JPH01251625A - Resin sealed type semiconductor device - Google Patents

Resin sealed type semiconductor device

Info

Publication number
JPH01251625A
JPH01251625A JP7589488A JP7589488A JPH01251625A JP H01251625 A JPH01251625 A JP H01251625A JP 7589488 A JP7589488 A JP 7589488A JP 7589488 A JP7589488 A JP 7589488A JP H01251625 A JPH01251625 A JP H01251625A
Authority
JP
Japan
Prior art keywords
resin
silver
low viscosity
semiconductor device
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7589488A
Other languages
Japanese (ja)
Other versions
JP2584424B2 (en
Inventor
Teru Okunoyama
奥野山 輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP63075894A priority Critical patent/JP2584424B2/en
Publication of JPH01251625A publication Critical patent/JPH01251625A/en
Application granted granted Critical
Publication of JP2584424B2 publication Critical patent/JP2584424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the sedimentation separation of paste in a syringe, and avoid the corrosion disconnection of wiring, by bonding a semiconductor element to a lead frame, by using conductive paste containing high purity resin, low viscosity diluent and silver-plated copper conductive powder. CONSTITUTION:A semiconductor element is bonded to a lead frame, by using conductive paste containing high purity resin, low viscosity diluent and silver- plated copper conductive powder. High purity resin may be thermosetting or thermoplastic, but concentration of total chloride ion contained in the resin is desirable to be equal to or less than 300ppm. As to such a resin, e.g., phenol resin, epoxy resin, etc., can be mentioned. As to low viscosity diluent, e.g., glycidoxy system reactive diluent, dioxane, etc., can be mentioned. Compounding ratio of the low viscosity diluent is desirable to be 2-60wt.% for the total amount of the high purity resin and the low viscosity diluent. As for the silver- plated copper conductive powder, silver-plated phosphorus segment or copper powder whose average grain diameter is in the range of 1-8mum is desirable.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体素子の搭載に導電性ペーストを用いた
樹脂封止型半導体装置に関し、詳しくは、沈降分離がな
い優れた導電性ペーストを用いた樹脂封止型半導体装置
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a resin-sealed semiconductor device using a conductive paste for mounting a semiconductor element. The present invention relates to a resin-sealed semiconductor device using a conductive paste.

(従来の技術) 金属薄板(リードフレーム)上の所定部分にIC,LS
I等の半導体ベレットを接合する工程は、素子の長期信
頼性に影響を与える重要な工程の一つである。 従来よ
り、この接合方法として、ペレットのシリコン面をリー
ドフレーム上の金メッキ面に加熱圧着するというAu−
3iの共晶法が主流であったが、近年、半田を使用する
方法、導電性ペースト(接着剤)を使用する樹脂封止型
半導体装置に急速に移行しつつある。
(Prior art) IC and LS are placed on a predetermined portion of a thin metal plate (lead frame).
The process of bonding semiconductor pellets such as I is one of the important processes that affects the long-term reliability of the device. Traditionally, the Au-bonding method has been used to bond the silicon side of the pellet to the gold plated surface of the lead frame under heat.
The 3i eutectic method has been the mainstream, but in recent years there has been a rapid shift to methods using solder and resin-sealed semiconductor devices using conductive paste (adhesive).

しかし、半田を使用する方法は、一部実用化されている
が半田や半田ボールが飛散して電極等に付着し、腐食断
線の原因となることが指摘されている。 一方、導電性
ペーストを使用する方法は、該ペーストとして通常銀粉
末を配合したエポキシ樹脂が用いられ、約10年程前か
ら一部実用化されてきたが、信頼性の面でAu−3i共
晶法に比較して満足すべきものが得られなかった。 導
電性ペーストを使用する方法は、半田法に比べて耐熱性
に優れる等の長所を持っているがその反面、樹脂やその
硬化剤によってアルミニウム電極の腐食を促進し断線不
良の原因となる場合が多く、素子の信頼性はAU−Si
共晶法に劣っていた。 さらに近年、IC/LSIやL
ED等の半導体装置ットの大型化に伴い、ベレットクラ
ックの発生や接着力の低下が問題となっており、また半
導体のアッセンブリ工程や保管時におけるシリンジ内ベ
ーストの沈降分離が発生し、信頼性の高い樹脂封止型半
導体装置を得ることができなかった。
However, although some methods using solder have been put into practical use, it has been pointed out that the solder and solder balls scatter and adhere to electrodes and the like, causing corrosion and disconnection. On the other hand, the method of using conductive paste, which usually uses an epoxy resin mixed with silver powder, has been put into practical use for about 10 years, but it has not been used as well as Au-3i in terms of reliability. Compared to the crystal method, satisfactory results could not be obtained. The method of using conductive paste has advantages such as superior heat resistance compared to the soldering method, but on the other hand, the resin and its hardener may accelerate corrosion of the aluminum electrode and cause disconnection. In many cases, the reliability of the device is AU-Si.
It was inferior to the eutectic method. Furthermore, in recent years, IC/LSI and L
As semiconductor devices such as EDs become larger, pellet cracks and reduced adhesive strength have become a problem, and the base material in the syringe has sedimented and separated during the semiconductor assembly process and during storage, reducing reliability. However, it was not possible to obtain a resin-sealed semiconductor device with a high temperature.

(発明が解決しようとする課題) 本発明は、上記の事情に鑑みてなされたもので、半導体
のアッセンブリ工程や保管時におけるシリンジ内ペース
トの沈降分離を防止するとともに、配線の腐食断線がな
く、接着性や耐加水分解性に優れ、接合層にボイドのな
い高速硬化性の導電性ペーストを用いた樹脂封止型半導
体装置を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned circumstances, and it prevents the paste in the syringe from settling and separating during the semiconductor assembly process and storage, and prevents corrosion and disconnection of wiring. The present invention aims to provide a resin-sealed semiconductor device using a fast-curing conductive paste that has excellent adhesive properties and hydrolysis resistance, and has no voids in the bonding layer.

[発明の構成コ (課題を解決するための手段) 本発明者は、上記の目的を達成しようと鋭意検討を重ね
た結果、後述する組成の導電性ペーストを使用すれば、
接着性、耐加水分解性に優れ、半導体のアッセンブリ工
程や保管時におけるシリンジ内ペーストの沈降分離がな
く、信頼性の高い樹脂封止型半導体装置が得られること
を見いだし、本発明を完成したものである。
[Structure of the Invention (Means for Solving the Problems) As a result of extensive studies to achieve the above object, the present inventor found that by using a conductive paste having the composition described below,
The present invention has been completed by discovering that a highly reliable resin-encapsulated semiconductor device can be obtained that has excellent adhesiveness and hydrolysis resistance, and has no sedimentation and separation of the paste inside the syringe during the semiconductor assembly process or during storage. It is.

即ち、本発明は 半導体素子をリードフレーム上に接合する樹脂封止型半
導体装置において、(A)高純度樹脂、(B)低粘度希
釈剤、(C)銀メッキ銅系導電性粉末を含む導電性ペー
ストを用いて接合することを特徴とする樹脂封止型半導
体装置である。
That is, the present invention provides a resin-sealed semiconductor device in which a semiconductor element is bonded onto a lead frame. The present invention is a resin-sealed semiconductor device characterized by bonding using adhesive paste.

本発明に用いる(A)高純度樹脂は、熱硬化性および熱
可塑性のいずれの樹脂でもよいが樹脂中に含有する全塩
素イオン濃度は300 pp11以下、好ましくは20
0 pIJ以下であることが望ましい。
The high-purity resin (A) used in the present invention may be either thermosetting or thermoplastic resin, but the total chlorine ion concentration contained in the resin is 300 pp11 or less, preferably 20 pp1.
It is desirable that it be 0 pIJ or less.

全塩素イオン濃度が300 ppmを超えると半導体素
子のアルミニウム電極等を腐食して半導体装置の信頼性
を低下させ好ましくない。 このような樹脂としては、
例えばフェノール樹脂、エポキシ樹脂、ポリイミド樹脂
、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステ
ルイミド樹脂、ポリヒダントイン樹脂、ポリブタジェン
V!1n¥f、石油ta1脂、ABS樹脂、PP5vA
脂等が挙げられ、これらは単独又は2種以上混合して使
用される。
If the total chlorine ion concentration exceeds 300 ppm, it is undesirable because it corrodes the aluminum electrodes of the semiconductor element and reduces the reliability of the semiconductor device. As such resin,
For example, phenolic resin, epoxy resin, polyimide resin, polyamide resin, polyamideimide resin, polyesterimide resin, polyhydantoin resin, polybutadiene V! 1n¥f, petroleum ta1 fat, ABS resin, PP5vA
These include fats and the like, and these may be used alone or in a mixture of two or more.

本発明に用いる(B)低粘度希釈剤としては、例えばグ
リシドキシ系反応性希釈剤、ジオキサン、ヘキサン、ベ
ンゼン、トルエン、ソルベントナフサ、工業用ガソリン
、′#酸セロソルブ、エチルセロソルブ、ブチルセロソ
ルブアセテート、ブチルカルピトールアセテート、ジメ
チルホルムアミド、ジメチルアセトアミド、N−メチル
ピロリドン、ジエチレングリコールジエチルエーテル等
が挙げられ、これらは単独又は2種以上混合して使用さ
れる。
Examples of the low-viscosity diluent (B) used in the present invention include glycidoxy-based reactive diluents, dioxane, hexane, benzene, toluene, solvent naphtha, industrial gasoline, acid cellosolve, ethyl cellosolve, butyl cellosolve acetate, butyl carpi Examples include toll acetate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, diethylene glycol diethyl ether, and these may be used alone or in a mixture of two or more.

高純度樹脂に低粘度希釈剤を加えて溶解混合させるが、
必要に応じて加熱反応により相互に部分的に結合させた
ものでもよいし、また必要であれば硬化触媒を使用して
もよい、 低粘度希釈剤の配合割合は、高純度樹脂と低
粘度希釈剤の合計量に対して2〜60重量%配合するこ
とが望ましい。
A low-viscosity diluent is added to high-purity resin and mixed.
If necessary, they may be partially bonded to each other by a heating reaction, and if necessary, a curing catalyst may be used. It is desirable that the amount is 2 to 60% by weight based on the total amount of the agent.

配合量が2重量%未満の場合は、樹脂の低粘度化に効果
なく、また60重量%を超えると反応性が劣ったり、ボ
イドが発生しやすくなる傾向にあり好ましくない。
If the amount is less than 2% by weight, it is not effective in lowering the viscosity of the resin, and if it exceeds 60% by weight, the reactivity tends to be poor and voids tend to occur, which is not preferable.

本発明に用いる(C)銀メッキ銅系導電性粉末としては
、平均粒径が1〜8μ僧の範囲であるリン片スは銅粉に
銀メッキを施した粉末が望ましい。
As the silver-plated copper-based conductive powder (C) used in the present invention, it is preferable to use silver-plated copper powder having an average particle size in the range of 1 to 8 μm.

本発明に用いる導電性ペーストは、上述した(A)高純
度樹脂、(B)低粘度希釈剤、(C)銀メッキ銅系導電
性粉末を含むが、必要に応じて消泡剤、カッブリング剤
その他の添加剤を添加配合することができる。 この導
電性ペーストは、上述の各成分を十分混合した後、更に
例えば二本ロールにより混線処理し、その後減圧脱泡し
て製造する。 こうして製造した導電性ペーストはシリ
ンジに充填し、デイスペンサーを用いてリードフレーム
上に吐出し半導体素子を接合した後、ワイヤーボンディ
ングを行い封止材で封止して樹脂封止型半導体装置を製
造することができる。
The conductive paste used in the present invention contains the above-mentioned (A) high-purity resin, (B) low-viscosity diluent, and (C) silver-plated copper-based conductive powder, and if necessary, an antifoaming agent and a coupling agent. Other additives can be added and blended. This conductive paste is produced by sufficiently mixing the above-mentioned components, then subjecting the mixture to a cross-wire treatment using, for example, two rolls, and then degassing under reduced pressure. The conductive paste produced in this way is filled into a syringe and discharged onto a lead frame using a dispenser to bond the semiconductor element, followed by wire bonding and sealing with an encapsulant to produce a resin-sealed semiconductor device. can do.

(実施例) 次に本発明を実施例によって具体的に説明するが、本発
明はこれらの実施例によって限定されるものではない、
 実施例および比較例において「部jとは特に説明のな
い限り「′gi、量部Jを意味する。
(Examples) Next, the present invention will be specifically explained by examples, but the present invention is not limited by these examples.
In Examples and Comparative Examples, "part j" means "gi, part J, unless otherwise specified."

実 方龜 例    1 エポキシ111脂のEP4400 (旭電化社製、商品
名)7.6部、パラヒドロキシスチレンのマルカリン力
−M(丸首石油化学社製、商品名25.6部、ノルボネ
ン環を有する樹脂の七ロキサイド4000(ダイセル社
製、商品名)0.2部、グリシドキシプロビルトリメト
キシシラン10.4部、およびジエチレングリコールジ
エチルエーテル4.0部を100°Cで1時間溶解反応
を行い、粘稠な褐色の樹脂を得た。 この樹脂27.8
部に触媒として2PH2−CN(四国化成工業社製、商
品名)  0.006部と平均粒径5μmの銀メッキ銅
系導電性粉末70部とを混合して導電性ペーストを製造
した。 この導電性ペーストを使用して半導体素子を接
合し、硬化を行った後にワイヤーボンディングをし、エ
ポキシ樹脂系封止材で封止して樹脂封止型半導体装置(
A>を得た。
Example 1 Epoxy 111 resin EP4400 (manufactured by Asahi Denka Co., Ltd., trade name) 7.6 parts, para-hydroxystyrene marcarine force-M (Marukubi Petrochemical Co., Ltd., trade name 25.6 parts, has a norbornene ring A dissolution reaction was carried out at 100°C for 1 hour with 0.2 parts of the resin Heptoxide 4000 (manufactured by Daicel Corporation, trade name), 10.4 parts of glycidoxypropyltrimethoxysilane, and 4.0 parts of diethylene glycol diethyl ether. , a viscous brown resin was obtained. This resin 27.8
A conductive paste was prepared by mixing 0.006 parts of 2PH2-CN (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name) as a catalyst and 70 parts of silver-plated copper-based conductive powder having an average particle size of 5 μm. Semiconductor elements are bonded using this conductive paste, wire bonded after curing, and sealed with an epoxy resin encapsulant to form a resin-sealed semiconductor device (
A> was obtained.

実施例 2 エポキシ樹脂のEOCN103S(日本化薬社製、商品
名)23.7部、パラヒドロキシスチレンのマルカリン
力−M(前出) 12.3部、ノルボネン環を有する樹
脂のフィントン#1700 (日本ゼオン社製、商品名
) 22.0部、およびジエチレングリコールジエチル
エーテル42.4部を 100℃で1時間溶解反応を行
い、粘稠な褐色の樹脂を得た。 こノ樹脂27.8部に
触媒として2PH2−CN (前出)0.006部と平
均粒径5μmの銀メッキ銅系導電性粉末70部とを混合
して導電性ペーストを製造した。
Example 2 23.7 parts of epoxy resin EOCN103S (manufactured by Nippon Kayaku Co., Ltd., trade name), 12.3 parts of parahydroxystyrene Marcalin Power-M (mentioned above), Finton #1700 (Japanese), a resin having a norbornene ring (manufactured by Zeon Co., Ltd., trade name) and 42.4 parts of diethylene glycol diethyl ether were subjected to a dissolution reaction at 100° C. for 1 hour to obtain a viscous brown resin. A conductive paste was prepared by mixing 27.8 parts of this resin with 0.006 parts of 2PH2-CN (described above) as a catalyst and 70 parts of silver-plated copper-based conductive powder having an average particle size of 5 μm.

この導電性ペーストを使用して半導体素子を接合し、硬
化を行った後にワイヤーボンディングをし、エポキシ系
樹脂封止材で封止し樹脂封止型半導体装置(B)を得た
Semiconductor elements were bonded using this conductive paste, hardened, wire bonded, and sealed with an epoxy resin sealant to obtain a resin-sealed semiconductor device (B).

実施例 3 ピロメリット酸無水物とジアミノジフェニルエーテルと
から合成した樹脂分18重量%ポリイミド樹脂溶液(N
−メチル2−ピロリドン溶剤)  166.7部に、N
−メチル2−ピロリドン30部と 5μmの銀メッキ銅
系導電性粉末70部とを混合して導電性ペーストを製造
した。 この導電性ペーストを使用して半導体素子を接
合し、硬化を行った後にワイヤーボンディングをし、エ
ポキシ系樹脂封止材で封止し、樹脂封止型半導体装置(
C)を得た。
Example 3 Polyimide resin solution (N
-Methyl 2-pyrrolidone solvent) to 166.7 parts, N
- A conductive paste was prepared by mixing 30 parts of methyl 2-pyrrolidone and 70 parts of a 5 μm silver-plated copper-based conductive powder. Semiconductor elements are bonded using this conductive paste, wire bonded after curing, and sealed with an epoxy resin encapsulant.
C) was obtained.

比較例 市販のエポキシ樹脂ベースの銀粉溶剤型半導体用導電性
ペーストを使用して樹脂封止型半導体装置(D)を得た
Comparative Example A resin-sealed semiconductor device (D) was obtained using a commercially available epoxy resin-based silver powder solvent-type conductive paste for semiconductors.

実施例1〜3および比較例で得た樹脂封止型半導体装置
(A)、(B)、(C)および(D)の製造に使用した
導電性ペーストをシリンジ内に充填し、沈降分離試験を
25℃および一10℃で行った。
The conductive pastes used for manufacturing the resin-sealed semiconductor devices (A), (B), (C), and (D) obtained in Examples 1 to 3 and Comparative Examples were filled into a syringe, and a sedimentation separation test was performed. were carried out at 25°C and -10°C.

さらにこのシリンジを使用してデイスペンサーによる 
100シヨツトの吐出バラツキ試験を行い、また半導体
素子とリードフレームを接合硬化した。
Furthermore, by using this syringe and dispenser
A 100-shot discharge variation test was conducted, and the semiconductor element and lead frame were bonded and hardened.

これらについて接着強度、および導電性ペーストの加水
分解性CIイオンの試験を行い、さらに樹脂封止型半導
体装置の信顆性試験を行った。 その結果を第1表に示
したが、本発明の顕著な効果を確認することができた。
These were tested for adhesive strength and hydrolyzable CI ions of the conductive paste, and the reliability of the resin-sealed semiconductor device was also tested. The results are shown in Table 1, and it was possible to confirm the remarkable effects of the present invention.

*1 :直立状態にした5ccシリンジ中のペーストを
放置後、上部から沈降分離した部分の距離を測定 ド2 :銀メ・ツキを方他したリードフレーム(42ア
ロイ)上に4InIllX、’Illのシリコン素子を
接着し、それぞれの温度でプッシュプルゲージを用いて
測定した。
*1: After leaving the paste in a 5cc syringe in an upright position, measure the distance from the top to the part that has settled and separated.2: Place 4InIllX, 'Ill on a lead frame (42 alloy) with silver plating removed. A silicon element was bonded and measurements were made using a push-pull gauge at each temperature.

*3;導電・1ペーストを第1表の接着条件で硬化させ
た後に100メツシユに扮砕して 180 ’C×2時
間加熱抽出を行い、抽出されたC1 。
*3: C1 extracted by curing conductive 1 paste under the adhesive conditions shown in Table 1, crushing it into 100 meshes, and heating and extracting at 180'C for 2 hours.

Naイオンの量から測定した。It was measured from the amount of Na ions.

*4 :温度121°C5圧力2気圧の水蒸気中におけ
る層温試験(PCT)および温度120℃、圧力2気圧
の水蒸気中、印加電圧直流15Vで電通して行う)(湿
式@(バイアス−PCT)を各樹脂封止型半導体装置試
料60個について実施し評価した。 その評価方法は、
半導体素子を構成するアルミニウム電極の腐食によるオ
ープンまたはリーク電流が許容値の500%以上への1
昇をもって不良と判定し、時間経過に伴う不良発生率を
示した。
*4: Layer temperature test (PCT) in water vapor at a temperature of 121°C and a pressure of 2 atm, and conduction with an applied voltage of 15 V DC in water vapor at a temperature of 120°C and a pressure of 2 atm) (wet type @ (bias-PCT) was conducted and evaluated on 60 samples of each resin-sealed semiconductor device.The evaluation method was as follows:
If the open or leakage current due to corrosion of the aluminum electrodes constituting the semiconductor element is 500% or more of the allowable value.
It was determined that the product was defective when the temperature increased, and the defective occurrence rate over time was shown.

[発明の効果] 以上の説明および第1表から明らかなように。[Effect of the invention] As is clear from the above explanation and Table 1.

本発明の樹脂封止型半導体装置は、半導体アッセンブリ
ー工程や保管時におけるシリンジ内ペーストの沈降分離
のない導電性ペーストを用いることによって配線の腐食
断線がなく2.接着性や加水分解性に優れた信顆性の高
い樹脂封止型半導体装置を製造することができる。
The resin-sealed semiconductor device of the present invention uses a conductive paste that does not cause sedimentation and separation of the paste in the syringe during the semiconductor assembly process or during storage, so there is no corrosion or breakage of wiring.2. A highly reliable resin-sealed semiconductor device with excellent adhesiveness and hydrolyzability can be manufactured.

特許出願人 東芝ケミカル株式会社Patent applicant: Toshiba Chemical Corporation

Claims (1)

【特許請求の範囲】[Claims] 1 半導体素子をリードフレーム上に接合する樹脂封止
型半導体装置において、(A)高純度樹脂、(B)低粘
度希釈剤、(C)銀メッキ銅系導電性粉末を含む導電性
ペーストを用いて接合することを特徴とする樹脂封止型
半導体装置。
1. In a resin-sealed semiconductor device in which a semiconductor element is bonded onto a lead frame, a conductive paste containing (A) a high-purity resin, (B) a low-viscosity diluent, and (C) a silver-plated copper-based conductive powder is used. A resin-sealed semiconductor device characterized in that it is bonded by using a resin-sealed semiconductor device.
JP63075894A 1988-03-31 1988-03-31 Resin-sealed semiconductor device Expired - Fee Related JP2584424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075894A JP2584424B2 (en) 1988-03-31 1988-03-31 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63075894A JP2584424B2 (en) 1988-03-31 1988-03-31 Resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JPH01251625A true JPH01251625A (en) 1989-10-06
JP2584424B2 JP2584424B2 (en) 1997-02-26

Family

ID=13589483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075894A Expired - Fee Related JP2584424B2 (en) 1988-03-31 1988-03-31 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JP2584424B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020562A1 (en) * 1992-04-03 1993-10-14 Thermoset Plastics, Inc. Conductor-filled thermosetting resin
JPH07138549A (en) * 1993-11-15 1995-05-30 Tatsuta Electric Wire & Cable Co Ltd Conductive adhesive
EP0965997A1 (en) * 1998-06-19 1999-12-22 Kyoto Elex Co., Ltd. Via-filling conductive paste composition
JP2004014409A (en) * 2002-06-10 2004-01-15 Sekisui Chem Co Ltd Conductive fine particle, manufacturing method of conductive fine particle and anisotropic conductive material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020562A1 (en) * 1992-04-03 1993-10-14 Thermoset Plastics, Inc. Conductor-filled thermosetting resin
US5475048A (en) * 1992-04-03 1995-12-12 Thermoset Plastics, Inc. Conductor-filled thermosetting resin
JPH07138549A (en) * 1993-11-15 1995-05-30 Tatsuta Electric Wire & Cable Co Ltd Conductive adhesive
EP0965997A1 (en) * 1998-06-19 1999-12-22 Kyoto Elex Co., Ltd. Via-filling conductive paste composition
US6080336A (en) * 1998-06-19 2000-06-27 Kyoto Elex Co., Ltd. Via-filling conductive paste composition
JP2004014409A (en) * 2002-06-10 2004-01-15 Sekisui Chem Co Ltd Conductive fine particle, manufacturing method of conductive fine particle and anisotropic conductive material

Also Published As

Publication number Publication date
JP2584424B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JPWO2007032406A1 (en) Resin composition for sealing filler, flip chip mounting method and flip chip mounting product using the same
JPH01251625A (en) Resin sealed type semiconductor device
KR100594343B1 (en) Thermosetting adhesive material
JPH09162235A (en) Method for packaging ic chip and member for connecting ic chip
JPH07179833A (en) Conductive resin paste
JPH01231208A (en) Conductive paste
JPS63161015A (en) Electrically conductive resin paste
JP5157038B2 (en) Conductive adhesive and electronic device using the same
JPS63161014A (en) Electrically conductive resin paste
RU2076394C1 (en) Electricity conducting adhesive compound for mounting integrated circuit chips
JPS6261336A (en) Semiconductor element
JPH03145143A (en) Conductive resin paste for semiconductor
JPH05120914A (en) Conductive resin paste for semiconductor
JPH08245765A (en) Compound semiconductor device
JPS63120432A (en) Semiconductor element
JPH06151478A (en) Resin sealed semiconductor device
JPS61237435A (en) Semiconductor element
JPH052915A (en) Semiconductor device
JPH0212508B2 (en)
JPH02278840A (en) Semiconductor element
JPH05190022A (en) Insulative paste
JPH06232189A (en) Semiconductor device
JPS62148566A (en) Electrically conductive resin paste
JPH0153502B2 (en)
JPH04359525A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees