造される。
As is well known, synthetic zeolite is produced by using alkali, alumina, silica, and water as raw materials, subjecting the raw material mixture to hydrothermal synthesis to crystallize it, and then firing the resulting crystals.

本発明においては、この結晶化工程において結晶内に銅
が取り込まれるようにし、それにより結晶内に銅が高度
に分散した微細構造を有する合成ゼオライトを得るので
ある。
In the present invention, copper is incorporated into the crystals during this crystallization step, thereby obtaining a synthetic zeolite having a microstructure in which copper is highly dispersed within the crystals.

合成ゼオライトの製造に際しては、アルカリ源としては
水酸化ナトリウム、炭酸ナトリウム、水酸化カリウムな
ど、アルミナ源としてはアルミン酸ナトリウム、アルミ
ン酸カリウムなど、シリカ源としてはエアロジル、シリ
カゲル、シリカゾル、粉末状シリカガラスなどが用いら
れる。
When producing synthetic zeolite, alkali sources include sodium hydroxide, sodium carbonate, and potassium hydroxide, alumina sources include sodium aluminate and potassium aluminate, and silica sources include Aerosil, silica gel, silica sol, and powdered silica glass. etc. are used.

特にNa2O−AM2O3−5 i02−H2O系合成
ゼオライトを得るようにすることが望ましく、その場合
の原料混合物の好ましい組成は、モル比で、 5i02/A文2O3 = 0.5〜25(特に0.5
〜5) N a2O/S i 02 = 0.5〜14H2O/
Na2O= 5〜50 である。
In particular, it is desirable to obtain a Na2O-AM2O3-5 i02-H2O-based synthetic zeolite, and in that case, the preferred composition of the raw material mixture is as follows in molar ratio: 5i02/A2O3 = 0.5 to 25 (especially 0. 5
~5) N a2O/S i02 = 0.5~14H2O/
Na2O=5-50.

そして、上記原料混合物に、モル比で Cu O/ A立2O3 = 0.3〜0.7にあたる
水溶性銅(II)塩を添加した後、結晶化反応を進行さ
せるようにすることが望ましい。
Then, it is desirable to allow the crystallization reaction to proceed after adding a water-soluble copper(II) salt having a molar ratio of CuO/A2O3=0.3 to 0.7 to the raw material mixture.

水溶性銅(II)塩としては、硝酸銅(II)が好適に
用いられ、そのほか、酢酸銅(■)、ギ酸銅(■)、グ
ルコン酸銅(■)、硫酸銅(n)、塩化銅(II)、過
塩素酸銅(■)、塩素酸銅(II)、重クロム酸銅(U
)、アミドスルホン酸銅(II)なども用いられる。
As the water-soluble copper (II) salt, copper (II) nitrate is preferably used, and in addition, copper acetate (■), copper formate (■), copper gluconate (■), copper sulfate (n), copper chloride (II), copper perchlorate (■), copper (II) chlorate, copper dichromate (U
), copper(II) amidosulfonate, and the like are also used.

結晶化反応の温度条件としては、50〜100℃1殊に
70〜90℃の条件を採用することが望ましい。50℃
未満では結晶化が円滑に進行せず、一方100℃を越え
ると結晶化反応がはやすぎて結晶内における銅の分散が
不完全になるおそれがある。
As the temperature conditions for the crystallization reaction, it is desirable to adopt conditions of 50 to 100°C, especially 70 to 90°C. 50℃
If it is less than 100°C, crystallization will not proceed smoothly, while if it exceeds 100°C, the crystallization reaction will be too rapid and there is a risk that copper will be incompletely dispersed within the crystal.

結晶化反応時間は5〜12時間が適当であり、反応時間
が短かすぎると結晶化が不十分になり、反応時間が長ず
ざると生産性の点で不利となる。
A suitable crystallization reaction time is 5 to 12 hours; if the reaction time is too short, crystallization will be insufficient, and if the reaction time is not long, it will be disadvantageous in terms of productivity.

結晶生成後は、ろ過、水洗等を行い、乾燥してから焼成
を行う。
After crystal formation, filtration, washing with water, etc. are performed, and after drying, firing is performed.

結晶の焼成温度は350〜700℃、特に450〜85
0℃が適当であり、焼成温度が高すぎても低すぎても触
媒活性が低下する傾向がある。
The crystal firing temperature is 350-700℃, especially 450-85℃
A temperature of 0° C. is appropriate; if the firing temperature is too high or too low, the catalytic activity tends to decrease.

このようにして得られた銅含有ゼオライトは、適宜成型
、造粒あるいは粉砕を行って適当な粒度に調製し、微量
ないし少量の02を含むCOガスからの02の除去用の
触媒として使用される。
The copper-containing zeolite thus obtained is appropriately molded, granulated, or pulverized to a suitable particle size, and used as a catalyst for removing 02 from CO gas containing trace to small amounts of 02. .

COガスからの02の除去にあたっては、通常はこの触
媒を塔に充填して固定床となし、そこに02を含むCO
ガスを供給するが、流動床触媒として用いることもでき
る。
To remove 02 from CO gas, this catalyst is usually packed in a column to form a fixed bed, in which CO containing 02 is removed.
Although it supplies gas, it can also be used as a fluidized bed catalyst.

微量ないし少量の02を含むCOガスとしては、転炉ガ
ス、コークス炉ガス、高炉ガス、電気製鋼炉ガスなどか
ら分離回収したガス、非鉄金属等のCO還元反応や有機
合成反応で得られるガスをはじめ、種々のガスがあげら
れる。
Examples of CO gas containing trace or small amounts of 02 include gas separated and recovered from converter gas, coke oven gas, blast furnace gas, electric steelmaking furnace gas, etc., and gas obtained from CO reduction reactions of non-ferrous metals and organic synthesis reactions. First, there are various gases.

反応に際しては、予め触媒を高温下に数%程度の02を
含むCOガスと接触させて活性化を行う。活性化は、H
2などの還元性ガスによって行うこともできる。
In the reaction, the catalyst is activated in advance by contacting it with CO gas containing about several percent of 02 at high temperature. Activation is H
It can also be carried out using a reducing gas such as 2.

02を含むCOガスと触媒との接触反応は、任意の温度
で行うことができる。この場合、100〜300℃とい
うような高温域で反応が進行することはもちろんである
が、50〜100℃というような中温域はもとより、そ
れ以下の温度、殊に常温あるいはそれ以下の温度でも、
高温域や中温域同様に02からCO2への変換反応が円
滑に進行することが本発明の最大の特長点である。
The catalytic reaction between the CO gas containing 02 and the catalyst can be carried out at any temperature. In this case, the reaction proceeds not only at a high temperature range of 100 to 300°C, but also at a medium temperature range of 50 to 100°C, but also at lower temperatures, especially at room temperature or lower. ,
The greatest advantage of the present invention is that the conversion reaction from 02 to CO2 proceeds smoothly in the high and medium temperature ranges.

反応圧力は常圧で十分であるが、加圧下で反応を行って
も差支えない。
Normal pressure is sufficient for the reaction pressure, but the reaction may also be carried out under increased pressure.

作   用 次に本発明の作用を、後述の実施例1の触媒を用いた場
合を例にとって具体的に説明する。
Function Next, the function of the present invention will be explained in detail by taking as an example the case where the catalyst of Example 1, which will be described later, is used.

実施例1で得た触媒の活性化に際しての温度依存性を見
るために、上記で得た触媒2gを内径8.7amの石英
反応管に充填し、常圧工種々の温度の還元性雰囲気(2
O000ppmの02を含むCOガス、ただし約5%の
アルゴンを含む)を通して活性化を行い、CO酸化性能
を調べた。結果を第1図および第2図に示す。
In order to examine the temperature dependence upon activation of the catalyst obtained in Example 1, 2 g of the catalyst obtained above was packed into a quartz reaction tube with an inner diameter of 8.7 am, and the mixture was heated under normal pressure in a reducing atmosphere ( 2
Activation was performed through CO gas containing 000 ppm of 02 (with approximately 5% argon) to examine the CO oxidation performance. The results are shown in FIGS. 1 and 2.

第1図のように、還元性条件においては、第1回目は2
50℃付近で02転化率約95%に達し、第2回目以降
は150℃付近で02転化率約95%に達し、いずれの
場合も常温まで降温しても活性の低下は認められなかっ
た。なお02転化率が約95%にとどまったのは、使用
した還元性雰囲気としてたまたまアルゴンを約5%含む
ものを用いたからであ、す、実質的な02転化率はほぼ
100%である。
As shown in Figure 1, under reducing conditions, the first
The 02 conversion rate reached about 95% at around 50°C, and from the second time onwards, the 02 conversion rate reached about 95% at around 150°C, and in all cases, no decrease in activity was observed even when the temperature was lowered to room temperature. The reason why the O2 conversion rate was only about 95% was because the reducing atmosphere used happened to contain about 5% argon, so the actual O2 conversion rate was almost 100%.

次に、供給ガスとして酸化性ガス(2O000ppmの
COを含む空気)を通して活性化を行い、co酸化性能
を調べた、結果を第2図に示す。
Next, activation was performed by passing an oxidizing gas (air containing 20000 ppm of CO) as a supply gas, and the co oxidation performance was investigated. The results are shown in FIG.

第2図のように、酸化性条件においては、第1回目は3
00℃付近で、第2回目以降は250℃付近でCO転化
率はほぼ100%に達し、いずれの場合も降温しても1
50℃付近までは活性の低下は認められなかった。
As shown in Figure 2, under oxidizing conditions, the first
The CO conversion rate reached almost 100% at around 00°C, and after the second time around 250°C, and in both cases, even when the temperature was lowered, the CO conversion rate was 100%.
No decrease in activity was observed up to around 50°C.

以上のことから、実施例1の触媒においては、銅が結晶
内部に高度に分散した状態にあるため容易には酸化を受
けず、従って繰り返し使用しても所期の02転化能力を
保持することがわかる。
From the above, in the catalyst of Example 1, since the copper is highly dispersed inside the crystal, it does not easily undergo oxidation, and therefore maintains the desired 02 conversion ability even after repeated use. I understand.

一方、比較例1で得た触媒(シリカゲルに硝酸銅、(■
)水溶液を含浸後、焼成、H2還元を行い、銅を8.6
重量%担持させたもの)の活性化に際しての温度依存性
を上記と同様にして調べたところ、還元性雰囲気におい
ては第3図、酸化性雰囲気においては第4図の結果が得
られた。
On the other hand, the catalyst obtained in Comparative Example 1 (copper nitrate on silica gel, (■
) After impregnating with an aqueous solution, calcination and H2 reduction are performed to reduce copper to 8.6
When the temperature dependence of the activation of the compound (wt% supported) was investigated in the same manner as above, the results shown in Fig. 3 were obtained in a reducing atmosphere and in Fig. 4 in an oxidizing atmosphere.

第3図のように、還元性条件においては第1図の場合に
類似した反応特性を示した。(なお02転化率が約95
%にとどまったのは、使用した還元性雰囲気としてアル
ゴンを約5%含むものを用いたからであり、実質的な0
2転化率はほぼ100%である。) しかしながら、第4図のように、酸化性条件においては
、昇温過程では第2図の場合に類似した反応特性を示し
たものの、降温過程では210℃付近で活性が落ちはじ
め、第2回目以降もほとんど変化が認められなかった。
As shown in FIG. 3, reaction characteristics similar to those shown in FIG. 1 were exhibited under reducing conditions. (In addition, the 02 conversion rate is about 95
% because the reducing atmosphere used was one containing about 5% argon, so it was virtually 0.
The conversion rate is approximately 100%. ) However, as shown in Figure 4, under oxidizing conditions, although the reaction characteristics were similar to those shown in Figure 2 during the temperature increase process, the activity began to decrease around 210°C during the temperature decrease process, and the second reaction Almost no changes were observed after that.

このことから、比較例1の触媒においては、銅が表面に
露出した状態にあり、実施例1の触媒に比べて分散度が
低いために、容易に酸化を受けるものと推定される。
From this, it is presumed that in the catalyst of Comparative Example 1, copper is exposed on the surface and has a lower degree of dispersion than the catalyst of Example 1, so that it is easily oxidized.

実施例 次に実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained with reference to Examples.

なお、出口ガス中の02濃度は、生成するCO2を赤外
線式ガス分析計により連続分析することにより行った。
Note that the 02 concentration in the outlet gas was determined by continuously analyzing the generated CO2 using an infrared gas analyzer.

実施例1 [触媒の製造] 攪拌機付きの反応器に、水ガラス9g、アルミン酸ナト
リウム8g、硝酸銅(II)3g、水酸化ナトリウム1
2gおよび水50gを仕込み、温度85℃に保持して6
時間反応させ、結晶15gを得た。
Example 1 [Production of catalyst] In a reactor equipped with a stirrer, 9 g of water glass, 8 g of sodium aluminate, 3 g of copper(II) nitrate, and 1 g of sodium hydroxide were placed in a reactor equipped with a stirrer.
Prepare 2 g and 50 g of water, maintain the temperature at 85°C, and boil for 6
The reaction was carried out for a period of time, and 15 g of crystals were obtained.

原料混合物の組成は、モル比で、 S f02 /A12O3 = 1 Na2O/S i02 =5 H2O/Na2O= 11 であり、原料混合物に添加した硝酸銅(n)の量は、モ
ル比で Cuo/AfL2O3 = 0.5 にあたる量であった。
The composition of the raw material mixture is S f02 /A12O3 = 1 Na2O/S i02 = 5 H2O/Na2O = 11 in molar ratio, and the amount of copper nitrate (n) added to the raw material mixture is Cuo/AfL2O3 in molar ratio. = 0.5.

この結晶を加温状態のままろ過した後、冷水で洗浄し、
引き続いて空気中85℃で10時間乾燥を行い、触媒原
体9gを得た。
After filtering the crystals while still warm, they are washed with cold water,
Subsequently, it was dried in air at 85° C. for 10 hours to obtain 9 g of catalyst raw material.

得られた触媒原体を空気雰囲気下に550℃で1時間焼
成し、目的とする触媒(銅含有ゼオライト)6gを得た
The obtained catalyst raw material was calcined at 550° C. for 1 hour in an air atmosphere to obtain 6 g of the desired catalyst (copper-containing zeolite).

この触媒(銅含有ゼオライト)は、XRDおよびSEM
観察により、A型構造を有していることが確認された。
This catalyst (copper-containing zeolite) was analyzed by XRD and SEM
Observation confirmed that it had an A-type structure.

また原子吸光法で分析した結果、触媒中の銅含有量は8
.8重量%であった。
Furthermore, as a result of analysis using atomic absorption spectrometry, the copper content in the catalyst was found to be 8.
.. It was 8% by weight.

[COガス中の02の除去] 上記で得た触媒2gを内径8.7mmの石英反応管に充
填し、まず温度160℃、常圧下に、2O000 pp
raの02を含むCOガスを通して活性化を行った。
[Removal of 02 from CO gas] 2 g of the catalyst obtained above was filled into a quartz reaction tube with an inner diameter of 8.7 mm, and first, at a temperature of 160°C and under normal pressure, 2O000 pp
Activation was performed by passing CO gas containing 02 of ra.

引き続き、入口ガスとして Co   99vo1% 02   11000pp の組成のガスを常温、常圧下、空塔速度2O00/hで
10時間通したところ、出口ガス中の02濃度は、全期
間を通じて2O PP11であった・実施例2 実施例1と同様にして触媒の製造およびその活性化を行
った後、入口ガスとして Co   99vo1% 02  500ppm の組成のガスを常温、常圧下、空塔速度3000/hで
30時間通したところ、出口ガス中の02濃度は、全期
間を通じて0.8ppmであった。
Subsequently, a gas having a composition of Co 99vo1% 02 11000pp was passed as an inlet gas at room temperature and pressure at a superficial velocity of 2O00/h for 10 hours, and the O2 concentration in the outlet gas was 2OPP11 throughout the entire period. Example 2 After producing a catalyst and activating it in the same manner as in Example 1, a gas having a composition of 500 ppm of Co 99vol 1% 02 was passed through as an inlet gas at room temperature and pressure at a superficial velocity of 3000/h for 30 hours. As a result, the 02 concentration in the outlet gas was 0.8 ppm throughout the entire period.

実施例3 攪拌機付きの反応器に、水ガラス5g、アルミン酸ナト
リウム1g、硝酸銅(II)Ig、水酸化ナトリウム1
6gおよび水140gを仕込み、温度80℃に保持して
30時間反応させ、結晶12gを得た。
Example 3 In a reactor equipped with a stirrer, 5 g of water glass, 1 g of sodium aluminate, Ig of copper(II) nitrate, and 1 g of sodium hydroxide were added.
6 g and 140 g of water were charged, and the temperature was maintained at 80° C. and reacted for 30 hours to obtain 12 g of crystals.

原料混合物の組成は、モル比で、 S i02 /AfL2O3 =5 Na2O/5i02 =lO H2O/Na2O=30 であり、原料混合物に添加した硝酸銅(II)の量は、
モル比で Cuo/AM2 03  =  0.6にあたる量であ
った。
The composition of the raw material mixture is as follows in molar ratio: S i02 /AfL2O3 = 5 Na2O/5i02 = lO H2O/Na2O = 30, and the amount of copper(II) nitrate added to the raw material mixture is:
The amount corresponded to a molar ratio of Cuo/AM203 = 0.6.

この結晶を加温状態のままろ過した後、冷水で洗浄し、
引き続いて空気中100℃で15時間乾燥を行い、触媒
原体7gを得た。
After filtering the crystals while still warm, they are washed with cold water,
Subsequently, drying was performed in air at 100° C. for 15 hours to obtain 7 g of catalyst raw material.

得られた触媒原体を空気雰囲気下に500℃で1時間焼
成し、目的とする触媒(銅含有ゼオライト)5gを得た
。触媒中の銅含有量は6.5重量%であった。
The obtained catalyst raw material was calcined at 500° C. for 1 hour in an air atmosphere to obtain 5 g of the desired catalyst (copper-containing zeolite). The copper content in the catalyst was 6.5% by weight.

上記で得た触媒を用いたほかは、実施例1と同様にして
COガス中の02の除去を試みた。
An attempt was made to remove 02 from CO gas in the same manner as in Example 1, except that the catalyst obtained above was used.

出口ガス中の02濃度は、5時間の流通期間を通じて2
5 ppmであった・ 比較例1 メルク社製のシリカゲルを硝酸鋼(II)水溶液に含浸
後、焼成、H2還元を行って銅を8.8重量%担持させ
、打錠成型した後、7〜15メツシユに破砕した。
The concentration of 02 in the outlet gas remains constant throughout the 5 hour flow period.
5 ppm Comparative Example 1 After impregnating Merck's silica gel in an aqueous solution of steel (II) nitrate, calcination and H2 reduction were carried out to support 8.8% by weight of copper, and after compression molding, It was crushed into 15 pieces.

このようにして得られた触媒を用いたほかは、実施例1
と同様にしてCOガス中の02の除去を試みた。
Example 1 except that the catalyst obtained in this way was used.
An attempt was made to remove 02 from CO gas in the same manner as above.

出口ガス中の02濃度は、最初のうちは2Oppmであ
ったが、1時間経過後には急速に転化率が悪くなり、2
時間経過後にはo2除去能力を失った。
Initially, the 02 concentration in the outlet gas was 2 Oppm, but after 1 hour, the conversion rate rapidly decreased and the 02 concentration in the outlet gas was 2 Oppm.
After a period of time, it lost its ability to remove O2.

発明の効果 本発明の銅含有ゼオライトからなる触媒は、常温常圧で
も効率的にCOガス中の02をCO2に変換できる上、
繰り返し使用しても活性が高いので、COガス中に微量
ないし少量台まれる02の除去が可能になり、工業的意
義が大きい。
Effects of the Invention The catalyst made of copper-containing zeolite of the present invention can efficiently convert 02 in CO gas into CO2 even at room temperature and pressure, and
Since it has high activity even after repeated use, it becomes possible to remove trace or small amounts of 02 contained in CO gas, which is of great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の触媒の還元性条件下におけるco酸
化性能を示したグラフ、第2図は実施例1の触媒の酸化
性条件下におけるCO酸化性能を示したグラフであり、
実線は昇温過程、点線は降温過程である。 第3図は比較例1の触媒の還元性条件下におけるCO酸
化性能を示したグラフ、第4図は比較例1の触媒の酸化
性条件下におけるCO醜化性能を示したグラフであり、
実線は昇温過程1点線は降温過程である。 特許出願人  乾    智  行 第1図 第2図 Reaction temp、 (”C)  2、O九
Co/Air第3匡 第4図
FIG. 1 is a graph showing the CO oxidation performance of the catalyst of Example 1 under reducing conditions, and FIG. 2 is a graph showing the CO oxidation performance of the catalyst of Example 1 under oxidizing conditions.
The solid line is the temperature increasing process, and the dotted line is the temperature decreasing process. FIG. 3 is a graph showing the CO oxidation performance of the catalyst of Comparative Example 1 under reducing conditions, and FIG. 4 is a graph showing the CO oxidation performance of the catalyst of Comparative Example 1 under oxidizing conditions.
The solid line represents the temperature increasing process, and the one-dot line represents the temperature decreasing process. Patent applicant Satoshi Inui Figure 1 Figure 2 Reaction temp, (''C) 2, O9 Co/Air No. 3 Figure 4

Claims (1)

【特許請求の範囲】 1、ゼオライト合成の結晶化工程において結晶内に銅が
取り込まれ、結晶内に銅が高度に分散した微細構造を有
する銅含有ゼオライト。 2、合成ゼオライトの原料混合物に水溶性銅(II)塩を
混合して結晶化反応を進行させ、ついで生成した結晶を
焼成することを特徴とする銅含有ゼオライトの製造法。 3、合成ゼオライトの原料混合物が、Na_2O−Al
_2O_3−SiO_2−H_2O系合成ゼオライトの
原料混合物である請求項2記載の製造法。 4、原料混合物の組成が、モル比で、 SiO_2/Al_2O_3=0.5〜25Na_2O
/SiO_2=0.5〜14 H_2O/Na_2O=5〜50 であり、該原料混合物にモル比で CuO/Al_2O_3=0.3〜0.7 にあたる水溶性銅(II)塩を添加した後、結晶化反応を
進行させることを特徴とする請求項3記載の製造法。 5、結晶化反応を温度50〜100℃で行うことを特徴
とする請求項2記載の製造法。 6、生成した結晶の焼成を温度500〜650℃で行う
ことを特徴とする請求項2記載の製造法。 7、水溶性銅(II)塩が硝酸銅(II)である請求項2記
載の製造法。 8、請求項1記載の銅含有ゼオライトからなるCOガス
中のO_2の除去用触媒。 9、O_2を含むCOガスを触媒と接触させてそこに含
まれるO_2をCO_2に変換するに際し、請求項8記
載の触媒を用いることを特徴とするCOガス中のO_2
の除去方法。 10、O_2を含むCOガスと触媒との接触を50℃以
下の低温で行うことを特徴とする請求項9記載の除去方
法。 11、O_2を含むCOガスと触媒との接触を、常圧下
、常温またはそれ以下の温度で行うことを特徴とする請
求項9記載の除去方法。
[Claims] 1. A copper-containing zeolite having a microstructure in which copper is incorporated into crystals during the crystallization process of zeolite synthesis and copper is highly dispersed within the crystals. 2. A method for producing a copper-containing zeolite, which comprises mixing a water-soluble copper (II) salt into a raw material mixture of a synthetic zeolite, allowing a crystallization reaction to proceed, and then calcining the produced crystals. 3. The raw material mixture of synthetic zeolite is Na_2O-Al
3. The production method according to claim 2, which is a raw material mixture of _2O_3-SiO_2-H_2O-based synthetic zeolite. 4. The composition of the raw material mixture is as follows in molar ratio: SiO_2/Al_2O_3=0.5-25Na_2O
/SiO_2=0.5-14 H_2O/Na_2O=5-50, and after adding a water-soluble copper(II) salt having a molar ratio of CuO/Al_2O_3=0.3-0.7 to the raw material mixture, crystallization 4. The manufacturing method according to claim 3, characterized in that a chemical reaction is allowed to proceed. 5. The manufacturing method according to claim 2, wherein the crystallization reaction is carried out at a temperature of 50 to 100°C. 6. The manufacturing method according to claim 2, characterized in that the produced crystals are fired at a temperature of 500 to 650°C. 7. The manufacturing method according to claim 2, wherein the water-soluble copper(II) salt is copper(II) nitrate. 8. A catalyst for removing O_2 from CO gas, comprising the copper-containing zeolite according to claim 1. 9. O_2 in CO gas, characterized in that the catalyst according to claim 8 is used when contacting CO gas containing O_2 with a catalyst to convert the O_2 contained therein into CO_2.
How to remove. 10. The removal method according to claim 9, characterized in that the contact between the CO gas containing O_2 and the catalyst is carried out at a low temperature of 50° C. or lower. 11. The removal method according to claim 9, characterized in that the contact between the CO gas containing O_2 and the catalyst is carried out under normal pressure and at normal temperature or lower temperature.
JP4550588A 1988-02-27 1988-02-27 Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas Pending JPH01219013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4550588A JPH01219013A (en) 1988-02-27 1988-02-27 Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4550588A JPH01219013A (en) 1988-02-27 1988-02-27 Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas

Publications (1)

Publication Number Publication Date
JPH01219013A true JPH01219013A (en) 1989-09-01

Family

ID=12721269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4550588A Pending JPH01219013A (en) 1988-02-27 1988-02-27 Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas

Country Status (1)

Country Link
JP (1) JPH01219013A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139721A (en) * 1991-11-22 1993-06-08 Nok Corp Production of synthetic zeolite a containing transition metal
JPH05221630A (en) * 1992-02-07 1993-08-31 Nok Corp Production of ca-containing synthetic zeolite a
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
JP2011521871A (en) * 2008-05-21 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for direct synthesis of Cu-containing zeolites with CHA structure
JP2013511462A (en) * 2009-11-24 2013-04-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing zeolite having CHA structure
JP2017140614A (en) * 2016-02-12 2017-08-17 現代自動車株式会社Hyundai Motor Company Catalyst and method for producing catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139721A (en) * 1991-11-22 1993-06-08 Nok Corp Production of synthetic zeolite a containing transition metal
JPH05221630A (en) * 1992-02-07 1993-08-31 Nok Corp Production of ca-containing synthetic zeolite a
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
JP2011521871A (en) * 2008-05-21 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for direct synthesis of Cu-containing zeolites with CHA structure
US8715618B2 (en) 2008-05-21 2014-05-06 Basf Se Process for the direct synthesis of Cu containing zeolites having CHA structure
US9272272B2 (en) 2008-05-21 2016-03-01 Basf Se Process for the direct synthesis of Cu containing zeolites having CHA structure
JP2013511462A (en) * 2009-11-24 2013-04-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing zeolite having CHA structure
JP2017140614A (en) * 2016-02-12 2017-08-17 現代自動車株式会社Hyundai Motor Company Catalyst and method for producing catalyst
US10981153B2 (en) 2016-02-12 2021-04-20 Hyundai Motor Company Catalyst and method for preparing catalyst

Similar Documents

Publication Publication Date Title
US5693299A (en) Process for the catalytic conversion of exhaust gases using cerium/zirconium mixed oxide catalyst
JP4041106B2 (en) Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same
US4640908A (en) Catalyst for the oxidation of hydrogen sulfide and process for the preparation of the catalyst
US5041405A (en) Lithium/magnesium oxide catalyst and method of making
EP0146165B1 (en) Modified copper- and zinc-containing catalyst and process for producing methanol using said catalyst
KR19990028713A (en) Zirconium oxide and cerium oxide based compositions, methods for their preparation and uses thereof
JPH06211525A (en) Composition based on cerium(iv) oxide, preparation and use thereof
US4985074A (en) Process for producing a desulfurization agent
US4769224A (en) Process for the removal of hydrogen cyanide from a gas stream
JP2013230471A (en) Method of decomposing n2o using catalyst based on cerium lanthanum oxide
JPH01219013A (en) Zeolite containing copper, its production, catalyst for removing o2 from co gas, consisting of zeolite and method for removing o2 in co gas
GB2143225A (en) Catalytic claus process for the oxidation of hydrogen sulphide to elemental sulphur and/or sulphur dioxide
US3629153A (en) Process for preparing alkalized alumina
US4770864A (en) Process for removing NH3 in an SO2 -containing gas
JPH1080633A (en) Nitrous oxide decomposing catalyst and removing method of nitrous oxide
SU784739A3 (en) Catalyst for gas purification from hydrogen and carbon sulfuric compounds
US3355248A (en) Process for producing hydrogen and carbon with an essentially ironfree catalyst
SU1041019A3 (en) Catalyst of afterburning of carbon oxide and process for preparing the same
SU421166A3 (en)
DK162596B (en) PROCEDURE FOR THE PREPARATION OF Elemental Sulfur
JPH1057810A (en) Oxidation catalyst for hydrogen, selective oxidation method for hydrogen, and dehydrogenation method for hydrocarbon
US5516498A (en) Process for the removal of sulfur dioxide from gases
JP3882071B2 (en) Method for producing styrene monomer
SU829164A1 (en) Method of preparing substrate for ammonia synthesis process
WO2017187455A1 (en) Catalyst composition for conversion of sulfur trioxide and hydrogen production process