JPH01251391A - Memory cell - Google Patents

Memory cell

Info

Publication number
JPH01251391A
JPH01251391A JP63079431A JP7943188A JPH01251391A JP H01251391 A JPH01251391 A JP H01251391A JP 63079431 A JP63079431 A JP 63079431A JP 7943188 A JP7943188 A JP 7943188A JP H01251391 A JPH01251391 A JP H01251391A
Authority
JP
Japan
Prior art keywords
node
fet
gate
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63079431A
Other languages
Japanese (ja)
Inventor
Yasuhiko Rai
頼 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63079431A priority Critical patent/JPH01251391A/en
Publication of JPH01251391A publication Critical patent/JPH01251391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To suppress the gate leak current of a data holding transistor of a memory cell even at the time of a high temperature by providing a resistance and a transistor for writing between the gate of the data holding transistor and the source of a load transistor. CONSTITUTION:The drain of a sixth enhancement type MESFET (E-FET) Q16 is connected to a second node, its gate is connected to a fourth node, and its source is connected to a second power source respectively, the drain of a seventh depression type MES (Metal Semiconductor) FET (D-FET) Q17 is connected to the second node, its gate is connected to a signal line for writing YW, and its source is connected to a third node respectively, and the drain of an eighth D-FETQ18 is connected to a first node, its gate is connected to the signal line for writing YW, and its source is connected to the fourth node respectively. At the time of the high temperature, while the forward breakdown voltage Vf of the parasitic diode of the E-FETQ16 is lowered, a gate leak current I11 is suppressed by a resistance R12. Thus, the gate leak current applied to the transistor for holding data can be suppressed even at the time of the high temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメモリセル、特に化合物半導体のFETで構成
されてスタティック形RAM (以下SRAMという)
のメモリセルに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a memory cell, particularly a static RAM (hereinafter referred to as SRAM) which is composed of a compound semiconductor FET.
Regarding memory cells.

〔従来の技術〕[Conventional technology]

従来、この種のメモリセルは、デイプレッション形M 
E S (Met、al Sem1condector
)F E T (以下D−FETという)とエンハンス
メント形MESFET(以下E−FETという)とでフ
リップフロップを構成し、D−FETをフリップフロッ
プのディジット線に、ゲートをワード線に接続して構成
されている。以下、図面を用いて説明すると、第3図は
従来のSRAMのメモリセルの回路である。Qll〜Q
14はD−FETでQ 11. Q +4は選択用トラ
ンジスタとして、Q121Q13は負荷用トランジスタ
として用いられ、Q 15+ Q lbはE−FETで
データ保持用トランジスタとして用いられている。vo
Dは+2.0 V、DL、DLは相補となるディジット
線、WLはワード線、Rpυはプルアップ抵抗である。
Conventionally, this type of memory cell is a depletion type M
E S (Met, al Sem1 conductor
)FET (hereinafter referred to as D-FET) and an enhancement type MESFET (hereinafter referred to as E-FET) constitute a flip-flop, and the D-FET is connected to the digit line of the flip-flop and the gate is connected to the word line. has been done. The following will be explained with reference to the drawings. FIG. 3 shows a circuit of a conventional SRAM memory cell. Qll~Q
14 is a D-FET and Q11. Q+4 is used as a selection transistor, Q121Q13 is used as a load transistor, and Q15+Qlb is an E-FET used as a data holding transistor. vo
D is +2.0 V, DL and DL are complementary digit lines, WL is a word line, and Rpυ is a pull-up resistor.

第4図(a)は第3図のメモリセルが■DD;+2、O
V、常温時において動作したときのメモリセルのデータ
保持特性(図面下側の曲線)と、ディジット線DLのD
C特性(図面上側の曲線)とを示し、第4図(b)は第
3図のメモリセルがVo。
FIG. 4(a) shows that the memory cell in FIG. 3 is ■DD;+2,O
V, data retention characteristics of the memory cell when operating at room temperature (lower curve in the drawing), and D of the digit line DL.
FIG. 4(b) shows the memory cell of FIG. 3 at Vo.

=+2.OV、高温時において動作した時のメモリセル
のデータ保持特性と、ディジット線DLのDC特性とを
示す。
=+2. OV, shows the data retention characteristics of the memory cell when operated at high temperatures, and the DC characteristics of the digit line DL.

次に、第4図(a)および(b)の特性の差異について
説明する。まず、常温時の第4図(a)ではメモリセル
のデータ保持特性およびディジット線DLの振幅は十分
である。一方、高温になると、E−FETQ、6の寄生
ダイオードの順方向降伏電圧■fが低下し、第3図に示
すゲートリーク電流I’llが大きくなり、ノードI’
lttの“ハイパレベルを落とし、第4図(b)のよう
にメモリセルのデータ保持特性が悪くなり、ディジット
線DLの振幅が小さくなる。
Next, the difference in characteristics between FIGS. 4(a) and 4(b) will be explained. First, in FIG. 4(a) at room temperature, the data retention characteristics of the memory cell and the amplitude of the digit line DL are sufficient. On the other hand, when the temperature rises, the forward breakdown voltage f of the parasitic diode of the E-FET Q and 6 decreases, the gate leakage current I'll shown in FIG. 3 increases, and the node I'
When the "hyper level" of ltt is lowered, the data retention characteristics of the memory cell become worse as shown in FIG. 4(b), and the amplitude of the digit line DL becomes smaller.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の化合物半導体のMES  FETで構成
されたメモリセルは、高温になると前述のようにメモリ
セルの“ハイ”レベルの保持が困難となり、ディジット
線の振幅が小さくなるという欠点がある。
A memory cell constructed of the above-described conventional compound semiconductor MES FET has the drawback that when the temperature rises, it becomes difficult to maintain the "high" level of the memory cell as described above, and the amplitude of the digit line becomes small.

本発明の目的は、メモリセルのデータ保持用トランジス
タのゲートと負荷用トランジスタのソースとの間に、抵
抗とD−FETを並列に接続することによって高温時に
もデータ保持用トランジスタに流れるゲートリーク電流
が抑制できて、特性の良好なメモリセルを提供すること
にある。
An object of the present invention is to connect a resistor and a D-FET in parallel between the gate of the data retention transistor of a memory cell and the source of the load transistor, thereby reducing the gate leakage current that flows to the data retention transistor even at high temperatures. It is an object of the present invention to provide a memory cell which can suppress the occurrence of problems and has good characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のメモリセルは、第1のD−FETのゲートをワ
ード線にドレインを第1のディジット線にソースを第1
のノードにそれぞれ接続し、第2のD−FETのゲート
とソースとを前記第1のノードにドレインを第1の電源
にそれぞれ接続し、第3のD−FETのゲートとソース
とを第2のノードにドレインを前記第1の電源にそれぞ
れ接続し、第4のD−FETのゲートを前記ワード線に
ドレインを前記第1のディジット線を相補となる第2の
ディジット線にソースを前記第2のノードにそれぞれ接
続し、第5のE−FETのドレインを前記第1のノード
にゲートを第3のノードにソースを第2の電源にそれぞ
れ接続し、第6のE−FETのドレインを前記第2のノ
ードにゲートを第4のノードにソースを前記第2の電源
にそれぞれ接続し、第7のD−FETのドレインを前記
第2のノードにゲートを書込み用信号線にソースを前記
第3のノードにそれぞれ接続し、第8のD−FETのド
レインを前記第1のノードにゲートを前記書込み用信号
線にソースを前記第4のノードにそれぞれ接続し、第1
の抵抗を前記第2のノードと前記第3のノードの間に接
続し、第2の抵抗を前記第1のノードと前記第4のノー
ドの間に接続することにより構成される。
In the memory cell of the present invention, the gate of the first D-FET is connected to the word line, the drain is connected to the first digit line, and the source is connected to the first digit line.
, the gate and source of a second D-FET are connected to the first node, the drain is connected to the first power supply, and the gate and source of a third D-FET are connected to the second A fourth D-FET has its gate connected to the word line, its drain connected to the word line, and its source connected to the second digit line complementary to the first digit line. the drain of the fifth E-FET is connected to the first node, the gate is connected to the third node, the source is connected to the second power supply, and the drain of the sixth E-FET is connected to the second power source. The gate of the seventh D-FET is connected to the second node, the source is connected to the fourth node, and the source is connected to the second power supply, and the drain of the seventh D-FET is connected to the second node, the gate is connected to the write signal line, and the source is connected to the write signal line. the drain of an eighth D-FET is connected to the first node, the gate is connected to the write signal line, and the source is connected to the fourth node, respectively;
A resistor is connected between the second node and the third node, and a second resistor is connected between the first node and the fourth node.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のメモリセルの回路図である
。Qst〜Q141Qlフ1Q18はD−FET + 
Q 15+ Q lbはE−FET、R,□、R1□は
抵抗で、VDDは+2.0■の電源、N 11+ N 
1□+NlB+N14はノード、WLはワード線、DL
、D口は相補となるディジット線、YWは書込み用信号
線である。従来の第3図のメモリセルに対し本発明では
Q 1?+ Q 1sのD−FET、R+□+R1□の
抵抗が追加されて構成されていて、第3図における符号
と同一の符号のものは同じものを示している。
FIG. 1 is a circuit diagram of a memory cell according to an embodiment of the present invention. Qst~Q141Qlf1Q18 is D-FET +
Q 15+ Q lb is E-FET, R, □, R1 □ are resistors, VDD is +2.0■ power supply, N 11+ N
1□+NlB+N14 is a node, WL is a word line, DL
, D are complementary digit lines, and YW is a write signal line. Compared to the conventional memory cell shown in FIG. 3, the present invention has Q1? It is constructed by adding a D-FET of +Q 1s and a resistor of R+□+R1□, and the same symbols as those in FIG. 3 indicate the same ones.

第2図(a>は第1図の常温時におけるメモリセルのデ
ータ保持特性とディジット線DLのDC特性とを示し、
第2図(b)は第1図の高温時におけるメモリセルのデ
ータ保持特性とディジット線DLのDC特性とを示す。
FIG. 2 (a> shows the data retention characteristics of the memory cell and the DC characteristics of the digit line DL at room temperature in FIG. 1,
FIG. 2(b) shows the data retention characteristics of the memory cell and the DC characteristics of the digit line DL at high temperatures in FIG.

次に、第2図(a)および(b)の特性の差異について
説明する。まず、読出し状態において書込み用信号線Y
Wが“ロー”レベルでD−FETQI7.Q10はオフ
しており、E  F E T Q t 6の寄生ダイオ
ードの順方向降伏電圧V、は高いので、ゲートリーク電
流IIIは流れず、ノードNilのパハイ”レベルは保
持され、第2図(a)の様にメモリセルのデータ保持特
性とディジット線DLの振幅とは十分である。一方、高
温時には、E−FETQI6の寄生ダイオードの順方向
降伏電圧V、は低下するが、抵抗R12によってゲート
リーク電流■1□が抑制されノードNllの“ハイ”レ
ベルの低下を抑制できるので、第2図(b)の様にメモ
リセルのデータ保持特性とディジット線DLの振幅とは
従来回路のメモリセルのそれぞれlj倍、1.5倍とな
る。
Next, the difference in characteristics between FIGS. 2(a) and 2(b) will be explained. First, in the read state, the write signal line Y
When W is at “low” level, D-FETQI7. Since Q10 is off and the forward breakdown voltage V, of the parasitic diode of E F E T Q t 6 is high, gate leakage current III does not flow and the level of node Nil is maintained, as shown in FIG. As shown in a), the data retention characteristics of the memory cell and the amplitude of the digit line DL are sufficient.On the other hand, at high temperatures, the forward breakdown voltage V of the parasitic diode of E-FET QI6 decreases, but the gate Since the leakage current ■1□ is suppressed and the drop in the "high" level of the node Nll can be suppressed, the data retention characteristics of the memory cell and the amplitude of the digit line DL are different from those of the memory cell of the conventional circuit, as shown in FIG. 2(b). are multiplied by lj and 1.5 times, respectively.

また、書込み状態においては、書込み用信号線YWが゛
′ハイ”レベルになり、D −F、E T Q 1フ。
Furthermore, in the write state, the write signal line YW goes to the "high" level, and D-F, ETQ1F.

Q18がオンし、D−FETQ17. Qtsのオン抵
抗(ドレイン・ソース間の抵抗)がR11+ R12に
比べ十分に小さいとすると、従来のメモリセルと同様に
メモリセルのデータは高速に書換えることができる。
Q18 turns on, and D-FETQ17. Assuming that the on-resistance (resistance between drain and source) of Qts is sufficiently smaller than R11+R12, data in the memory cell can be rewritten at high speed as in conventional memory cells.

第5図は本発明の別の実施例のメモリセルの回路図であ
る。第5図では第1図の実施例に比ペブルアップ回路が
抵抗からQ191 Q20のD−FETと、Q20. 
Q20AのE−FETになっていて、この他の回路につ
いては第1図と同じである。この実施例では、プルアッ
プ回路に、メモリセルのデータ保持トランジスタQ15
.Q16と同じE−FET Q 19A I Q 20
Aを使用しているため、フリツブフロ11反転電圧V↑
の変動によるばらつきも補償されて、メモリセルのデー
タ保持特性が向上するという利点がある。なお動作は第
1図の実施例と同一である。
FIG. 5 is a circuit diagram of a memory cell according to another embodiment of the present invention. In FIG. 5, a pebble-up circuit compared to the embodiment of FIG.
It is a Q20A E-FET, and the other circuits are the same as in FIG. In this embodiment, the pull-up circuit includes the data holding transistor Q15 of the memory cell.
.. E-FET same as Q16 Q 19A I Q 20
Since A is used, the flip flow 11 inversion voltage V↑
This has the advantage that variations due to fluctuations in are also compensated for, thereby improving the data retention characteristics of the memory cell. Note that the operation is the same as the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、メモリセルのデータ保持
トランジスタのゲートと負荷トランジスタのソースとの
間に抵抗と書込み用トランジスタのD−FETを設ける
ことにより、読出し状態において高温時にメモリセルの
データ保持トランジスタの寄生ダイオードの順方向降伏
電圧V、が抵抗しても、データ保持トランジスタのゲー
トリーク電流を抑制してメモリセルの“ハイ”レベルを
保持することができ、また、書込み状態においては従来
のメモリセルと同様にデータの書換えが高速にできると
いう効果がある。
As explained above, the present invention provides data retention in a memory cell at high temperatures in a read state by providing a resistor and a D-FET as a write transistor between the gate of a data retention transistor of a memory cell and the source of a load transistor. Even if the forward breakdown voltage V of the parasitic diode of the transistor resists, the gate leakage current of the data storage transistor can be suppressed and the memory cell can be kept at a "high" level. Similar to memory cells, data can be rewritten at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図(a)およ
び第2図(b)はそれぞれ第1図のメモリセルの常温時
および高温時における特性図、第3図は従来のメモリセ
ルの回路図、第4図(a)および第4図(b)はそれぞ
れ第3図のメモリセルの常温時および高温時における特
性図、第5図は本発明の別の実施例の回路図、第6図(
a)および第6図(b)はそれぞれ第5図のメモリセル
の常温時および高温時における特性図である。 Qll〜Q14.Qlフ〜Q20・・・デイプレッショ
ン形MES  FET (D−FET) 、Q10.Q
16゜Q !9A I Q 204−エンハンスメント
形MES  FE T (、E −F E T ) 、
Voo・・・+2.0V電源、DL。 7丁、、、ディジット線、RPL+・・・プルアップ抵
抗、YW・・・書込み用信号線、WL・・・ワード線。
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIGS. 2(a) and 2(b) are characteristic diagrams of the memory cell in FIG. 1 at room temperature and high temperature, respectively, and FIG. 3 is a conventional circuit diagram. 4(a) and 4(b) are characteristic diagrams of the memory cell of FIG. 3 at room temperature and high temperature, respectively, and FIG. 5 is a circuit diagram of the memory cell of another embodiment of the present invention. Circuit diagram, Figure 6 (
6a) and 6(b) are characteristic diagrams of the memory cell of FIG. 5 at room temperature and at high temperature, respectively. Qll~Q14. QlF~Q20...Depression type MES FET (D-FET), Q10. Q
16°Q! 9A IQ 204-Enhancement type MES FET (,E-FET),
Voo...+2.0V power supply, DL. 7th line, digit line, RPL+... pull-up resistor, YW... write signal line, WL... word line.

Claims (1)

【特許請求の範囲】[Claims] 第1のディプレッション型MES(MetalSemi
conductor)FET(以下D−FETという)
のゲートをワード線にドレインを第1のディジット線に
ソースを第1のノードにそれぞれ接続し、第2のD−F
ETのゲートとソースとを前記第1のノードにドレイン
を第1の電源にそれぞれ接続し、第3のD−FETのゲ
ートとソースとを第2のノードにドレインを前記第1の
電源にそれぞれ接続し、第4のD−FETのゲートを前
記ワード線にドレインを前記第1のディジット線を相補
となる第2のディジット線にソースを前記第2のノード
にそれぞれ接続し、第5のエンハンスメント型MESF
ET(以下E−FETという)のドレインを前記第1の
ノードにゲートを第3のノードにソースを第2の電源に
それぞれ接続し、第6のE−FETのドレインを前記第
2のノードにゲートを第4のノードにソースを前記第2
の電源にそれぞれ接続し、第7のD−FETのドレイン
を前記第2のノードにゲートを書込み用信号線にソース
を前記第3のノードにそれぞれ接続し、第8のD−FE
Tのドレインを前記第1のノードにゲートを前記書込み
用信号線にソースを前記第4のノードにそれぞれ接続し
、第1の抵抗を前記第2のノードと前記第3のノードと
の間に接続し、第2の抵抗を前記第1のノードと前記第
4のノードとの間に接続して構成されることを特徴とす
るメモリセル。
The first depression type MES (MetalSemi
conductor) FET (hereinafter referred to as D-FET)
The gate of D-F is connected to the word line, the drain is connected to the first digit line, the source is connected to the first node, and the second D-F
The gate and source of the ET are connected to the first node, and the drain is connected to the first power source, and the gate and source of the third D-FET are connected to the second node, and the drain is connected to the first power source, respectively. a gate of a fourth D-FET is connected to the word line, a drain is connected to the first digit line, a complementary second digit line is connected, and a source is connected to the second node, and a fifth enhancement type MESF
The drain of an ET (hereinafter referred to as E-FET) is connected to the first node, the gate is connected to the third node, and the source is connected to the second power supply, and the drain of the sixth E-FET is connected to the second node. The gate is connected to the fourth node and the source is connected to the second node.
The drain of the seventh D-FET is connected to the second node, the gate is connected to the write signal line, the source is connected to the third node, and the drain of the seventh D-FET is connected to the third node.
The drain of T is connected to the first node, the gate is connected to the write signal line, and the source is connected to the fourth node, and a first resistor is connected between the second node and the third node. and a second resistor is connected between the first node and the fourth node.
JP63079431A 1988-03-30 1988-03-30 Memory cell Pending JPH01251391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079431A JPH01251391A (en) 1988-03-30 1988-03-30 Memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079431A JPH01251391A (en) 1988-03-30 1988-03-30 Memory cell

Publications (1)

Publication Number Publication Date
JPH01251391A true JPH01251391A (en) 1989-10-06

Family

ID=13689689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079431A Pending JPH01251391A (en) 1988-03-30 1988-03-30 Memory cell

Country Status (1)

Country Link
JP (1) JPH01251391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119592A (en) * 1990-09-11 1992-04-21 Toshiba Corp Static semiconductor storage device
JP2004095063A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Semiconductor memory circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119592A (en) * 1990-09-11 1992-04-21 Toshiba Corp Static semiconductor storage device
JP2004095063A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Semiconductor memory circuit
JP4568471B2 (en) * 2002-08-30 2010-10-27 三菱重工業株式会社 Semiconductor memory circuit

Similar Documents

Publication Publication Date Title
US6711086B2 (en) Multiport semiconductor memory with different current-carrying capability between read ports and write ports
JP2006507617A (en) SRAM cell and method for compensating leakage current flowing into the SRAM cell
US20110205787A1 (en) Dual-rail sram with independent read and write ports
US4845676A (en) Non-clocked static memory cell
US6538473B2 (en) High speed digital signal buffer and method
JP2885607B2 (en) Semiconductor memory
JPH01251391A (en) Memory cell
JPS5855597B2 (en) bistable semiconductor memory cell
JPS6196588A (en) Semiconductor memory device
Singh et al. Design and Analysis for Power Reduction with High SNM of 10T SRAM Cell
JPS6260190A (en) Semiconductor storage device
JP3044883B2 (en) Semiconductor memory
Law et al. GaAs Schmitt trigger memory cell design
Kareer et al. A Novel Bulk Drain Connected 6T SRAM Cell
JPS58147889A (en) Semiconductor device
Meinerzhagen et al. Gain-Cell eDRAMs (GC-eDRAMs): Review of Basics and Prior Art
JP3022567B2 (en) Semiconductor storage device
JPH0537305A (en) Latch circuit
JP2940127B2 (en) Semiconductor device
JPS6153814A (en) Latch circuit
JPH01118294A (en) Memory cell
JPH0294196A (en) Memory cell for static memory of compound semiconductor
JPS622395B2 (en)
JPS63314861A (en) Compound semiconductor static memory
JP2000057778A (en) Semiconductor memory